Abteilung für Teilchen- & Astroteilchen-Physik
 
 

Publikationen der Abteilung in den letzten drei Jahren

1.G. Arcadi, M. Lindner and S. Profumo, Beyond the Veil: Charting WIMP Territories at the Neutrino Floor (2025).; Retrieved from https://arxiv.org/abs/2507.16987
2.J. P. Garcés, F. Goertz, M. Lindner and Á. Pastor-Gutiérrez, The quantum criticality of the Standard Model and the hierarchy problem (2025).; Retrieved from https://arxiv.org/abs/2506.15919
3.Y. Chung, Two coincidences are a clue: Probing a GeV-scale dark QCD sector (2025).; Retrieved from https://arxiv.org/abs/2506.10928
4.S. Centelles Chuliá, T. Herbermann, A. Herrero-Brocal and A. Vicente, Flavour and cosmological probes of Diracon models (2025).; Retrieved from https://arxiv.org/abs/2506.06449
5.R. Hammann, K. Böse, S. Form, L. Hötzsch and T. Marrodán Undagoitia, Operation of a dual-phase xenon detector with wavelength sensitivity from ultraviolet to infrared (2025).; Retrieved from https://arxiv.org/abs/2505.24682
6.E. Akhmedov, On chirality and chiral neutrino oscillations (2025).; Retrieved from https://arxiv.org/abs/2505.20982
7.H. Acharya et al., First Results on the Search for Lepton Number Violating Neutrinoless Double Beta Decay with the LEGEND-200 Experiment (2025).; Retrieved from https://arxiv.org/abs/2505.10440
8.M. Agostini et al., Measurement of the \(^{85}\)Kr specific activity in the GERDA liquid argon, Eur. Phys. J. C 85 (2025) 518.; DOI:10.1140/epjc/s10052-025-14135-8
9.A. Yu. Smirnov, Chiral interactions, chiral states and ”chiral neutrino oscillations” (2025).; Retrieved from https://arxiv.org/abs/2505.06116
10.T. Herbermann and M. Lindner, Improved cosmological limits on \(Z^\prime\) models with light right-handed neutrinos (2025).; Retrieved from https://arxiv.org/abs/2505.04695
11.S. Bianco, P. F. Depta, J. Frerick, T. Hambye, M. Hufnagel and K. Schmidt-Hoberg, Photo- and Hadrodisintegration constraints on massive relics decaying into neutrinos (2025).; Retrieved from https://arxiv.org/abs/2505.01492
12.C. Accettura et al., The Muon Collider (2025).; Retrieved from https://arxiv.org/abs/2504.21417
13.A. Trautner, Goofy is the new Normal (2025).; Retrieved from https://arxiv.org/abs/2505.00099
14.A. Ahmed, J. P. Garcés and M. Lindner, Radiative Symmetry Breaking with a Scale Invariant Seesaw (2025).; Retrieved from https://arxiv.org/abs/2504.13243
15.L. Gráf, C. Hati, A. Martı́n-Galán and O. Scholer, Importance of Loop Effects in Probing Lepton Number Violation (2025).; Retrieved from https://arxiv.org/abs/2504.00081
16.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(A_4\) Invariance, Springer Proc. Phys. 361 (2025) 303–312.; DOI:10.1007/978-981-97-7441-8_30
17.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted DM from DSNB, PoS NOW2024 (2025) 014.; DOI:10.22323/1.473.0014
18.E. Aprile et al., WIMP Dark Matter Search using a 3.1 tonne \(\times\) year Exposure of the XENONnT Experiment (2025).; Retrieved from https://arxiv.org/abs/2502.18005
19.T. de Boer, M. Lindner and A. Trautner, Custodial Naturalness, JHEP 06 (2025) 047.; DOI:10.1007/JHEP06(2025)047
20.O. Scholer, Towards distinguishing different mechanisms of \(0\nu\beta\beta\), AIP Conf. Proc. 3143 (2025) 020019.; DOI:10.1063/5.0235385
21.E. Aprile et al., Radon Removal in XENONnT down to the Solar Neutrino Level (2025).; Retrieved from https://arxiv.org/abs/2502.04209
22.J. Kubo and J. Kuntz, Primordial gravitational waves in quadratic gravity, JCAP 05 (2025) 093.; DOI:10.1088/1475-7516/2025/05/093
23.M. Guida, Y.-T. Lin and H. Simgen, Improved and automated krypton assay for low-background xenon detectors with Auto-RGMS, Eur. Phys. J. C 85 (2025) 576.; DOI:10.1140/epjc/s10052-025-14262-2
24.N. Ackermann et al., First observation of reactor antineutrinos by coherent scattering (2025).; Retrieved from https://arxiv.org/abs/2501.05206
25.M. Sen, Testing nonstandard neutrino properties, PoS NOW2024 (2025) 026.; DOI:10.22323/1.473.0026
