Abteilung für Teilchen- & Astroteilchen-Physik
 
 

Publikationen der Abteilung in den letzten drei Jahren

1.O. Scholer, Towards distinguishing different mechanisms of \(0\nu\beta\beta\), AIP Conf. Proc. 3143 (2025) 020019.; DOI:10.1063/5.0235385
2.E. Aprile et al., Radon Removal in XENONnT down to the Solar Neutrino Level (2025).; Retrieved from https://arxiv.org/abs/2502.04209
3.J. Kubo and J. Kuntz, Primordial Gravitational Waves in Quadratic Gravity (2025).; Retrieved from https://arxiv.org/abs/2502.03543
4.M. Guida, Y.-T. Lin and H. Simgen, Improved and automated krypton assay for low-background xenon detectors with Auto-RGMS (2025).; Retrieved from https://arxiv.org/abs/2501.10993
5.N. Ackermann et al., First observation of reactor antineutrinos by coherent scattering (2025).; Retrieved from https://arxiv.org/abs/2501.05206
6.M. Sen, Testing non-standard neutrino properties, Neutrino Oscillation Workshop 2024.; Retrieved from https://arxiv.org/abs/2501.04309
7.Y. Chung, A. Bally and F. Goertz, Looking for the solution to the Hierarchy Problem in Top physics, PoS ICHEP2024 (2025) 343.; DOI:10.22323/1.476.0343
8.A. Ahmed, Z. Chacko, I. Flood, C. Kilic and S. Najjari, General Form of Effective Operators from Hidden Sectors (2024).; Retrieved from https://arxiv.org/abs/2412.15067
9.E. Sanchez Garcia et al., Background characterization of the CONUS+ experimental location (2024).; Retrieved from https://arxiv.org/abs/2412.13707
10.Á. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert and G. Ruisi, \(e^+ e^- \to \mu^+ \mu^-\) in the Asymptotically Safe Standard Model (2024).; Retrieved from https://arxiv.org/abs/2412.13800
11.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Gauge-Fermion Cartography: from confinement and chiral symmetry breaking to conformality (2024).; Retrieved from https://arxiv.org/abs/2412.12254
12.E. Aprile et al., Low-Energy Nuclear Recoil Calibration of XENONnT with a \(^{88}\)YBe Photoneutron Source (2024).; Retrieved from https://arxiv.org/abs/2412.10451
13.E. Aprile et al., The neutron veto of the XENONnT experiment: Results with demineralized water (2024).; Retrieved from https://arxiv.org/abs/2412.05264
14.Y. Chung, Generating the Dark Matter mass from the QCD vacuum: A new approach to the Dark Matter-Baryon coincidence problem (2024).; Retrieved from https://arxiv.org/abs/2411.18725
15.Y. Chung, Comparable Dark Matter and Baryon energy densities from Dark Grand Unification (2024).; Retrieved from https://arxiv.org/abs/2411.16860
16.E. Aprile et al., Search for Light Dark Matter in Low-Energy Ionization Signals from XENONnT (2024).; Retrieved from https://arxiv.org/abs/2411.15289
17.G. Arcadi, D. Cabo-Almeida, S. Fabian and F. Goertz, Dark Particles at the LHC: LHC-Friendly Dark Matter Characterization via Non-Linear EFT (2024).; Retrieved from https://arxiv.org/abs/2411.05914
18.C. Accettura et al., MuCol Milestone Report No. 5: Preliminary Parameters (2024).; DOI:10.5281/zenodo.13970100
19.L. Nies et al., Refining the nuclear mass surface with the mass of Sn103, Phys. Rev. C 111 (2025) 014315.; DOI:10.1103/PhysRevC.111.014315
20.J. Aalbers et al., Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory (2024).; Retrieved from https://arxiv.org/abs/2410.19016
21.J. Aalbers et al., The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics (2024).; Retrieved from https://arxiv.org/abs/2410.17137
22.E. Akhmedov, Non-relativistic neutrinos and the question of Dirac vs. Majorana neutrino nature (2024).; Retrieved from https://arxiv.org/abs/2410.11940
23.C. Döring and A. Trautner, Symmetries from outer automorphisms and unorthodox group extensions (2024).; Retrieved from https://arxiv.org/abs/2410.11052
24.J. Kuntz, Unitarity through PT symmetry in Quantum Quadratic Gravity (2024).; Retrieved from https://arxiv.org/abs/2410.08278
25.J. Aalbers et al., Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline (2024).; Retrieved from https://arxiv.org/abs/2410.00755
26.A. M. Suliga, P. C.-K. Cheong, J. Froustey, G. M. Fuller, L. Gráf, K. Kehrer, O. Scholer and S. Shalgar, Non-conservation of Lepton Numbers in the Neutrino Sector Could Change the Prospects for Core Collapse Supernova Explosions (2024).; Retrieved from https://arxiv.org/abs/2410.01080
27.S. Centelles Chuliá, R. Srivastava and S. Yadav, Comprehensive Phenomenology of the Dirac Scotogenic Model: Novel Low Mass Dark Matter (2024).; Retrieved from https://arxiv.org/abs/2409.18513
28.E. Aprile et al., First Search for Light Dark Matter in the Neutrino Fog with XENONnT (2024).; Retrieved from https://arxiv.org/abs/2409.17868
29.O. Scholer, Automating neutrinoless double beta decay with Python, AIP Conf. Proc. 3138 (2024) 020016.; DOI:10.1063/5.0205393
30.E. Aprile et al., XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection (2024).; Retrieved from https://arxiv.org/abs/2409.08778
31.S. Jana, S. Klett, M. Lindner and R. N. Mohapatra, Radiative origin of fermion mass hierarchy in left-right symmetric theory, JHEP 01 (2025) 082.; DOI:10.1007/JHEP01(2025)082
32.G. Arcadi, M. Lindner, J. P. Neto and F. S. Queiroz, Ultraheavy Dark Matter and WIMPs Production aided by Primordial Black Holes (2024).; Retrieved from https://arxiv.org/abs/2408.13313
33.L. Baudis et al., Search for Pauli Exclusion Principle violations with Gator at LNGS, Eur. Phys. J. C 84 (2024) 1137.; DOI:10.1140/epjc/s10052-024-13510-1
34.T. Herbermann, M. Lindner and M. Sen, Attenuation of cosmic ray electron boosted dark matter, Phys. Rev. D 110 (2024) 123023.; DOI:10.1103/PhysRevD.110.123023
35.E. Aprile et al., First Indication of Solar B8 Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT, Phys. Rev. Lett. 133 (2024) 191002.; DOI:10.1103/PhysRevLett.133.191002
36.S. Jana, L. Puetter and A. Yu. Smirnov, Restricting sterile neutrinos by neutrinoless double beta decay, Phys. Rev. D 111 (2025) 015011.; DOI:10.1103/PhysRevD.111.015011
37.T. de Boer, M. Lindner and A. Trautner, Electroweak hierarchy from conformal and custodial symmetry, Phys. Lett. B 861 (2025) 139241.; DOI:10.1016/j.physletb.2025.139241
38.P. F. Depta, V. Domcke, G. Franciolini and M. Pieroni, Pulsar timing array sensitivity to anisotropies in the gravitational wave background (2024).; Retrieved from https://arxiv.org/abs/2407.14460
39.C. Accettura et al., Interim report for the International Muon Collider Collaboration (IMCC) 2/2024 (2024).; DOI:10.23731/CYRM-2024-002
40.S. Centelles Chulia, R. Srivastava and S. Yadav, CDF-II W Boson Mass in the Dirac Scotogenic Model, Springer Proc. Phys. 304 (2024) 946–948.; DOI:10.1007/978-981-97-0289-3_249
41.N. Ackermann et al., CONUS+ Experiment, Eur. Phys. J. C 84 (2024) 1265.; DOI:10.1140/epjc/s10052-024-13551-6
42.S. Bhattacharya, S. Fabian, J. Herms and S. Jana, Flavor-specific dark matter signatures through the lens of neutrino oscillations, JCAP 01 (2025) 110.; DOI:10.1088/1475-7516/2025/01/110
43.S. Jana and Y. Porto, Non-Standard Interactions of Supernova Neutrinos and Mass Ordering Ambiguity at DUNE (2024).; Retrieved from https://arxiv.org/abs/2407.06251
44.F. Goertz, M. Hager, G. Laverda and J. Rubio, Phasing out of Darkness: From Sterile Neutrino Dark Matter to Neutrino Masses via Time-Dependent Mixing (2024).; Retrieved from https://arxiv.org/abs/2407.04778
45.M. Sen and A. Y. Smirnov, Neutrinos with refractive masses and the DESI BAO results (2024).; Retrieved from https://arxiv.org/abs/2407.02462
46.S. Jana, M. Klasen, V. P. K. and L. P. Wiggering, Neutrino masses and mixing from milli-charged dark matter, JCAP 02 (2025) 011.; DOI:10.1088/1475-7516/2025/02/011
47.E. Aprile et al., XENONnT WIMP Search: Signal & Background Modeling and Statistical Inference (2024).; Retrieved from https://arxiv.org/abs/2406.13638
48.P. Martı́nez-Miravé, Y. F. Perez-Gonzalez and M. Sen, Effects of neutrino-ultralight dark matter interaction on the cosmic neutrino background, Phys. Rev. D 110 (2024) 055005.; DOI:10.1103/PhysRevD.110.055005
49.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The eclectic flavor symmetries of \(\mathbb{T}^2/\mathbb{Z}_K\) orbifolds, JHEP 09 (2024) 159.; DOI:10.1007/JHEP09(2024)159
50.M. Sen, Supernova Neutrinos: Flavour Conversion Mechanisms and New Physics Scenarios, Universe 10 (2024) 238.; DOI:10.3390/universe10060238
51.M. Agostini et al., Searches for new physics below twice the electron mass with GERDA, Eur. Phys. J. C 84 (2024) 940.; DOI:10.1140/epjc/s10052-024-13020-0
