Skip to main content  ∨   Page logos with links to institutions:
Max Planck Society Max Planck Institute for Nuclear Physics University of Heidelberg
Stored and Cooled Ions Division
 
Max Planck SocietyMax Planck Institute for Nuclear PhysicsUniversity of Heidelberg Stored and Cooled Ions Division
Superordinated navigation: MPIK Homepage  |  Home  |  Deutsch  |  Sitemap  |  Search  |  Contact
Section navigation:

Contact  Contact



Tel.: +49 6221 516-851
Fax: +49 6221 516-852
Postal Address
Max Planck Institute for Nuclear Physics
P.O. Box 10 39 80
69029 Heidelberg
Visitor Address
Max Planck Institute for Nuclear Physics
Saupfercheckweg 1
Building: Gentner lab, room 134
69117 Heidelberg

 

Ion cooling and storage in the cold beam trap CTF

The Cryogenic Trap for Fast ion beams (CTF) [1] is a cryogenic Electrostatic Ion Beam Trap (EIBT) [2,3]. Ion beams with an energy of some keV can be trapped. The CTF has been initially designed to test vacuum and cooling concepts as well as the mechanical setup of the cryogenic storage ring (CSR).

Stored ions are reflected back and forth between two electrostatic mirrors. Einzellenses focus the ion beam towards the trap center. The cryogenic temperature of the environment (<15 K) leads to extremely low rest-gas densities of 2000 particles/cm-3 comparable to a pressure of 10-13 mbar at room temperature. Storage times of minutes have been realized. A pickup electrode is installed for non-destructive ion detection. The revolution frequency of the stored particles is used to determine their mass. Neutralized particles leaving the trap are detected by a microchannelplate (MCP) detector behind the trap electrodes.

The Cryogenic Trap for Fast ion beams (CTF).
The Cryogenic Trap for Fast ion beams (CTF).

The CTF is used to investigate dynamical processes of stored ion beams. In order to investigate the cooling of rotational and vibrational modes of molecules and metal cluster negatively charged ions are excited by a pulsed, tunable laser system (OPO). The neutralization rate is measured in dependence of laser wavelength and storage time allowing to draw conclusions about the internal structure of molecules and cluster.

Especially the optimal conditions of the CTF such as the cryogenic environment enable these experiments.

^ to the top

References

[1]   M. Lange et al., Rev. Sci. Instrum. 81 (2010) 055105. externer Link
[2]   M. Dahan et al., Rev. Sci. Instrum. 69 (1998) 76. externer Link
[3]   D. Zaifman et al., Phys. Rev. A 55 (1997) 1577. externer Link

Contact

^ to the top

List of publications

2016


 9.  Decay processes and radiative cooling of small anionic copper clusters
C. Breitenfeldt, K. Blaum, M. W. Froese, S. George, G. Guzmán-Ramírez, M. Lange, S. Menk, L. Schweikhard, and A. Wolf
Phys. Rev. A 94, 033407 (2016) externer Link
 8.  Spreading times of ion-bunches in the Cryogenic Trap for Fast ion beams
C. Breitenfeldt, M. W. Froese, K. Blaum, S. George, M. Grieser, M. Lange, S. Menk, R. Repnow, D. Schwalm, L. Schweikhard, R. von Hahn, A. Wolf
Int. J. Mass. Spectrom. 396, 1-4 (2016) externer Link

2014


 7.  Vibrational autodetachment of sulfur hexafluoride anions at its long-lifetime limit
S. Menk, S. Das, K. Blaum, M. W. Froese, M. Lange, M. Mukherjee, R. Repnow, D. Schwalm, R. von Hahn, and A. Wolf
Phys. Rev. A 89, 022502 (2014) externer Link

2013


 6.  Beam dynamics and internal cooling of ions stored in a cryogenic electrostatic ion beam trap
M. Lange
AIP Conf. Proc. 1521, 220-229 (2013) externer Link

2012


 5.  Radiative cooling of Al4- and Al5- in a cryogenic environment
M. Lange, M. W. Froese, S. Menk, D. Bing, F. Fellenberger, M. Grieser, F. Laux, D. A. Orlov, R. Repnow, T. Sieber, Y. Toker, R. von Hahn, A. Wolf and K. Blaum
New J. Phys. 14, 065007 (2012) externer Link

 4.  The decay of ion bunches in the self-bunching mode
M. W. Froese, M. Lange, S. Menk, M. Grieser, O. Heber, F. Laux, R. Repnow, T. Sieber, Y. Toker, R. von Hahn, A. Wolf and K. Blaum
New J. Phys. 14, 073010 (2012) externer Link

2011


 3.  Thermionic power-law decay of excited aluminum-cluster anions and its dependence on storage-device temperature
M. W. Froese, K. Blaum, F. Fellenberger, M. Grieser, M. Lange, F. Laux, S. Menk, D. A. Orlov, R. Repnow, T. Sieber, Y. Toker, R. von Hahn, and A. Wolf
Phys. Rev. A 83, 023202 (2011) externer Link

2010


 2.  A cryogenic electrostatic trap for long-time storage of keV ion beams
M. Lange, M. Froese, S. Menk, J. Varju, R. Bastert, K. Blaum, J. R. Crespo López-Urrutia, F. Fellenberger, M. Grieser, R. von Hahn, O. Heber, K.-U. Kühnel, F. Laux, D. Orlov, M. L. Rappaport, R. Repnow, C. D. Schröter, D. Schwalm, A. Shornikov, T. Sieber, Y. Toker, J. Ullrich, A. Wolf, and D. Zajfman
Rev. Sci. Instrum. 81, 055105 (2010) externer Link

2009


 1.  Cryogenic ion beam storage
M. Froese, K. Blaum, J.R. Crespo López-Urrutia, F. Fellenberger, M. Grieser, D. Kaiser, M. Lange, F. Laux, S. Menk, D.A. Orlov, R. Repnow, C.D. Schröter, D. Schwalm, A. Shornikov, T. Sieber, J. Ullrich, J. Varju, R. von Hahn, A Wolf, O. Heber, M. Rappaport, J. Toker, D. Zajfman
Proceedings of PAC09, Vancouver, BC, Canada, May 2009
paper FR5REP041 (pdf, 4.85 MB) externer Link