26.Y. Chung, A. Bally and F. Goertz, Looking for the solution to the Hierarchy Problem in Top physics, PoS ICHEP2024 (2025) 343.; DOI:10.22323/1.476.0343
27.A. Ahmed, Z. Chacko, I. Flood, C. Kilic and S. Najjari, General form of effective operators from hidden sectors, JHEP 05 (2025) 167.; DOI:10.1007/JHEP05(2025)167
28.E. Sanchez Garcia et al., Background characterization of the CONUS+ experimental location, Eur. Phys. J. C 85 (2025) 465.; DOI:10.1140/epjc/s10052-025-14160-7
29.Á. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert and G. Ruisi, e+e-\(\mu\)+\(\mu\)- in the asymptotically safe standard model, Phys. Rev. D 111 (2025) 106005.; DOI:10.1103/PhysRevD.111.106005
30.C. Buck, The CONUS+ experiment, PoS ICHEP2024 (2025) 164.; DOI:10.22323/1.476.0164
31.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Gauge-Fermion Cartography: from confinement and chiral symmetry breaking to conformality (2024).; Retrieved from https://arxiv.org/abs/2412.12254
32.E. Aprile et al., Low-Energy Nuclear Recoil Calibration of XENONnT with a \(^{88}\)YBe Photoneutron Source (2024).; Retrieved from https://arxiv.org/abs/2412.10451
33.E. Aprile et al., The neutron veto of the XENONnT experiment: results with demineralized water, Eur. Phys. J. C 85 (2025) 695.; DOI:10.1140/epjc/s10052-025-14105-0
34.Y. Chung, Generating the Dark Matter mass from the QCD vacuum: A new approach to the Dark Matter-Baryon coincidence problem (2024).; Retrieved from https://arxiv.org/abs/2411.18725
35.Y. Chung, Comparable Dark Matter and Baryon energy densities from Dark Grand Unification (2024).; Retrieved from https://arxiv.org/abs/2411.16860
36.E. Aprile et al., Search for Light Dark Matter in Low-Energy Ionization Signals from XENONnT, Phys. Rev. Lett. 134 (2025) 161004.; DOI:10.1103/PhysRevLett.134.161004
37.G. Arcadi, D. Cabo-Almeida, S. Fabian and F. Goertz, Dark particles at the LHC: LHC-friendly dark matter characterization via non-linear EFT, JHEP 06 (2025) 126.; DOI:10.1007/JHEP06(2025)126
38.C. Accettura et al., MuCol Milestone Report No. 5: Preliminary Parameters (2024).; DOI:10.5281/zenodo.13970100
39.L. Nies et al., Refining the nuclear mass surface with the mass of Sn103, Phys. Rev. C 111 (2025) 014315.; DOI:10.1103/PhysRevC.111.014315
40.J. Aalbers et al., Neutrinoless double beta decay sensitivity of the XLZD rare event observatory, J. Phys. G 52 (2025) 045102.; DOI:10.1088/1361-6471/adb900
41.J. Aalbers et al., The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics (2024).; Retrieved from https://arxiv.org/abs/2410.17137
42.E. Akhmedov, Non-relativistic neutrinos and the question of Dirac vs. Majorana neutrino nature (2024).; Retrieved from https://arxiv.org/abs/2410.11940
43.C. Döring and A. Trautner, Symmetries from outer automorphisms and unorthodox group extensions (2024).; Retrieved from https://arxiv.org/abs/2410.11052
44.J. Kuntz, Unitarity through PT symmetry in Quantum Quadratic Gravity (2024).; Retrieved from https://arxiv.org/abs/2410.08278
45.J. Aalbers et al., Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline (2024).; Retrieved from https://arxiv.org/abs/2410.00755
46.A. M. Suliga, P. C.-K. Cheong, J. Froustey, G. M. Fuller, L. Gráf, K. Kehrer, O. Scholer and S. Shalgar, Nonconservation of Lepton Numbers in the Neutrino Sector Could Change the Prospects for Core Collapse Supernova Explosions, Phys. Rev. Lett. 134 (2025) 241002.; DOI:10.1103/gnp5-4y8k
47.S. Centelles Chuliá, R. Srivastava and S. Yadav, Comprehensive phenomenology of the Dirac Scotogenic Model: Novel low-mass dark matter, JHEP 04 (2025) 038.; DOI:10.1007/JHEP04(2025)038
48.E. Aprile et al., First Search for Light Dark Matter in the Neutrino Fog with XENONnT, Phys. Rev. Lett. 134 (2025) 111802.; DOI:10.1103/PhysRevLett.134.111802
49.O. Scholer, Automating neutrinoless double beta decay with Python, AIP Conf. Proc. 3138 (2024) 020016.; DOI:10.1063/5.0205393
