» Home 

Welcome to the Max-Planck-Institut für Kernphysik (MPIK, Max Planck Institute for Nuclear Physics) in Heidelberg, one of 83 institutes and research establishments of the  Max-Planck-Gesellschaft (Max Planck Society). The MPIK does experimental and theoretical basic research in the fields of Astroparticle Physics (crossroads of particle physics and astrophysics) and Quantum Dynamics (many-body dynamics of atoms and molecules).

  

Latest news


Sixfold improved measurement of the magnetic moment of the antiproton


In a paper published on January 18 in the journal Nature Communications, the BASE collaboration at CERN reports the most precise measurement ever made of the magnetic moment of the antiproton, allowing a fundamental comparison between matter and antimatter. The BASE measurement shows that the magnetic moments of the proton and antiproton are identical, apart from their opposite signs, within the experimental uncertainty of 0.8 parts per million.

 more...

Images of research at MPIK


  • Artist‘s view of the reaction between protonated water and electrons in the CSR
  • Copper strips distribute the cold to the experimental vacuum chambers of the CSR
  • The atomic mass of a bound electron is balanced by QED contributions in increasing order, playing the role of a precision mass set
  • Electrodes of a Penning trap
  • A liquid-nitrogen-cooled GaAs photocathode producing cold electron beams
  • Momentum distribution of the electrons emitted in double ionization of argon
  • „Chirped mirror“ arrangement for ultrashort Laser pulses
  • Crystal of laser-cooled ions in a cryogenic Paul trap
  • A reaction microscope
  • Wave function for two electrons in doubly excited helium
  • Principle of the generation of an X-ray frequency comb by means of a laser-controlled gas
  • A matterless double slit consisting of two ultra-intense focused laser beams
  • Controllable delay of x-ray photons with nuclei
  • A laser-induced splitting gradient is used to store the complete frequency spectrum of a broadband pulse in a resonant medium
  • Tunnel ionization of a highly charged ion at relativistic laser intensities
  • Cameras for CTA: CHEC for small telescopes in front of FlashCam for medium-sized telescopes
  • View of the full H.E.S.S. array with the four 12 m telescopes and the new 28 m H.E.S.S. II telescope
  • Image of a particle cascade viewed simultaneously by all five H.E.S.S. telescopes
  • A proton-lead collision observed by the LHCb detector
  • Predictions of the turbulent magnetic field excited ahead of a shock front
  • Integration of the acrylic vessels in the Double Chooz detector
  • Construction principle of the Nucifer detector
  • Elementary particles of the Standard Model and their hypothetical supersymmetric and seesaw partners
  • The GERDA detector strings with Nylon shielding and optical fibre
  • The upper photomultiplier array for the XENON1T experiment searching for Dark Matter
  • Annihilation tracks of antiprotons in an emulsion detector
  • CAD drawing of the laser photodetachment line (ASTROLAB project)
  • Illustration of the rotational symmetry of an octahedron, used to construct models for fermion mixing
Max-Planck-Gesellschaft

03.02.17

Florian Goertz leitet neue Forschergruppe am MPIK

Dr. Florian Goertz war im Auswahlverfahren der...


19.01.17

Ruf für Carlos Yaguna

Dr. Carlos Esteban Yaguna Toro, seit April 2015 PostDoc in...


18.01.17

Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt

Kein Unterschied zwischen Protonen und Antiprotonen messbar


05.12.16

Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene...