springe zum Hauptinhalt  ∨   Seitenlogos mit Links zu Institutionen:
Max-Planck-Gesellschaft Max-Planck-Institut für Kernphysik Universität Heidelberg
Abteilung für gespeicherte und gekühlte Ionen
 
Max-Planck-GesellschaftMax-Planck-Institut für KernphysikUniversität Heidelberg Abteilung für gespeicherte und gekühlte Ionen
Übergeordnete Navigation: MPIK Homepage  |  Home  |  English  |  Sitemap  |  Suche  |  Kontakt
Bereichs-Navigation:

Kontakt  Kontakt


Tel.: +49 6221 516-851
Fax: +49 6221 516-852
Postadresse
Max-Planck-Institut für Kernphysik
Postfach 10 39 80
69029 Heidelberg
Besucheradresse
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1
Gebäude: Gentnerlabor, Raum 134
69117 Heidelberg

 

Der g-Faktor von hochgeladenen Ionen

Präzisionsfalle mit wasserstoffähnlichem Ion

Motivation und Einleitung

Die Quantenelektrodynamik (kurz QED) ist eine der bedeutendsten fundamentalen Theorien des Standardmodells. Sie beschreibt die Wechselwirkung von geladenen Teilchen mit elektromagnetischen Feldern, und zwar bei allen erreichbaren Energien und Feldstärken. Die QED ist in der Lage, extrem exakte Vorhersagen für physikalische Messgrößen zu liefern und bisher konnte in keiner Messung eine Abweichung von der Vorhersage beobachtet werden. Dennoch scheint es denkbar und wahrscheinlich, dass die QED unter extremen Bedingungen versagt und in eine übergeordnete Theorie übergeht.

Die Experimente in unserer Arbeitsgruppe haben das Ziel, die QED unter möglichst extremen Bedingungen, insbesondere extrem hohen Feldstärken, mit möglichst hoher Präzision zu testen und so einen Ausblick auf die Grenzen der Gültigkeit dieser fundamentalen Theorie zu ermöglichen. Als Testobjekt wird dabei das in einem hochgeladenen Ion gebundene Elektron genutzt, welches den extremen Feldstärken des Kerns (bis zu 1016 V/cm) ausgesetzt ist. Der (Spin-) g-Faktor dieses Elektrons (die Stärke der magnetischen Wechselwirkung des Spins) ist dabei von der QED sehr genau vorhersagbar und auch im Experiment mit vergleichbarer Genauigkeit messbar. Der Vergleich dieser beiden Werte stellt daher einen empfindlichen Test der QED in gebundenen Zustände (bound-state QED, BS-QED) dar. Darüberhinaus gehen Fundamentalkonstanten wie die Elektronenmasse me und die Feinstrukturkonstante α in die theoretischen Berechnungen ein. Im Umkehrschluss können daher die experimentellen Ergebnisse als präzise Bestimmung dieser fundamentalen Größen genutzt werden.

In der Vergangenheit wurden die g-Faktoren von wasserstoffähnlichem Kohlenstoff (H. Häffner et al. [4]) und Sauerstoff (J. Verdú et al. [5]) bereits gemessen. Diese Messungen bestätigten die Gültigkeit der theoretischen Vorhersagen ([2], [3]). Das Experiment wurde in den letzten Jahren von Grund auf erneuert und verbessert und erlaubt nun die Messung der g-Faktoren in deutlich schwereren Systemen, bei gleichzeitig drastisch erhöhter Präzision. Mit diesen Verbesserungen wurde schließlich die Messung des g-Faktors von 28Si13+ möglich, die aufgrund der höheren Ladung des Ions und der gleichzeitigen Verbesserung der Präzision des experimentellen Wertes und der theoretischen Vorhersage einen deutlich empfindlicheren Test der QED darstelllt.

Durch seine Weiterentwicklung erlaubt der experimentelle Aufbau, der an der Uni Mainz steht, Messungen des g-Faktors von deutlich schwereren Systemen bis zu wasserstoffähnlichem Kalzium. Am MPIK in Heidelberg wird darüberhinaus das Experiment ALPHATRAP entwickelt, welches die Möglichkeit zur hochpräzisen Messung des g-Faktors in extrem schweren Systemen bis zu wasserstoffähnlichem Blei bieten wird.

