Erstmals Nachglühen eines Gammablitzes im höchstenergetischen Gammalicht beobachtet

Gammastrahlenausbrüche, jene extrem energiereichen, auf kosmische Katastrophen folgenden Blitze, enthalten im Nachglühen auch höchstenergetische Gammastrahlung. Diese Entdeckung gelang im Juli 2018 mit dem riesigen 28-m-Teleskop von H.E.S.S. in Namibia.

Am 20. Juli 2018 meldeten der Fermi Gamma-Ray Burst Monitor und das Swift Burst Alert Telescope kurz nacheinander einen Gammastrahlenausbruch, genannt GRB 180720B. Diese Stelle am Himmel wurde sogleich von verschiedenen Observatorien ins Visier genommen. Ins Blickfeld von H.E.S.S. (High Energy Stereoscopic System) kam sie erst 10 Stunden später, was das H.E.S.S.-Team aber nicht davon abhielt, nach höchstenergetischem Nachglühen des Ausbruchs zu suchen.

Extrem energiereiche kosmische Explosionen produzieren Gammastrahlenausbrüche (GRB), die meist nur einige zehn Sekunden dauern. Darauf folgt ein länger andauerndes Nachglühen im optischen und Röntgen-Bereich, dessen Helligkeit rasch abklingt. Die Gammastrahlen des unmittelbaren Ausbruchs sind überwiegend einige Tausend bis Millionen Mal energiereicher als sichtbares Licht und nur von Satelliten aus beobachtbar. Die Weltraumobservatorien konnten aber auch schon einzelne noch energiereichere Photonen nachweisen. Bis zu welchen Energien GRBs Strahlung emittieren, und ob auch höchstenergetische Gammastrahlung (mindestens 100 Milliarden Mal energiereicher als sichtbares Licht) dabei ist, blieb bisher offen.

Dieser Nachweis gelang nun mit dem großen H.E.S.S.-Teleskop, das für derartige Beobachtungen besonders geeignet ist. In den Beobachtungsdaten, die 10 bis 12 Stunden nach dem Gammastrahlenausbruch aufgezeichnet wurden, war an der Stelle des Ausbruchs eine neue, punktförmige Gammastrahlen-Quelle sichtbar, die 18 Tage später wieder verschwunden war. Federführend bei der Datenauswertung waren Physikerinnen und Physiker des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg.

GRB 180720B war sehr stark und dauerte etwa 50 Sekunden – eine relativ lange Zeit, die auf den Tod eines massereichen Sterns hindeutet. Dabei kollabiert dessen Kernbereich zu einem schnell rotierenden Schwarzen Loch. In einer Akkretionsscheibe um das Schwarze Loch heizt sich das umgebende Gas sehr stark auf. Senkrecht zur Scheibenebene ausgestoßene Gasjets erzeugen die Gammablitze.

Die jetzt entdeckte höchstenergetische Gammastrahlung demonstriert nicht nur die Anwesenheit von extrem beschleunigten Teilchen, sondern zeigt auch, dass diese Teilchen relativ lange nach der Explosion noch existieren bzw. erzeugt werden. Als kosmischer Beschleuniger wirkt hier sehr wahrscheinlich die von der Explosion ausgehende Schockwelle. Vor dieser H.E.S.S.-Beobachtung war man davon ausgegangen, dass solche Ausbrüche wahrscheinlich nur in den ersten Sekunden und Minuten bei diesen extremen Energien beobachtbar sind.

Zum Zeitpunkt der H.E.S.S.-Messungen hatte das Nachglühen im Röntgenlicht schon stark abgenommen. Erstaunlich ist, dass „Helligkeit“ und spektrale Form im Röntgen- und höchstenergetischen Gammabereich übereinstimmen. Wie diese auf sehr hohe Energien beschleunigten Teilchen höchstenergetisches Gammalicht erzeugen, kann theoretisch auf verschiedene Art und Weise geschehen. Die H.E.S.S Ergebnisse grenzen die möglichen Emissionsmechanismen stark ein, geben aber auch neue Rätsel auf, da sie recht extreme Parameter des GRBs als kosmischem Teilchenbeschleuniger erfordern.

Zusammen mit den Beobachtungen höchstenergetischer Gammastrahlung nach späteren GRBs durch MAGIC und erneut H.E.S.S. ermöglicht diese Entdeckung tiefere Einblicke in die Natur von Gammastrahlenausbrüchen. Jim Hinton vom MPIK ist begeistert über die neue Entdeckung: „Tscherenkow-Teleskope wie H.E.S.S. und MAGIC haben über ein Jahrzehnt nach höchstenergetischer Gammastrahlung aus GRBs gesucht, und die Beobachtungsstrategien kontinuierlich verbessert. Dass jetzt gleich mehrere GRBs bei höchsten Energien detektiert wurden, und dass die Ausbrüche auch bei sehr hohen Energien über viele Stunden und sogar Tage nachleuchten, eröffnet ganz neue Perspektiven für das Nachfolgeinstrument CTA (Cherenkov Telescope Array), mit dem diese extremen Sternexplosionen viel genauer untersucht werden können.“


Originalpublikation:

H.E.S.S. Collaboration (E. L. Ruiz Velasco, Q. Piel, R. D. Parsons, E. Bissaldi, C. Hoischen, A. M. Taylor, F. Aharonian, D. Khangulyan et al.): A very-high-energy component deep in the Gamma-ray Burst afterglow, Nature 575, 464–467 (2019), DOI: 10.1038/s41586-019-1743-9


High Energy Stereoscopic System (H.E.S.S.)

Nature New and Views: Extreme emission seen from γ-ray bursts, Bing Zhang, Nature 575, 448-449 (2019) DOI: 10.1038/d41586-019-03503-6


Kontakt

Edna L. Ruiz Velasco
Tel.: +49 6221 516-137
E-Mail: Edna.ruiz(at)mpi-hd.mpg.de

Dr. Daniel Parsons
Tel.: +49 6221 516-634
E-Mail: daniel.parsons(at)mpi-hd.mpg.de

Prof. Dr. Werner Hofmann
Tel.: +49 6221 516-330
E-Mail: werner.hofmann(at)mpi-hd.mpg.de

Prof. Dr. Jim Hinton
Tel.: +49 6221 516-140
E-Mail: jim.hinton(at)mpi-hd.mpg.de


CT5.jpg
Das riesige H.E.S.S.-Teleskop mit 614 m² Spiegelfläche und zwei der vier kleineren Teleskope mit je 107 m² Spiegelfläche. (©MPIK/C. Föhr)

HESS-GRB_de.jpg
GRB 180720B im höchstenergetischen Gammalicht, 10 bis 12 Stunden nach dem Ausbruch gesehen mit dem großen H.E.S.S.-Teleskop. Das rote Kreuz zeigt die im optischen Bereich bestimmte Position von GRB 180720B. (© H.E.S.S.-Kollaboration)