50.E. Aprile et al., XENONnT analysis: Signal reconstruction, calibration, and event selection, Phys. Rev. D 111 (2025) 062006.; DOI:10.1103/PhysRevD.111.062006
51.S. Jana, S. Klett, M. Lindner and R. N. Mohapatra, Radiative origin of fermion mass hierarchy in left-right symmetric theory, JHEP 01 (2025) 082.; DOI:10.1007/JHEP01(2025)082
52.G. Arcadi, M. Lindner, J. P. Neto and F. S. Queiroz, Ultraheavy Dark Matter and WIMPs Production aided by Primordial Black Holes (2024).; Retrieved from https://arxiv.org/abs/2408.13313
53.L. Baudis et al., Search for Pauli Exclusion Principle violations with Gator at LNGS, Eur. Phys. J. C 84 (2024) 1137.; DOI:10.1140/epjc/s10052-024-13510-1
54.T. Herbermann, M. Lindner and M. Sen, Attenuation of cosmic ray electron boosted dark matter, Phys. Rev. D 110 (2024) 123023.; DOI:10.1103/PhysRevD.110.123023
55.E. Aprile et al., First Indication of Solar B8 Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT, Phys. Rev. Lett. 133 (2024) 191002.; DOI:10.1103/PhysRevLett.133.191002
56.S. Jana, L. Puetter and A. Yu. Smirnov, Restricting sterile neutrinos by neutrinoless double beta decay, Phys. Rev. D 111 (2025) 015011.; DOI:10.1103/PhysRevD.111.015011
57.T. de Boer, M. Lindner and A. Trautner, Electroweak hierarchy from conformal and custodial symmetry, Phys. Lett. B 861 (2025) 139241.; DOI:10.1016/j.physletb.2025.139241
58.P. F. Depta, V. Domcke, G. Franciolini and M. Pieroni, Pulsar timing array sensitivity to anisotropies in the gravitational wave background, Phys. Rev. D 111 (2025) 083039.; DOI:10.1103/PhysRevD.111.083039
59.C. Accettura et al., Interim report for the International Muon Collider Collaboration (IMCC), CERN Yellow Rep. Monogr. 2/2024 (2024) 176.; DOI:10.23731/CYRM-2024-002
60.S. Centelles Chulia, R. Srivastava and S. Yadav, CDF-II W Boson Mass in the Dirac Scotogenic Model, Springer Proc. Phys. 304 (2024) 946–948.; DOI:10.1007/978-981-97-0289-3_249
61.N. Ackermann et al., CONUS+ Experiment, Eur. Phys. J. C 84 (2024) 1265.; DOI:10.1140/epjc/s10052-024-13551-6
62.S. Bhattacharya, S. Fabian, J. Herms and S. Jana, Flavor-specific dark matter signatures through the lens of neutrino oscillations, JCAP 01 (2025) 110.; DOI:10.1088/1475-7516/2025/01/110
63.S. Jana and Y. Porto, Non-standard interactions of supernova neutrinos and mass ordering ambiguity at DUNE, JCAP 03 (2025) 046.; DOI:10.1088/1475-7516/2025/03/046
64.F. Goertz, M. Hager, G. Laverda and J. Rubio, Phasing out of darkness: from sterile neutrino dark matter to neutrino masses via time-dependent mixing, JHEP 02 (2025) 213.; DOI:10.1007/JHEP02(2025)213
65.M. Sen and A. Y. Smirnov, Neutrinos with refractive masses and the DESI baryon acoustic oscillation results, Phys. Rev. D 111 (2025) 103048.; DOI:10.1103/d9hh-b3r9
66.S. Jana, M. Klasen, V. P. K. and L. P. Wiggering, Neutrino masses and mixing from milli-charged dark matter, JCAP 02 (2025) 011.; DOI:10.1088/1475-7516/2025/02/011
67.E. Aprile et al., XENONnT WIMP search: Signal and background modeling and statistical inference, Phys. Rev. D 111 (2025) 103040.; DOI:10.1103/PhysRevD.111.103040
68.P. Martı́nez-Miravé, Y. F. Perez-Gonzalez and M. Sen, Effects of neutrino-ultralight dark matter interaction on the cosmic neutrino background, Phys. Rev. D 110 (2024) 055005.; DOI:10.1103/PhysRevD.110.055005
69.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The eclectic flavor symmetries of \(\mathbb{T}^2/\mathbb{Z}_K\) orbifolds, JHEP 09 (2024) 159.; DOI:10.1007/JHEP09(2024)159
70.M. Sen, Supernova Neutrinos: Flavour Conversion Mechanisms and New Physics Scenarios, Universe 10 (2024) 238.; DOI:10.3390/universe10060238
71.M. Agostini et al., Searches for new physics below twice the electron mass with GERDA, Eur. Phys. J. C 84 (2024) 940.; DOI:10.1140/epjc/s10052-024-13020-0
72.E. Akhmedov and M. Pospelov, BBN catalysis by doubly charged particles, JCAP 08 (2024) 028.; DOI:10.1088/1475-7516/2024/08/028