^ nach oben

Der g-Faktor

Der g-Faktor - auch Landé-Faktor genannt - beschreibt das Verhältnis des magnetischen Moments μ eines Teilchens zu dessen Gesamtdrehimpuls J: μ = - gj (e/2me) J. Dieser lässt sich aufspalten in Bahndrehimpuls und Spin: J = L + S (Abbildung 1).

Kopplung der Vektoren von Spin S und Bahndrehimpuls L zum Gesamtdrehimpuls J im Vektormodell

Abbildung 1: Kopplung der Vektoren von Spin S und Bahndrehimpuls L zum Gesamtdrehimpuls J im Vektormodell. Die Vektoren S und L präzedieren um den von ihnen aufgespannten Vektor J.


In unserem Experiment wird die Spinbewegung untersucht. Für ein Elektron ist |S| = ½, das dazugehörige magnetische Moment wird mit μS bezeichnet. In einem externen Magnetfeld gibt es aus quantenmechanischen Gründen für den Spin nur zwei diskrete Ausrichtungsmöglichkeiten, nämlich parallel oder antiparallel zur äußeren Feldrichtung (Abbildung 2).

Der Spin eines Spin ½ Teilchens und damit das magnetische Moment haben zwei Einstellmöglichkeiten in einem äußeren Magnetfeld.

Abbildung 2: Der Spin eines Spin ½ Teilchens und damit das magnetische Moment haben zwei Einstellmöglichkeiten in einem äußeren Magnetfeld. Das äußere Magnetfeld hat die Stärke B0 in z-Richtung. Hier ist gs der g-Faktor und μB das Bohr′sche Magneton.


Diese beiden Zustände entsprechen einer Zeeman-Aufspaltung, deren Energie L gerade der klassischen Lamor Präzessionsfrequenz νL eines magnetischen Dipols entspricht. Über die Bestimmung dieser Frequenz kann aus obiger Beziehung der g-Faktor gS extrahiert werden.

^ nach oben

Messprinzip

Elektrisch geladene Teilchen können durch Kombination eines schwachen elektrostatischen Feldes und eines starken homogenen Magnetfeldes gespeichert werden. Hierzu verwenden wir ein Penningfallensystem (siehe Abbildung 3).

Schematische Darstellung des Penningfallensystems
Abbildung 3: Schematische Darstellung des Penningfallensystems (oben). Die vergoldeten Elektroden und die Saphirringe zur elektrischen Isolation (unten).

Mittels geeigneter elektronischer Nachweismethoden können sowohl die gespeicherten Teilchen nachgewiesen werden als auch ihre kinetische Energie auf Werte unter 1 meV reduziert werden (Kühlung).

Die Messung wird an einem einzelnen wasserstoffähnlichen Siliziumion durchgeführt, welches in einer kryogenen Penningfalle, der Präzisionsfalle (PT), gespeichert ist. Aufgrund des Magnetfeldes wird das Ion zu einer Kreisbewegung gezwungen, die so genannte Zyklotronbewegung. Die Zyklotronfrequenz νc kann zerstörungsfrei durch induzierte Spiegelströme und den Einsatz einer hochempfindlichen, teilweise supraleitenden Nachweiselektronik nachgewiesen werden. Im nächsten Schritt wird die Larmorfrequenz bestimmt. Hierzu wird das Ion adiabatisch der Analysefalle (AT) zugeführt, wo dem Magnetfeld gezielt eine Inhomogenität überlagert wird, um die Kopplung der Spinrichtung an die Bewegungsfrequenzen des Ions zu bewirken. Der Ionenspin muss mittels geeigneter Mikrowellenstrahlung umgeklappt werden. Der Spin-Flip kann in Form von Quantensprüngen beobachtet werden, wobei die extrem genaue Bestimmung der Bewegungsfrequenzen der gespeicherten Ionen ausgenutzt wird.

Quantensprünge des Elektronenspins
Abbildung 4: Quantensprünge des Elektronenspins, nichtdestruktiv detektiert mittels des kontinuierlichen Stern-Gerlach Effektes als winzige Änderung der axialen Eigenfrequenz des gefangenen Ions.

