Röntgenstrahlen in einer Box ‚auf Eis zu legen‘ und später nach Belieben wieder freizusetzen, klingt nach Science Fiction. Neue Rechnungen zeigen jedoch, dass mithilfe eines Magnetfelds einzelne Röntgenquanten eingefangen und ohne Qualitätsverlust wiedergewonnen werden können. Außerdem ist es möglich, das gespeicherte Röntgenquant zu manipulieren, insbesondere seine Phase kontrolliert zu ändern. Die Rolle der Box übernehmen dabei Eisenkerne. Sie nehmen die Energie des Röntgenquants auf und speichern sie als angeregter Zustand. Entscheidend ist, dass sich Röntgenstrahlen extrem scharf, im Prinzip auf die Größe eines Atoms, fokussieren lassen. So eröffnet sich die Möglichkeit, eines Tages die in einem kohärenten Röntgenstrahl kodierte Information in einer Matrix aus Eisenatomen in einem Edelstahlplättchen zu speichern. Das wäre der dichteste Datenspeicher überhaupt. (PRL, 09.11.2012)
Quantencomputer der Zukunft sollen statt mit Elektronen (Elektronik) mit Licht (Photonik) als dem schnellstmöglichen Informationsträger arbeiten. Bisherige Experimente verwenden dafür Infrarot- oder sichtbares Licht. Kürzere Wellenlängen wie bei UV-Licht und insbesondere Röntgenstrahlen würden eine weitere Miniaturisierung der Schaltungen ermöglichen. Geeignete Röntgenstrahlen-Quellen und auch optische Elemente stehen mittlerweile zur Verfügung.
Eine Speicherung von Röntgenphotonen unter Erhalt ihrer quantenmechanischen Eigenschaften ließ sich jedoch noch nicht realisieren. Hierfür bieten sich Atomkerne mit niedrig liegenden angeregten Zuständen wie Eisen-57 an. Wie das kontrolliert geschehen könnte, hat nun Wen-Te Liao vom MPI für Kernphysik in Heidelberg im Rahmen seiner Promotion berechnet.
In dem Szenario befindet sich ein Edelstahlplättchen in einem Magnetfeld, das die Energieniveaus der Eisen-57-Kerne aufspaltet. Senkrecht zur Richtung des Magnetfelds wird polarisiertes kohärentes Röntgenlicht eingestrahlt, dessen Intensität so eingestellt ist, dass in der Probe pro Puls nur 1 Photon absorbiert, also 1 Kern angeregt wird. Abschalten des Magnetfelds kurz nach dem Röntgenpuls blockiert den ‚Rückweg‘: die Anregung einschließlich aller quantenmechanischen Eigenschaften des Photons wie Polarisation und Phase wird quasi eingefroren, also die Information gespeichert. Wiedereinschalten des Magnetfelds zu einem späteren Zeitpunkt setzt das Photon mit seinen ursprünglichen Eigenschaften wieder frei – die Information wird ausgelesen. So sollten Speicherzeiten von rund 100 Nanosekunden möglich sein.
Wird die Richtung des Magnetfelds beim Wiedereinschalten umgekehrt, ist die Phase des freigesetzten Photons um einen halben Schwingungszyklus verschoben. Diese Phasenverschiebung kann mithilfe eines zweiten Edelstahlplättchens gemessen werden und ließe sich zum gezielten Auslesen von Photonen mit bestimmter Phase nutzen. „Unsere Rechnungen weisen einen Weg zur Photonik mit Röntgenstrahlen und den dichtesten Datenspeichern überhaupt“, resümiert Gruppenleiterin Adriana Pálffy.
____________________________________________________________
Originalveröffentlichung:
Coherent storage and phase modulation of single hard x-ray photons using nuclear excitons, Wen-Te Liao, Adriana Pálffy, Christoph H. Keitel, Phys. Rev. Lett. 109, 197403 (2012) <link http: link.aps.org doi physrevlett.109.197403 _blank external-link-new-window external link in new>DOI: 10.1103/PhysRevLett.109.197403
Focus: Storing an X-ray Photon, David Lindley, Physics 5, 125 (2012), <link http: physics.aps.org articles v5 _blank external-link-new-window external link in new>DOI: 10.1103/Physics.5.125
<link http: www.mpi-hd.mpg.de keitel _top external-link-new-window external link in new>Abteilung Keitel am MPIK
____________________________________________________________
Kontakt:
Dr. Adriana Pálffy
Tel.: +49 6221 516171
E-Mail: <link mail window for sending>adriana.palffy@mpi-hd.mpg.de
<link internal-link internal link in current>Presse- und Öffentlichkeitsarbeit des MPIK