52.E. Akhmedov and M. Pospelov, BBN catalysis by doubly charged particles, JCAP 08 (2024) 028.; DOI:10.1088/1475-7516/2024/08/028
53.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing the Origins of Neutrino Mass with Supernova-Neutrino Time Delay, Phys. Rev. Lett. 133 (2024) 121802.; DOI:10.1103/PhysRevLett.133.121802
54.S. Centelles Chuliá, A. Herrero-Brocal and A. Vicente, The Type-I Seesaw family, JHEP 07 (2024) 060.; DOI:10.1007/JHEP07(2024)060
55.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame? (2024).; Retrieved from https://arxiv.org/abs/2403.15860
56.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted dark matter from diffuse supernova neutrino background, JCAP 07 (2024) 045.; DOI:10.1088/1475-7516/2024/07/045
57.E. Aprile et al., Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon time projection chambers, Phys. Rev. D 110 (2024) 012011.; DOI:10.1103/PhysRevD.110.012011
58.J. Kubo and T. Kugo, Anti-Instability of Complex Ghost, PTEP 2024 (2024) 053B01.; DOI:10.1093/ptep/ptae053
59.E. Aprile et al., The XENONnT dark matter experiment, Eur. Phys. J. C 84 (2024) 784.; DOI:10.1140/epjc/s10052-024-12982-5
60.S. Jana, Electromagnetic Properties of Neutrinos, PoS TAUP2023 (2024) 184.; DOI:10.22323/1.441.0184
61.E. Akhmedov and A. Trautner, Can quantum statistics help distinguish Dirac from Majorana neutrinos?, JHEP 05 (2024) 156.; DOI:10.1007/JHEP05(2024)156
62.S. Centelles Chuliá, O. G. Miranda and J. W. F. Valle, Leptonic neutral-current probes in a short-distance DUNE-like setup, Phys. Rev. D 109 (2024) 115007.; DOI:10.1103/PhysRevD.109.115007
63.T. Cheng, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, PoS DISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
64.R. Deckert et al., The LEGEND-200 Liquid Argon Instrumentation: From a simple veto to a full-fledged detector, PoS TAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
65.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right symmetric model: Catalyzed nuclear fusion and collider implications, Phys. Lett. B 852 (2024) 138616.; DOI:10.1016/j.physletb.2024.138616
66.M. Lindner, T. Rink and M. Sen, Light vector bosons and the weak mixing angle in the light of future germanium-based reactor CE\(\nu\)NS experiments, JHEP 08 (2024) 171.; DOI:10.1007/JHEP08(2024)171
67.M. Aoki, J. Kubo and J. Yang, Scale invariant extension of the Standard Model: a nightmare scenario in cosmology, JCAP 05 (2024) 096.; DOI:10.1088/1475-7516/2024/05/096
68.A. Yu. Smirnov, Toward a theory of neutrino mass and mixing.; Retrieved from https://arxiv.org/abs/2401.09999
69.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia, Investigating the slow component of the infrared scintillation time response in gaseous xenon, JINST 19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
70.N. Ackermann et al., Final CONUS Results on Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf Reactor, Phys. Rev. Lett. 133 (2024) 251802.; DOI:10.1103/PhysRevLett.133.251802
71.Á. Pastor-Gutiérrez and M. Yamada, Phase structure of extra-dimensional gauge theories with fermions, Phys. Rev. D 109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
72.G. Huang, Neutrino-antineutrino asymmetry of C\(\nu\)B on the surface of the round Earth, JHEP 11 (2024) 153.; DOI:10.1007/JHEP11(2024)153
73.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and Implications for LEGEND-1000, PoS TAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
74.N. Volmer, On neutrino telescopes and their ability to infer astrophysical neutrino sources via the Glashow resonance (2024).; DOI:10.1393/ncc/i2024-24380-8
75.P. S. B. Dev, S. Jana and Y. Porto, Flavor Matters, but Matter Flavors: Matter Effects on Flavor Composition of Astrophysical Neutrinos (2023).; Retrieved from https://arxiv.org/abs/2312.17315
76.L. Gráf, S. Jana, O. Scholer and N. Volmer, Neutrinoless double beta decay without vacuum Majorana neutrino mass, Phys. Lett. B 859 (2024) 139111.; DOI:10.1016/j.physletb.2024.139111
77.V. Brdar, T. Cheng, H.-J. Kuan and Y.-Y. Li, Magnetar-powered neutrinos and magnetic moment signatures at IceCube, JCAP 07 (2024) 026.; DOI:10.1088/1475-7516/2024/07/026