73.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing the Origins of Neutrino Mass with Supernova-Neutrino Time Delay, Phys. Rev. Lett. 133 (2024) 121802.; DOI:10.1103/PhysRevLett.133.121802
74.S. Centelles Chuliá, A. Herrero-Brocal and A. Vicente, The Type-I Seesaw family, JHEP 07 (2024) 060.; DOI:10.1007/JHEP07(2024)060
75.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame?, Eur. Phys. J. C 85 (2025) 152.; DOI:10.1140/epjc/s10052-024-13672-y
76.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted dark matter from diffuse supernova neutrino background, JCAP 07 (2024) 045.; DOI:10.1088/1475-7516/2024/07/045
77.E. Aprile et al., Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon time projection chambers, Phys. Rev. D 110 (2024) 012011.; DOI:10.1103/PhysRevD.110.012011
78.P. Soldin, Precision Neutrino Mixing Angle Measurement with the Double Chooz Experiment and Latest Results, PoS TAUP2023 (2024) 228.; DOI:10.22323/1.441.0228
79.J. Kubo and T. Kugo, Anti-Instability of Complex Ghost, PTEP 2024 (2024) 053B01.; DOI:10.1093/ptep/ptae053
80.E. Aprile et al., The XENONnT dark matter experiment, Eur. Phys. J. C 84 (2024) 784.; DOI:10.1140/epjc/s10052-024-12982-5
81.S. Jana, Electromagnetic Properties of Neutrinos, PoS TAUP2023 (2024) 184.; DOI:10.22323/1.441.0184
82.E. Akhmedov and A. Trautner, Can quantum statistics help distinguish Dirac from Majorana neutrinos?, JHEP 05 (2024) 156.; DOI:10.1007/JHEP05(2024)156
83.S. Centelles Chuliá, O. G. Miranda and J. W. F. Valle, Leptonic neutral-current probes in a short-distance DUNE-like setup, Phys. Rev. D 109 (2024) 115007.; DOI:10.1103/PhysRevD.109.115007
84.T. Cheng, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, PoS DISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
85.R. Deckert et al., The LEGEND-200 Liquid Argon Instrumentation: From a simple veto to a full-fledged detector, PoS TAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
86.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right symmetric model: Catalyzed nuclear fusion and collider implications, Phys. Lett. B 852 (2024) 138616.; DOI:10.1016/j.physletb.2024.138616
87.M. Lindner, T. Rink and M. Sen, Light vector bosons and the weak mixing angle in the light of future germanium-based reactor CE\(\nu\)NS experiments, JHEP 08 (2024) 171.; DOI:10.1007/JHEP08(2024)171
88.M. Aoki, J. Kubo and J. Yang, Scale invariant extension of the Standard Model: a nightmare scenario in cosmology, JCAP 05 (2024) 096.; DOI:10.1088/1475-7516/2024/05/096
89.A. Yu. Smirnov, Toward a theory of neutrino mass and mixing.; Retrieved from https://arxiv.org/abs/2401.09999
90.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia, Investigating the slow component of the infrared scintillation time response in gaseous xenon, JINST 19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
91.N. Ackermann et al., Final CONUS Results on Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf Reactor, Phys. Rev. Lett. 133 (2024) 251802.; DOI:10.1103/PhysRevLett.133.251802
92.Á. Pastor-Gutiérrez and M. Yamada, Phase structure of extra-dimensional gauge theories with fermions, Phys. Rev. D 109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
93.G. Huang, Neutrino-antineutrino asymmetry of C\(\nu\)B on the surface of the round Earth, JHEP 11 (2024) 153.; DOI:10.1007/JHEP11(2024)153
94.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and Implications for LEGEND-1000, PoS TAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
95.N. Volmer, On neutrino telescopes and their ability to infer astrophysical neutrino sources via the Glashow resonance (2024).; DOI:10.1393/ncc/i2024-24380-8
96.P. S. B. Dev, S. Jana and Y. Porto, Flavor Matters, but Matter Flavors: Matter Effects on Flavor Composition of Astrophysical Neutrinos (2023).; Retrieved from https://arxiv.org/abs/2312.17315
97.L. Gráf, S. Jana, O. Scholer and N. Volmer, Neutrinoless double beta decay without vacuum Majorana neutrino mass, Phys. Lett. B 859 (2024) 139111.; DOI:10.1016/j.physletb.2024.139111
