springe zum Hauptinhalt  ∨   Seitenlogos mit Links zu Institutionen:
Max-Planck-Gesellschaft Max-Planck-Institut für Kernphysik Universität Heidelberg
Abteilung für gespeicherte und gekühlte Ionen
Max-Planck-GesellschaftMax-Planck-Institut für KernphysikUniversität Heidelberg Abteilung für gespeicherte und gekühlte Ionen
Übergeordnete Navigation: MPIK Homepage  |  Home  |  English  |  Sitemap  |  Suche  |  Kontakt

Kontakt  Kontakt

Tel.: +49 6221 516-851
Fax: +49 6221 516-852
Max-Planck-Institut für Kernphysik
Postfach 10 39 80
69029 Heidelberg
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
Gebäude: Gentnerlabor, Raum 134
69117 Heidelberg


Oberseminar, WS19/20

Physik mit gespeicherten und gekühlten Ionen

Zentraler Seminarraum
In der Regel 14tägig, mittwochs 15:00


Datum: 30. Okt. 2019, 14:00 !
Redner: Rima Schüssler, MPIK
Titel: Discovery of metastable electronic states using Penning-trap mass spectrometry


Datum: 27. Nov. 2019
Redner: Prof. Frank Arnold, MPIK und DLR
Titel: Atmospheric Nanoparticles: Formation and Effects - New insights from Mass Spectrometric measurements aboard Rockets, Balloons and airplanes


Nanoparticles (NPs) are of considerable current interest, due to their environmental effects, including particularly climate and health effects. NPs are formed from nucleating gases in the earth´s atmosphere at altitudes between ground level and about 120 km. NP precursor gases include natural gases (meteor ablation gases, gases injected by volcanic eruptions) and man-made gases (aircraft engine emissions, car engine emissions). We have obtained new insights from our pioneering mass spectrometric measurements, conducted on rockets, stratospheric balloons and airplanes. The talk will focus on our recent rocket and aircraft measurements made by improved mass spectrometric instruments.


Datum: 22. Jan. 2020
Redner: Dr. Yeunhwan Lim, TU Darmstadt/MPIK
Titel: Nuclear Equation of State for Hot Dense Matter


Nuclear equation of state (EOS) is constructed with energy density functional (EDF) and liquid drop model (LDM) technique. Compared with the classical LDM approach containing alpha particle, deutron, triton, and helio are added to construct nuclear EOS. Energy density functional parameters are constrained by theoretical neutron matter calculation, symmetric nuclear matter properties, and maximum mass of neutron stars. The nuclear surface tension and the critical temperature necessary for the free energy of finite nuclei are calculated in a consistent way.
In this talk, I will present and discuss the current results obtained from LDM and EDF with most recent parameters.


Datum: 29. Jan. 2020
Redner: Damian Müll, MPIK
Titel: Metastable states of the silicon anion observed in CSR