78.J. Kuntz and A. Trautner, Extra Dimensions Beyond the Horizon (2023).; Retrieved from https://arxiv.org/abs/2312.09853
79.Y. Chung, Dynamical origin of Type-I Seesaw with large mixing (2023).; Retrieved from https://arxiv.org/abs/2311.17183
80.Y. Chung and F. Goertz, Third-generation-philic hidden naturalness, Phys. Rev. D 110 (2024) 115019.; DOI:10.1103/PhysRevD.110.115019
81.M. Agostini et al., An improved limit on the neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys. J. C 84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
82.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial Compositeness, PoS EPS-HEP2023 (2024) 369.; DOI:10.22323/1.449.0369
83.D. Basilico et al., Optimized \(\alpha\)/\(\beta\) pulse shape discrimination in Borexino, Phys. Rev. D 109 (2024) 112014.; DOI:10.1103/PhysRevD.109.112014
84.M. Mukhopadhyay and M. Sen, On probing turbulence in core-collapse supernovae in upcoming neutrino detectors, JCAP 03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
85.M. Shaposhnikov and A. Y. Smirnov, Sterile neutrino dark matter, matter-antimatter separation, and the QCD phase transition, Phys. Rev. D 110 (2024) 063520.; DOI:10.1103/PhysRevD.110.063520
86.E. Aprile et al., Design and performance of the field cage for the XENONnT experiment, Eur. Phys. J. C 84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
87.A. Ahmed, M. Lindner and P. Saake, Conformal little Higgs models, Phys. Rev. D 109 (2024) 075041.; DOI:10.1103/PhysRevD.109.075041
88.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring naturalness via conjugate fermions, Phys. Rev. D 110 (2024) 115023.; DOI:10.1103/PhysRevD.110.115023
89.Y. Chung, Naturalness-motivated composite Higgs model for generating the top Yukawa coupling, Phys. Rev. D 109 (2024) 095021.; DOI:10.1103/PhysRevD.109.095021
90.F. Goertz and Á. Pastor-Gutiérrez, Unveiling new phases of the Standard Model Higgs potential, Eur. Phys. J. C 85 (2025) 116.; DOI:10.1140/epjc/s10052-025-13842-6
91.H. Bonet et al., Pulse shape discrimination for the CONUS experiment in the keV and sub-keV regime, Eur. Phys. J. C 84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
92.M. Agostini et al., Final Results of GERDA on the Two-Neutrino Double-\(\beta\) Decay Half-Life of Ge76, Phys. Rev. Lett. 131 (2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
93.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry, Phys. Rev. D 109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
94.J. Kubo and T. Kugo, Unitarity violation in field theories of LeeWick’s complex ghost, PTEP 2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
95.S. Jana and S. Klett, Muonic force and nonstandard neutrino interactions at muon colliders, Phys. Rev. D 110 (2024) 095011.; DOI:10.1103/PhysRevD.110.095011
96.Y. F. Perez-Gonzalez and M. Sen, From Dirac to Majorana: The cosmic neutrino background capture rate in the minimally extended Standard Model, Phys. Rev. D 109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
97.A. de Gouvêa, J. Weill and M. Sen, Solar neutrinos and \(\nu\)2 visible decays to \(\nu\)1, Phys. Rev. D 109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
98.M. Agostini et al., Search for tri-nucleon decays of \(^{76}\)Ge in GERDA, Eur. Phys. J. C 83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
99.M. P. Bento, J. P. Silva and A. Trautner, The basis invariant flavor puzzle, JHEP 01 (2024) 024.; DOI:10.1007/JHEP01(2024)024
100.J. Herms, S. Jana, V. P. K. and S. Saad, Light neutrinophilic dark matter from a scotogenic model, Phys. Lett. B 845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
101.G. Huang, Discovery potential of the Glashow resonance in an air shower neutrino telescope*, Chin. Phys. C 48 (2024) 085107.; DOI:10.1088/1674-1137/ad4c5c
102.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial compositeness, Phys. Rev. D 108 (2023) 095019.; DOI:10.1103/PhysRevD.108.095019
103.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous \(\gamma\) event, JCAP 11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
104.M. D. Astros, S. Fabian and F. Goertz, Minimal Inert Doublet benchmark for dark matter and the baryon asymmetry, JCAP 02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