98.V. Brdar, T. Cheng, H.-J. Kuan and Y.-Y. Li, Magnetar-powered neutrinos and magnetic moment signatures at IceCube, JCAP 07 (2024) 026.; DOI:10.1088/1475-7516/2024/07/026
99.J. Kuntz and A. Trautner, Extra Dimensions Beyond the Horizon (2023).; Retrieved from https://arxiv.org/abs/2312.09853
100.M. Hager, Restoring Naturalness to Composite Higgs Models (Master’s thesis). Max-Planck-Institut für Kernphysik, Heidelberg.
101.Y. Chung, Dynamical origin of Type-I Seesaw with large mixing (2023).; Retrieved from https://arxiv.org/abs/2311.17183
102.Y. Chung and F. Goertz, Third-generation-philic hidden naturalness, Phys. Rev. D 110 (2024) 115019.; DOI:10.1103/PhysRevD.110.115019
103.M. Agostini et al., An improved limit on the neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys. J. C 84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
104.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial Compositeness, PoS EPS-HEP2023 (2024) 369.; DOI:10.22323/1.449.0369
105.D. Basilico et al., Optimized \(\alpha\)/\(\beta\) pulse shape discrimination in Borexino, Phys. Rev. D 109 (2024) 112014.; DOI:10.1103/PhysRevD.109.112014
106.M. Mukhopadhyay and M. Sen, On probing turbulence in core-collapse supernovae in upcoming neutrino detectors, JCAP 03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
107.M. Shaposhnikov and A. Y. Smirnov, Sterile neutrino dark matter, matter-antimatter separation, and the QCD phase transition, Phys. Rev. D 110 (2024) 063520.; DOI:10.1103/PhysRevD.110.063520
108.E. Aprile et al., Design and performance of the field cage for the XENONnT experiment, Eur. Phys. J. C 84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
109.A. Ahmed, M. Lindner and P. Saake, Conformal little Higgs models, Phys. Rev. D 109 (2024) 075041.; DOI:10.1103/PhysRevD.109.075041
110.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring naturalness via conjugate fermions, Phys. Rev. D 110 (2024) 115023.; DOI:10.1103/PhysRevD.110.115023
111.Y. Chung, Naturalness-motivated composite Higgs model for generating the top Yukawa coupling, Phys. Rev. D 109 (2024) 095021.; DOI:10.1103/PhysRevD.109.095021
112.F. Goertz and Á. Pastor-Gutiérrez, Unveiling new phases of the Standard Model Higgs potential, Eur. Phys. J. C 85 (2025) 116.; DOI:10.1140/epjc/s10052-025-13842-6
113.H. Bonet et al., Pulse shape discrimination for the CONUS experiment in the keV and sub-keV regime, Eur. Phys. J. C 84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
114.M. Agostini et al., Final Results of GERDA on the Two-Neutrino Double-\(\beta\) Decay Half-Life of Ge76, Phys. Rev. Lett. 131 (2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
115.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry, Phys. Rev. D 109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
116.J. Kubo and T. Kugo, Unitarity violation in field theories of LeeWicks complex ghost, PTEP 2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
117.S. Jana and S. Klett, Muonic force and nonstandard neutrino interactions at muon colliders, Phys. Rev. D 110 (2024) 095011.; DOI:10.1103/PhysRevD.110.095011
118.Y. F. Perez-Gonzalez and M. Sen, From Dirac to Majorana: The cosmic neutrino background capture rate in the minimally extended Standard Model, Phys. Rev. D 109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
119.A. de Gouvêa, J. Weill and M. Sen, Solar neutrinos and \(\nu\)2 visible decays to \(\nu\)1, Phys. Rev. D 109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
120.M. Agostini et al., Search for tri-nucleon decays of \(^{76}\)Ge in GERDA, Eur. Phys. J. C 83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
121.M. P. Bento, J. P. Silva and A. Trautner, The basis invariant flavor puzzle, JHEP 01 (2024) 024.; DOI:10.1007/JHEP01(2024)024
122.J. Herms, S. Jana, V. P. K. and S. Saad, Light neutrinophilic dark matter from a scotogenic model, Phys. Lett. B 845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