Trägt man die Wahrscheinlichkeit für das erfolgreiche Umklappen des Spins gegen die Frequenz des Anregungsfeldes auf, so repräsentiert das Maximum der Umklapprate (vorbehaltlich gewisser Kurvenform-Korrekturen) die Larmorfrequenz νL. Aus beiden gemessen Frequenzen, Larmorfrequenz und Zyklotronfrequenz, ergibt sich der g-Faktor und damit das magnetische Moment gemäß folgendem einfachen Zusammenhang:

g = 2(νLc)·(q/M)ion·(m/e)e- ,

worin (q/M)ion und (e/m)e- die Ladungs-Masse-Verhältnisse des Ions beziehungsweise Elektrons sind.

Gemessene g-Faktor Resonanz von wasserstoffähnlichem Silizium.
Abbildung 5: Gemessene g-Faktor Resonanz von wasserstoffähnlichem Silizium 28Si13+. Eine Reihe derartiger Resonanzen erlaubt die Extraktion des g-Faktors mit einer Präzision von 2.6 · 10-10 [6].

^ nach oben

Experimenteller Aufbau in Mainz

Wie in Abbildung 6 zu erkennen, ist das Doppelpenningfallensystem in die Bohrung eines supraleitenden Magneten eingesetzt und wird durch thermischen Kontakt mit einem flüssigen Helium-Devar auf 4K heruntergekühlt. Das komplizierte Elektroniksystem ist unterteilt in die Kryoelektronik (oberhalb der Vakuumkammer) und die Raumtemperaturelektronik (angebracht am Hut des Aufbaus).

Skizze des experimentellen Aufbaus.
Abbildung 6: Skizze des experimentellen Aufbaus.

^ nach oben

Status

Das Experiment ist vollständig aufgebaut und hat 2011 die ersten Daten geliefert. Die neue, verbesserte kryogene Nachweiselektronik zeigt dabei eine spektakuläre Verbesserung der Nachweisempfindlichkeit und ermöglicht erstmals die Messung bei sehr niedrigen Temperaturen nahe und unterhalb des auf 4.2 K abgekühlten Aufbaus. Dabei wird die Apparatur ständig weiter verbessert. Eine kürzlich eingeführte supraleitende selbstabschirmende Magnetspule reduziert den unerwünschten Einfluss von externen Magnetfeldschwankungen um nahezu 3 Größenordnungen. Die Entwicklung und Implementation von neuartigen Nachweistechniken ermöglicht die drastische Verbesserung der erreichbaren Präzision [7].

Alles in allem haben die Verbesserungen schließlich zu einer Messung des g-Faktors von 28Si13+ mit einer relativen Unsicherheit von lediglich 10-11 geführt [6]. Die Messung stellt damit derzeit den empfindlichsten Test der BS-QED dar. In einer weiteren Messreihe wurde der g-Faktor des Elektrons in litiumähnlichem 28Si11+ auf einem Level von 10-9 gemessen [8], was als extrem präziser Test von relativistischen Berechnungen von Mehrelektronensystemen in einem Magnetfeld dient. Zusätzlich bietet die verbesserte Präzision Zugang zur Elektronenmasse. Die erneute Messung des g-Faktors des Elektrons in Kohlenstoff mithilfe der neuen PnA-Methode führte zur einer Bestimmung der Elektronenmasse mit einer relativen Präzision von 30 ppt, was den Literaturwert um mehr als eine Größenordnung verbessert [9,10]. Als letztes wurden die g-Faktoren der lithiumähnlichen Kalzium Isotope 40Ca17+ und 48Ca17+ bestimmt und aus der Differenz der relativistische Kernrückstoßeffekt direkt getestet [11].