105.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Do pulsar timing arrays observe merging primordial black holes? (2023).; Retrieved from https://arxiv.org/abs/2306.17836
106.M. Adrover et al., Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites, Eur. Phys. J. C 84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
107.M. Sen and A. Y. Smirnov, Refractive neutrino masses, ultralight dark matter and cosmology, JCAP 01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
108.E. Aprile et al., Search for events in XENON1T associated with gravitational waves, Phys. Rev. D 108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
109.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053.; DOI:10.1088/1475-7516/2023/11/053
110.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic recoil calibration of the XENONnT detector, JINST 18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
111.L. Angel et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 055030.; DOI:10.1103/PhysRevD.108.055030
112.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari, Composite dark matter and neutrino masses from a light hidden sector, JHEP 07 (2024) 260.; DOI:10.1007/JHEP07(2024)260
113.A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa, 57th Rencontres de Moriond on QCD and High Energy Interactions.; Retrieved from https://arxiv.org/abs/2304.11891
114.E. Aprile et al., Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Phys. Rev. Lett. 130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
115.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless double beta decay, JHEP 08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
116.E. Aprile et al., Detector signal characterization with a Bayesian network in XENONnT, Phys. Rev. D 108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
117.E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
118.S. Jana and Y. Porto, Resonances of Supernova Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett. 132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
119.G. Huang, M. Lindner and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
120.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán Undagoitia, First time-resolved measurement of infrared scintillation light in gaseous xenon, Eur. Phys. J. C 83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
121.C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83 (2023) 864.; DOI:10.1140/epjc/s10052-023-11889-x
122.A. Trautner, Modular Flavor Symmetries and CP from the top down, PoS DISCRETE2022 (2024) 013.; DOI:10.22323/1.431.0013
123.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter model, PoS DISCRETE2022 (2024) 076.; DOI:10.22323/1.431.0076
124.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino mass scales, JHEP 06 (2023) 078.; DOI:10.1007/JHEP06(2023)078
125.N. Ackermann et al., Monte Carlo simulation of background components in low level Germanium spectrometry, Appl. Radiat. Isot. 194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
126.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector for the CONUS experiment, Appl. Radiat. Isot. 194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
127.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F. Meggendorfer and S. Skambraks, Operation of the Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware Perspective, J. Phys. Conf. Ser. 2438 (2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
128.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of neutrino magnetic moments from a galactic supernova burst at upcoming detectors, PoS ICHEP2022 (2022) 597.; DOI:10.22323/1.414.0597
129.E. Aprile et al., The triggerless data acquisition system of the XENONnT experiment, JINST 18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
130.S. Blasi, J. Bollig and F. Goertz, Holographic composite Higgs model building: soft breaking, maximal symmetry, and the Higgs mass, JHEP 07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
131.I. Bischer, C. Döring and A. Trautner, Telling compositeness at a distance with outer automorphisms and CP, J. Phys. A 56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