123.G. Huang, Discovery potential of the Glashow resonance in an air shower neutrino telescope*, Chin. Phys. C 48 (2024) 085107.; DOI:10.1088/1674-1137/ad4c5c
124.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial compositeness, Phys. Rev. D 108 (2023) 095019.; DOI:10.1103/PhysRevD.108.095019
125.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous \(\gamma\) event, JCAP 11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
126.M. D. Astros, S. Fabian and F. Goertz, Minimal Inert Doublet benchmark for dark matter and the baryon asymmetry, JCAP 02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
127.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Signals of merging supermassive black holes in pulsar timing arrays, Phys. Rev. Res. 7 (2025) 013196.; DOI:10.1103/PhysRevResearch.7.013196
128.M. Adrover et al., Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites, Eur. Phys. J. C 84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
129.M. Sen and A. Y. Smirnov, Refractive neutrino masses, ultralight dark matter and cosmology, JCAP 01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
130.E. Aprile et al., Search for events in XENON1T associated with gravitational waves, Phys. Rev. D 108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
131.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053.; DOI:10.1088/1475-7516/2023/11/053
132.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic recoil calibration of the XENONnT detector, JINST 18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
133.L. Angel et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 055030.; DOI:10.1103/PhysRevD.108.055030
134.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari, Composite dark matter and neutrino masses from a light hidden sector, JHEP 07 (2024) 260.; DOI:10.1007/JHEP07(2024)260
135.A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa, 57th Rencontres de Moriond on QCD and High Energy Interactions.; Retrieved from https://arxiv.org/abs/2304.11891
136.E. Aprile et al., Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Phys. Rev. Lett. 130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
137.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless double beta decay, JHEP 08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
138.E. Aprile et al., Detector signal characterization with a Bayesian network in XENONnT, Phys. Rev. D 108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
139.E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
140.S. Jana and Y. Porto, Resonances of Supernova Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett. 132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
141.G. Huang, M. Lindner and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
142.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán Undagoitia, First time-resolved measurement of infrared scintillation light in gaseous xenon, Eur. Phys. J. C 83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
143.C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83 (2023) 864.; DOI:10.1140/epjc/s10052-023-11889-x
144.A. Trautner, Modular Flavor Symmetries and CP from the top down, PoS DISCRETE2022 (2024) 013.; DOI:10.22323/1.431.0013
145.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter model, PoS DISCRETE2022 (2024) 076.; DOI:10.22323/1.431.0076
146.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino mass scales, JHEP 06 (2023) 078.; DOI:10.1007/JHEP06(2023)078
147.N. Ackermann et al., Monte Carlo simulation of background components in low level Germanium spectrometry, Appl. Radiat. Isot. 194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
148.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector for the CONUS experiment, Appl. Radiat. Isot. 194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