^ nach oben

Ausblick

Um die g-Faktor Experimente noch weiter zu schwereren Systemen voranzutreiben, wird eine ex-situ Ionenproduktion nötig, um Ionisierungsenergien bis über 100 keV erreichen zu können. Dazu sind im Rahmen der HITRAP Kollaboration zwei Experimente im Aufbau. Das ALPHATRAP Experiment am Max-Planck Institut für Kernphysik wird an die bestehende Heidelberger EBIT (HD-EBIT) gekoppelt und kann so flexibel alle von der EBIT gelieferten Systeme mittels des kontinuierlichen Stern-Gerlach Effektes mit allerhöchster Präzision vermessen. Das ARTEMIS external Link Experiment ist an der im Aufbau befindlichen HITRAP Anlage (GSI Darmstadt) angesiedelt und auf die Laser-Doppelresonanzspektroskopie in schwersten hochgeladenen Ionen spezialisiert.

Das g-Faktor Experiment in Mainz befindet sich zurzeit in einer Upgradephase. In einem erweiterten Penningfallen-Turm wird die atomare Masse des Protons mit einer relativen Genauigkeit von besser als 1·10-11 gemessen. In einer hochgradig kompensierten Penningfalle wird hierbei abwechselnd die Zyklotronfrequenz des Protons und eines hochgeladenen Kohlenstoffions bei gleichbleibender Feldkonfiguration phasensensitiv gemessen. Durch die jeweils simultane Zyklotronfrequenzmessung eines hochgeladenen Ions in einer direkt benachbarten Referenzfalle wird der Einfluss unerwünschter Magnetfeldschwankungen deutlich reduziert. Im Anschluss ist über die Bestimmung der Masse von Deuterium und seiner Kernbindungsenergie eine Verbesserung der Masse des Neutrons geplant.

Schematische Darstellung des neuen Penningfallensystems zur Bestimmung der atomaren Masse des Protons.
Abbildung 7: Schematische Darstellung des neuen Penningfallensystems zur Bestimmung der atomaren Masse des Protons. In der Messfalle wird bei gleichbleibender Feldkonfiguration abwechselnd die Zyklotronfrequenz von einem Proton und einem hochgeladenem Kohlenstoffion gemessen. Während diesen Frequenzmessungen wird das jeweils gerade nicht benötigte Ion in einer der benachbarten Speicherfallen zwischengespeichert. Um Magnetfeldschwankungen deutlich zu reduzieren wird simultan zur Zyklotronfrequenz Messung in der Messfalle die Zyklotronfrequenz eines schwereren hochgeladenen Ions in der Referenzfalle gemessen.

^ nach oben

ALPHATRAP

Zur Messung des g-Faktors des Elektrons in extrem schweren Ionen wird derzeit am MPIK eine neue kryogene Penningfalle namens ALPHATRAP entwickelt. Für die Falle besteht Zugang zur Heidelberg EBIT [12], welche extrem schwere hochgeladene Ionen bis zu 208Pb81+ liefern kann. Mit solchen Systemen ist es möglich die QED in extremen Feldstärken an der Grenze unseres Wissens zu testen. Die Ionen werden über eine Beamline mit Ionenoptikelementen und Diagnoseeinheiten zu ALPHATRAP transportiert. Die Falle ist in einem Flüssigheliumkryostaten angebracht, um eine kryogene Umgebung bereitzustellen. Um geeignete Hochvakuumbedingungen zur Speicherung von hochgeladenen Ionen sicherzustellen, wurde ein kryogenes Vakuumventil entwickelt um die Beamline mit Raumtemperaturvakuum von der Fallenregion zu trennen.

Außer den mechanischen Unterschieden durch den offenen Aufbau können die meisten technischen Elemente prinzipiell aus dem Mainzer Aufbau übernommen werden. Es sind jedoch Anpassungen aus verschiedenen Gründen nötig. Beispielsweise führen die hohen Ladungszustände zu einer systematischen Verschiebung der Ionenfrequenzen aufgrund eines Spiegelladungseffektes. Dadurch wird ein im Vergleich zur Mainzer Falle größerer Falleninnenradius zwingend nötig. Ein weiteres Beispiel ist ein noch komplexeres und anspruchsvolleres Detektionssystem, welches im Moment entwickelt wird.

Der neue ALPHATRAP-Aufbau.
Abbildung 8: Der neue ALPHATRAP-Aufbau. Die Ionen werden von oben aus der Heidelberg-EBIT eingeschossen. Das Design basiert auf dem Aufbau in Mainz, jedoch werden einige Verbesserungen und Neuerungen implementiert.