132.M. Agostini et al., Liquid argon light collection and veto modeling in GERDA Phase II, Eur. Phys. J. C 83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
133.A. Bally, Y. Chung and F. Goertz, Hierarchy problem and the top Yukawa coupling: An alternative to top partner solutions, Phys. Rev. D 108 (2023) 055008.; DOI:10.1103/PhysRevD.108.055008
134.T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, Phys. Lett. B 851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
135.E. Aprile et al., Low-energy calibration of XENON1T with an internal \(^{{\textbf {37}}}\)Ar source, Eur. Phys. J. C 83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
136.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev. Lett. 131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
137.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with Gauged \(U(1)_{L(-R)}\) (2022).; Retrieved from https://arxiv.org/abs/2210.13402
138.T. Cheng, M. Lindner and M. Sen, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, Phys. Lett. B 844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
139.H. Almazán et al., STEREO neutrino spectrum of \(^{235}\)U fission rejects sterile neutrino hypothesis, Nature 613 (2023) 257–261.; DOI:10.1038/s41586-022-05568-2
140.E. Aprile et al., Effective field theory and inelastic dark matter results from XENON1T, Phys. Rev. D 109 (2024) 112017.; DOI:10.1103/PhysRevD.109.112017
141.E. Aprile et al., An approximate likelihood for nuclear recoil searches with XENON1T data, Eur. Phys. J. C 82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
142.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment on ”Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
143.J. Herms, S. Jana, V. P. K. and S. Saad, Light thermal relics enabled by a second Higgs, SciPost Phys. Proc. 12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
144.I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106 (2022) 106007.; DOI:10.1103/PhysRevD.106.106007
145.A. de Gouvêa et al., Theory of Neutrino Physics – Snowmass TF11 (aka NF08) Topical Group Report (2022).; Retrieved from https://arxiv.org/abs/2209.07983
146.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, Moscow Univ. Phys. Bull. 77 (2022) 371–374.; DOI:10.3103/S0027134922020461
147.M. Agostini et al., Search for exotic physics in double-\(\beta\) decays with GERDA Phase II, JCAP 12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
148.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable models and flavor, JHEP 04 (2023) 012.; DOI:10.1007/JHEP04(2023)012
149.J. Kubo and J. Kuntz, Spontaneous conformal symmetry breaking and quantum quadratic gravity, Phys. Rev. D 106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
150.A. N. Khan, Extra dimensions with light and heavy neutral leptons: an application to CE\(\nu\)NS, JHEP 01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
151.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of heavy-ion collisions and their impact on particle correlations, Phys. Rev. C 108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
152.E. Akhmedov and A. Y. Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, JHEP 11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
153.A. N. Khan, Light new physics and neutrino electromagnetic interactions in XENONnT, Phys. Lett. B 837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
154.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts, JCAP 11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
155.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of sterile neutrino dark matter via neutrino self-interactions, JCAP 11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
156.A. Ahmed, B. Grzadkowski and A. Socha, Higgs boson induced reheating and ultraviolet frozen-in dark matter, JHEP 02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
157.H. Almazan et al., Improved FIFRELIN de-excitation model for neutrino applications, Eur. Phys. J. A 59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
158.E. Aprile et al., Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
