Skip to main content  ∨   Page logos with links to institutions:
Max Planck Society Max Planck Institute for Nuclear Physics University of Heidelberg
Stored and Cooled Ions Division
 
Max Planck SocietyMax Planck Institute for Nuclear PhysicsUniversity of Heidelberg Stored and Cooled Ions Division
Superordinated navigation: MPIK Homepage  |  Home  |  Deutsch  |  Sitemap  |  Search  |  Contact
Section navigation:

 ERC Advanced Grant

This project receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 832848 - FunI

Contact  Contact


Tel.: +49 6221 516-851
Fax: +49 6221 516-852
Postal Address
Max Planck Institute for Nuclear Physics
P.O. Box 10 39 80
69029 Heidelberg
Visitor Address
Max Planck Institute for Nuclear Physics
Saupfercheckweg 1
Building: Gentner lab,
room 134
69117 Heidelberg

 

ALPHATRAP

For the measurement of the g-factor of the electron in extremely heavy ions, a novel cryogenic Penning trap, called ALPHATRAP, is currently set up at MPIK. It features an access to the Heidelberg EBIT [1], which can deliver even the heaviest highly charged ions up to 208Pb81+. With these systems it becomes possible to probe QED at the boundary of our knowledge in the most extreme fields. The ions are transported via a beamline including ion-optic elements and diagnostic stations to ALPHATRAP. There, the trap region is surrounded by a liquid-helium cryostat to provide a cryogenic environment. To ensure sufficient vacuum conditions for the storage of highly charged ions despite the connection to the room-temperature vacuum, a cryogenic vacuum valve is developed to cut the beamline off the trap setup.

Besides mechanical differences due to the open system most technical elements can in principal be adopted from the Mainz setup. However, adjustments are necessary for several issues. For instance, the higher charge states of the ions lead to a corresponding systematic shift of the ion frequencies due to the image-charge effect and, thus, a larger trap diameter is needed compared to the Mainz-trap. Another example is the even more complex and extensive detection system, which is currently under development.

The new ALPHATRAP setup.
Figure 1: The new ALPHATRAP setup. Ions can be injected from the Heidelberg HD-EBIT via a beam-port from the top. The design is based on the Mainz apparatus, but numerous improvements and new technologies have been implemented.

^ to the top

References

[1] Optimization of the charge state distribution of the ion beam extracted from an EBIT by dielectronic recombination
J. R. Crespo López-Urrutia, J. Braun1, G. Brenner, H. Bruhns, A. Lapierre, A. J. González Martı́nez, V. Mironov, R. Soria Orts, H. Tawara, M. Trinczek and J. Ullrich
Rev. Sci. Instrum. 75, 1560 (2004) externer Link

ERC Advanced Grant

This project receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 832848 - FunI externer Link.