Skip to main content  ∨   Page logos with links to institutions:
Max Planck SocietyMax Planck Institute for Nuclear PhysicsMax Planck Institute of Quantum OpticsPhysikalisch-Technische BundesanstaltRIKEN
Max Planck-RIKEN-PTB Center
 
Max Planck SocietyMax Planck Institute for Nuclear PhysicsMax Planck Institute of Quantum OpticsPhysikalisch-Technische BundesanstaltRIKENMax Planck-RIKEN-PTB Center
Superordinated navigation: Center  |  Contact  |  Sitemap  |  MPG  |  MPIK  |  MPQ  |  PTB  |  RIKEN
Section navigation:

Contact  Contact Persons


Tel.: +49 6221 516-851
Fax: +49 6221 516-852
Scientific Coordinator

Postal Address
Max Planck Institute for Nuclear Physics
P.O. Box 10 39 80
69029 Heidelberg
Visitor Address
Max Planck Institute for Nuclear Physics
Saupfercheckweg 1
Building: Gentner lab,
room 134
69117 Heidelberg

 Downloads

 

Max Planck-RIKEN-PTB Center for Time, Constants and Fundamental Symmetries

 

Contact  Contact Persons


Tel.: +49 6221 516-851
Fax: +49 6221 516-852
Scientific Coordinator

Postal Address
Max Planck Institute for Nuclear Physics
P.O. Box 10 39 80
69029 Heidelberg
Visitor Address
Max Planck Institute for Nuclear Physics
Saupfercheckweg 1
Building: Gentner lab,
room 134
69117 Heidelberg

 News

01.12.23
PENTATRAP identifies a metastable state in highly charged lead
Modern atomic clocks are among the most accurate measurement tools. They are the basis of advanced technology like the GPS system. The invention of the frequency comb opened the path to atomic clocks ... >
02.11.23
German-Japanese cooperation for highest precision extended
They have done a good job, and their cooperation will be continued: After a successful review, the German-Japanese Center for Time, Constants and Fundamental Symmetries (TCFS) can start its second term. ... >

 Events

Coming and former events ... >

 Downloads

 

Max Planck-RIKEN-PTB Center for

Time, Constants and Fundamental Symmetries

Introduction

Within the Max Planck-RIKEN-PTB Center for Time, Constants and Fundamental Symmetries the Max Planck Institute for Nuclear Physics (MPIK, Website external Link), the Max Planck Institute of Quantum Optics (MPQ, Website external Link), the Physikalisch-Technische Bundesanstalt (PTB, Website external Link) and Japan's largest comprehensive research institution RIKEN (Website external Link) foster the synergetic and close collaboration between experimental groups in atomic physics, antimatter physics, nuclear physics, quantum optics and metrology. The intensified collaboration between precision measurements teams will allow to tackle fore-front topics in precision measurements of time and constants of nature, to test fundamental symmetries and contribute to ultra-high precision searches for physics beyond the Standard Model of particle physics.

All involved research institutions have a widely recognized "passion for precision" and outstanding research teams in quantum metrology, clock developments, ultra-high precision atomic spectroscopy, and high-precision experiments using stored and cooled ions in traps. Achievements of the involved groups are, among others, the invention of the optical lattice clock, the most precise trapped ion optical clock, world-leading spectroscopy of the hydrogen 1S–2S transition and the invention of the optical frequency comb, the most precise measurement of the electron and proton mass in atomic units as well as the two most stringent tests of CPT invariance in the baryon sector.

As a result of the synergies produced by this joined research initiative we expect the development of novel experimental techniques which will outperform the state-of-the-art of contemporary experiments. The collaborative projects will provide both, measurements at shorter time scales and improved sensitivity, and thus higher experimental resolution. The collaboration will focus on selected topics from their wide range of research activities. The initiatives will provide optical frequency standards and novel trap spectroscopy methods at unprecedented fractional resolution and ultimately contribute sensitive ultra-low-energy tests of the Standard Model of particle physics and beyond. A key for the success of the center will be an intense collaboration, especially on the students' level with numerous research stays in the involved laboratories and common advanced training schools for the best possible education of our young researchers.