159.C. Jaramillo, Reviving keV sterile neutrino dark matter, JCAP 10 (2022) 093.; DOI:10.1088/1475-7516/2022/10/093
160.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The first string-derived eclectic flavor model with realistic phenomenology, JHEP 09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
161.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking, SciPost Phys. 15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
162.B. Batell et al., Dark Sector Studies with Neutrino Beams, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.06898
163.M. Aker et al., Search for Lorentz-invariance violation with the first KATRIN data, Phys. Rev. D 107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
164.M. Aker et al., Search for keV-scale sterile neutrinos with the first KATRIN data, Eur. Phys. J. C 83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
165.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting bounds on neutrino magnetic moments and solar magnetic field, JHEP 10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
166.S. Richers and M. Sen, Fast Flavor Transformations, In I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).; DOI:10.1007/978-981-15-8818-1_125-1
167.J. Berger et al., Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.02882
168.G. Huang, Double and multiple bangs at tau neutrino telescopes, Eur. Phys. J. C 82 (2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
169.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, Search for leptophilic dark matter at the LHeC, J. Phys. G 50 (2023) 065001.; DOI:10.1088/1361-6471/accc4a
170.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model, Mod. Phys. Lett. A 38 (2023).; DOI:10.1142/S0217732323500499
171.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman and K. Schmidt-Hoberg, Minimal sterile neutrino dark matter, Phys. Rev. D 107 (2023) L071702.; DOI:10.1103/PhysRevD.107.L071702
172.G. Huang and N. Nath, Inference of neutrino nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with inverted mass ordering, Eur. Phys. J. C 82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
173.S. Jana, Horizontal Symmetry and Large Neutrino Magnetic Moments, PoS DISCRETE2020-2021 (2022) 037.; DOI:10.22323/1.405.0037
174.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S. de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian synchrotron, Eur. Phys. J. C 83 (2023) 514.; DOI:10.1140/epjc/s10052-023-11603-x
175.A. Schneider et al., Direct measurement of the \(^{3}\)He\(^{+}\) magnetic moments, Nature 606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
176.F. Jörg, G. Eurin and H. Simgen, Production and characterization of a 222Rn-emanating stainless steel source, Appl. Radiat. Isot. 194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
177.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale detectors, JINST 17 (2022) P11025.; DOI:10.1088/1748-0221/17/11/P11025
178.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark condensation, SciPost Phys. 14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
179.Á. Pastor-Gutiérrez and M. Yamada, UV completion of extradimensional Yang-Mills theory for Gauge-Higgs unification, SciPost Phys. 15 (2023) 101.; DOI:10.21468/SciPostPhys.15.3.101
180.M. Sen, Constraining pseudo-Dirac neutrinos from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
181.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Phys. Rev. D 106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
182.T. Rink, Coherent elastic neutrino-nucleus scattering – First constraints/observations and future potential, 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
183.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos, Phys. Rev. D 106 (2022) 083011.; DOI:10.1103/PhysRevD.106.083011
184.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT Experiments, Phys. Rev. C 106 (2022) 024328.; DOI:10.1103/PhysRevC.106.024328
185.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, Diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Phys. Rev. D 106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
186.S. Weber, Quantum Field Theory and Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand Unification (Master’s thesis). Heidelberg U.