^ nach oben

Stellenangebote und Kontakt

Um das intensive Messprogramm durchführen zu können und weitere zahlreiche Verbesserungen und Entwicklungen sowohl am Aufbau in Mainz als auch an ALPHATRAP realisieren zu können, soll derzeit unser Team generell mit Bachelor-, Master- oder PhD-Studenten verstärkt werden. Bei Interesse wenden Sie sich bitte an Dr. Sven Sturm () oder Alexander Egl ().

^ nach oben

Referenzen

[1] Fine structure of the hydrogen atom by a microwave method
W.E. Lamb and R.C. Retherford
Phys. Rev. 72, 241 (1947) externer Link
[2] gj factor of an electron bound in a hydrogenlike ion
T. Beier, H. Häffner, N. Hermanspahn, I. Lindgren, H. Persson, S. Salomonson and P. Sunnergren
Phys. Rev. A 62, 032510 (2000) externer Link
[3] Self-energy correction to the bound-electron g factor in H-like ions
V.A. Yerokhin, P. Indelicato and V.M. Shabaev
Phys. Rev. Lett. 89, 143001 (2002) externer Link
[4] High-accuracy measurements of the magnetic moment anomaly of the electron bound in hydrogenlike carbon.
H. Häffner, T. Beier, N. Hermanspahn, H. J. Kluge, W. Quint, S. Stahl, J. Verdú and G. Werth
Phys. Rev. Lett. 85, 5308 (2000) externer Link
[5] Electronic g factor of hydrogenlike Oxygen 16O7+
J. Verdú, T. Beier, S. Djekic, H. J. Kluge,W. Quint, S. Stahl, T. Valenzuela, M. Vogel and G. Werth
Phys. Rev. Lett. 92, 093002 (2004) externer Link
[6] g Factor of Hydrogenlike 28Si13+
S. Sturm, A. Wagner, B. Schabinger, J. Zatorski, Z. Harman, W. Quint, G. Werth, C. H. Keitel, and K. Blaum
Phys. Rev. Lett. 107, 023002 (2011) externer Link
[7] Phase-Sensitive Cyclotron Frequency Measurements at Ultralow Energies
Sven Sturm, Anke Wagner, Birgit Schabinger, and Klaus Blaum
Phys. Rev. Lett. 107, 143003 (2011) externer Link
[8] g Factor of Lithiumlike Silicon 28Si11+
A. Wagner, S. Sturm, F. Köhler, D. A. Glazov, A. V. Volotka, G. Plunien, W. Quint, G. Werth, V. M. Shabaev, and K. Blaum
Phys. Rev. Lett. 110, 033003 (2013) externer Link
[9] High-precision measurement of the atomic mass of the electron
S. Sturm, F. Köhler, J. Zatorski, A. Wagner, Z. Harman, G. Werth, W. Quint, C. H. Keitel, and K. Blaum
Nature 506, 467-470 (2014) externer Link
[10] The electron mass from g-factor measurements on hydrogen-like carbon 12C5+
F. Köhler, S. Sturm, A. Kracke, G. Werth, W. Quint and K. Blaum
J. Phys. B: At. Mol. Opt. Phys. 48, 144032 (2015) externer Link
[11] Isotope dependence of the Zeeman effect in lithium-like calcium
F. Köhler, K. Blaum, M. Block, S. Chenmarev, S. Eliseev, D. A. Glazov, M. Goncharov, J. Hou, A. Kracke, D. A. Nesterenko, Y. N. Novikov, W. Quint, E. Minaya Ramirez, V. M. Shabaev, S. Sturm. A. V. Volotka and G. Werth
Nat. Commun. 7, 10246 (2016) externer Link
[12] Optimization of the charge state distribution of the ion beam extracted from an EBIT by dielectronic recombination
J. R. Crespo López-Urrutia, J. Braun1, G. Brenner, H. Bruhns, A. Lapierre, A. J. González Martı́nez, V. Mironov, R. Soria Orts, H. Tawara, M. Trinczek and J. Ullrich
Rev. Sci. Instrum. 75, 1560 (2004) externer Link