Verzerrte Atome

Intensive extrem-ultraviolette Blitze verändern elektronische Übergänge

Mit zwei Experimenten am Freie-Elektronen-Laser FLASH in Hamburg gelang es einer Forschergruppe unter Führung von Physikern des Max-Planck-Instituts für Kernphysik (MPIK) in Heidelberg, starke nichtlineare Wechselwirkungen ultrakurzer extrem-ultravioletter (XUV) Laserpulse mit Atomen und Ionen hervorzurufen. Die heftige Anregung des Elektronenpaars in einem Heliumatom konkurriert so stark mit dem ultraschnellen Zerfall des angeregten Zustands, dass vorübergehend sogar Besetzungsinversion auftreten kann. Verschiebungen der Energie elektronischer Übergänge in zweifach geladenen Neonionen beobachteten die Wissenschaftler mittels transienter Absorptionsspektroskopie (XUV-XUV Pump-Probe).

Ein internationales Team unter Leitung von Physikern des MPIK veröffentlicht seine Ergebnisse zur stark getriebenen Zwei-Elektronen-Anregung in Helium durch intensive und ultrakurze extrem-ultraviolette (XUV) Laserpulse [1]. Derartige doppelt angeregte Zustände sind äußerst kurzlebig und zerfallen innerhalb weniger Femtosekunden (10-15 Sekunden) durch Autoionisation: Ein Elektron fällt in den Grundzustand zurück, während das andere aus dem Atom entkommt. Eine signifikante Population des doppelt angeregten Zustands ist nur möglich, wenn die Anregung ("pump") schneller erfolgt als der Zerfall. Das ist vergleichbar mit dem Versuch, durch eine starke Pumpe einen Wassertank mit einem großen Leck zu füllen.

Das Experiment fand am Freie-Elektronen-Laser FLASH in Hamburg statt, der intensive XUV-Laserpulse mit einer hinreichend kurzen Wechselwirkungszeit erzeugt. Theoretische Modelle sagen ein effizientes Pumpen (Anregung) des Elektronenpaars durch solche Pulse voraus. Vorübergehend kann dabei die Besetzung des angeregten Zustands sogar die des Grundzustands übertreffen, also eine Besetzungsinversion eintreten. Diese laserkontrollierte Quantendynamik mit zwei aktiven Elektronen führt zu einer erheblichen Veränderung der Absorption von XUV-Licht, was experimentell auch beobachtet wurde (siehe Abbildung).

Ebenfalls am FLASH führte das Team um die Heidelberger Physiker transiente XUV-Pump/XUV-Probe-Absorptionsspektroskopie an zweifach geladenen Neonionen durch [2]. Dabei diente der Freie-Elektronen-Laser sowohl zur Produktion der Ionen wie auch als spektroskopische Lichtquelle. Auf einer Zeitskala von wenigen Femtosekunden gab sich eine nichtlineare Verstärkung der Absorption (Coherence Spike, zu dt. Kohärenzspitze) zu erkennen, die mit der Kohärenzzeit der Freie-Elektronen-Laser-Pulse in Beziehung steht. Dieses Ergebnis ist ein entscheidender Schritt hin zur Anwendung zwei- und mehrdimensionaler spektroskopischer Methoden selbst an statistisch fluktuierenden Freie-Elektronen-Lasern mit Proben in der Gasphase. Die direkte Messung von (Stark-Effekt-)Verschiebungen atomarer Energieniveaus durch nichtlineare Wechselwirkung mit den intensiven XUV-Laserpulsen stellt das wesentliche wissenschaftliche Ergebnis dieses Experiments dar.

Insgesamt eröffnen diese Ergebnisse neue Wege, um extreme Licht-Materie-Wechselwirkungen zu untersuchen und zu verstehen. Darüberhinaus sind dies erste Schritte zur elementspezifischen Quantenkontrolle mit resonanter nichtlinearer Optik bei kurzen Wellenlängen.

Gezieltes Einstellen der „Verzerrung“ der Elektronenhülle selektierter chemischer Elemente in Molekülen könnte in Zukunft unser Verständnis von Chemie und ihrer Möglichkeiten revolutionieren.


Originalpublikationen:

[1] Strong-Field Extreme-Ultraviolet Dressing of Atomic Double Excitation
Christian Ott, Lennart Aufleger, Thomas Ding, Marc Rebholz, Alexander Magunia, Maximilian Hartmann, Veit Stooß, David Wachs, Paul Birk, Gergana D. Borisova, Kristina Meyer, Patrick Rupprecht, Carina da Costa Castanheira, Robert Moshammer, Andrew R. Attar, Thomas Gaumnitz, Zhi-Heng Loh, Stefan Düsterer, Rolf Treusch, Joachim Ullrich, Yuhai Jiang, Michael Meyer, Peter Lambropoulos, and Thomas Pfeifer
Physical Review Letters 123, 163201 (2019), DOI: 10.1103/PhysRevLett.123.163201

[2] Nonlinear Coherence Effects in Transient-Absorption Ion Spectroscopy with Stochastic Extreme-Ultraviolet Free-Electron Laser Pulses
Thomas Ding, Marc Rebholz, Lennart Aufleger, Maximilian Hartmann, Kristina Meyer, Veit Stooß, Alexander Magunia, David Wachs, Paul Birk, Yonghao Mi, Gergana Dimitrova Borisova, Carina da Costa Castanheira, Patrick Rupprecht, Zhi-Heng Loh, Andrew R. Attar, Thomas Gaumnitz, Sebastian Roling, Marco Butz, Helmut Zacharias, Stefan Düsterer, Rolf Treusch, Stefano M. Cavaletto, Christian Ott, and Thomas Pfeifer
Physical Review Letters 123, 103001 (2019), DOI: 10.1103/PhysRevLett.123.103001


Abteilung Pfeifer am MPIK - Angeregte Atome und Moleküle in starken Feldern

Freie-Elektronen-Laser FLASH

Distorting Helium Atoms with XUV Light - Physics Synopsis


Kontakt

Dr. Christian Ott
Tel: (+49)6221-516-577
E-Mail: christian.ott@mpi-hd.mpg.de

Dr. Thomas Ding
Tel: (+49)6221-516-332
E-Mail: thomas.ding@mpi-hd.mpg.de

Prof. Dr. Thomas Pfeifer
Tel: (+49)6221-516-380
E-Mail: thomas.pfeifer@mpi-hd.mpg.de


Artwork_LF17737.png
Schematische Darstellung der gekoppelten Anregung eines Elektronenpaars (blau) im Heliumatom durch einen intensiven ultrakurzen XUV-Laserpuls (violett). Der stark gepumpte angeregte Zustand (oben) zerfällt durch Autoionisation, in Konkurrenz zur Anregung. Unten: Resonante XUV-Absorption der Doppel-Anregung und ihre Veränderung mit zunehmender Energie des XUV-Pulses. Grafik: MPIK.