187.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability from flavour symmetry, JHEP 10 (2022) 080.; DOI:10.1007/JHEP10(2022)080
188.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the cosmic neutrino background, Phys. Rev. D 106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
189.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111.; DOI:10.1007/JHEP08(2022)111
190.L. Gráf, M. Lindner and O. Scholer, Unraveling the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys. Rev. D 106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
191.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes via the dipole portal, Phys. Lett. B 840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
192.A. Trautner, Anatomy of a top-down approach to discrete and modular flavor symmetry, PoS DISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
193.K. S. Babu, S. Jana and V. P. K., Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
194.J. Hakenmüller and W. Maneschg, Identification of radiopure tungsten for low background applications, J. Phys. G 49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
195.A. de Gouvêa, M. Sen and J. Weill, Visible neutrino decays and the impact of the daughter-neutrino mass, Phys. Rev. D 106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
196.L. Althueser et al., GPU-based optical simulation of the DARWIN detector, JINST 17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
197.A. N. Khan, \(\sin^2\theta_W\) and neutrino electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
198.M. Aker et al., KATRIN: status and prospects for the neutrino mass and beyond, J. Phys. G 49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
199.N. Bartosik et al., Simulated Detector Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
200.D. Stratakis et al., A Muon Collider Facility for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
201.S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
202.C. Awe et al., Particle physics using reactor antineutrinos, (O. A. Akindele et al., Eds.)J. Phys. G 51 (2024) 080501.; DOI:10.1088/1361-6471/ad3a84
203.C. Aime et al., Muon Collider Physics Summary (2022).; Retrieved from https://arxiv.org/abs/2203.07256
204.J. de Blas et al., The physics case of a 3 TeV muon collider stage (2022).; Retrieved from https://arxiv.org/abs/2203.07261
205.M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
206.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
207.R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
208.J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, J. Phys. G 50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
209.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\) Anomaly with Neutrino Magnetic Moments, PoS EPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
210.J. Aalbers et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G 50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
211.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino magnetic moments, JCAP 09 (2022) 079.; DOI:10.1088/1475-7516/2022/09/079
212.J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
213.G. Busoni, Capture of DM in Compact Stars, PoS PANIC2021 (2022) 046.; DOI:10.22323/1.380.0046
214.M. Agostini et al., Pulse shape analysis in Gerda Phase II, Eur. Phys. J. C 82 (2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
215.J. Kubo and J. Kuntz, Analysis of unitarity in conformal quantum gravity, Class. Quant. Grav. 39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
216.K. S. Babu, P. S. B. Dev and S. Jana, Probing neutrino mass models through resonances at neutrino telescopes, Int. J. Mod. Phys. A 37 (2022) 2230003.; DOI:10.1142/S0217751X22300034
217.M. Aker et al., New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, Phys. Rev. Lett. 129 (2022) 011806.; DOI:10.1103/PhysRevLett.129.011806
218.A. Bonhomme et al., Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the keV energy range, Eur. Phys. J. C 82 (2022) 815.; DOI:10.1140/epjc/s10052-022-10768-1
219.A. Ahmed, B. Grzadkowski and A. Socha, Higgs Boson-Induced Reheating and Dark Matter Production, Symmetry 14 (2022) 306.; DOI:10.3390/sym14020306
220.H. de Kerret et al., The Double Chooz antineutrino detectors, Eur. Phys. J. C 82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
221.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoS EPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
222.H. Bonet et al., First upper limits on neutrino electromagnetic properties from the CONUS experiment, Eur. Phys. J. C 82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
223.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles and electrons in liquid xenon, Rev. Sci. Instrum. 93 (2022) 113302.; DOI:10.1063/5.0087216
224.M. Aker et al., Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign, Phys. Rev. D 105 (2022) 072004.; DOI:10.1103/PhysRevD.105.072004
225.A. N. Khan, Neutrino millicharge and other electromagnetic interactions with COHERENT-2021 data, Nucl. Phys. B 986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
226.I. Brivio et al., Truncation, validity, uncertainties (2022).; Retrieved from https://arxiv.org/abs/2201.04974
227.A. Yu. Smirnov and X.-J. Xu, Neutrino bound states and bound systems, JHEP 08 (2022) 170.; DOI:10.1007/JHEP08(2022)170
228.L. Šerkšnytė et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105 (2022) 083021.; DOI:10.1103/PhysRevD.105.083021
 
 


Last modified: Wed 12. February 2025 at 00:59:46 , Impressum , Datenschutzhinweis