149.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F. Meggendorfer and S. Skambraks, Operation of the Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware Perspective, J. Phys. Conf. Ser. 2438 (2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
150.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of neutrino magnetic moments from a galactic supernova burst at upcoming detectors, PoS ICHEP2022 (2022) 597.; DOI:10.22323/1.414.0597
151.E. Aprile et al., The triggerless data acquisition system of the XENONnT experiment, JINST 18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
152.S. Blasi, J. Bollig and F. Goertz, Holographic composite Higgs model building: soft breaking, maximal symmetry, and the Higgs mass, JHEP 07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
153.I. Bischer, C. Döring and A. Trautner, Telling compositeness at a distance with outer automorphisms and CP, J. Phys. A 56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
154.M. Agostini et al., Liquid argon light collection and veto modeling in GERDA Phase II, Eur. Phys. J. C 83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
155.A. Bally, Y. Chung and F. Goertz, Hierarchy problem and the top Yukawa coupling: An alternative to top partner solutions, Phys. Rev. D 108 (2023) 055008.; DOI:10.1103/PhysRevD.108.055008
156.T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, Phys. Lett. B 851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
157.E. Aprile et al., Low-energy calibration of XENON1T with an internal \(^{{\textbf {37}}}\)Ar source, Eur. Phys. J. C 83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
158.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev. Lett. 131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
159.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with Gauged \(U(1)_{L(-R)}\) (2022).; Retrieved from https://arxiv.org/abs/2210.13402
160.T. Cheng, M. Lindner and M. Sen, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, Phys. Lett. B 844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
161.H. Almazán et al., STEREO neutrino spectrum of \(^{235}\)U fission rejects sterile neutrino hypothesis, Nature 613 (2023) 257–261.; DOI:10.1038/s41586-022-05568-2
162.E. Aprile et al., Effective field theory and inelastic dark matter results from XENON1T, Phys. Rev. D 109 (2024) 112017.; DOI:10.1103/PhysRevD.109.112017
163.E. Aprile et al., An approximate likelihood for nuclear recoil searches with XENON1T data, Eur. Phys. J. C 82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
164.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment on ”Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
165.J. Herms, S. Jana, V. P. K. and S. Saad, Light thermal relics enabled by a second Higgs, SciPost Phys. Proc. 12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
166.I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106 (2022) 106007.; DOI:10.1103/PhysRevD.106.106007
167.A. de Gouvêa et al., Theory of Neutrino Physics – Snowmass TF11 (aka NF08) Topical Group Report (2022).; Retrieved from https://arxiv.org/abs/2209.07983
168.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, Moscow Univ. Phys. Bull. 77 (2022) 371–374.; DOI:10.3103/S0027134922020461
169.M. Agostini et al., Search for exotic physics in double-\(\beta\) decays with GERDA Phase II, JCAP 12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
170.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable models and flavor, JHEP 04 (2023) 012.; DOI:10.1007/JHEP04(2023)012
171.J. Kubo and J. Kuntz, Spontaneous conformal symmetry breaking and quantum quadratic gravity, Phys. Rev. D 106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
172.A. N. Khan, Extra dimensions with light and heavy neutral leptons: an application to CE\(\nu\)NS, JHEP 01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
173.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of heavy-ion collisions and their impact on particle correlations, Phys. Rev. C 108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
174.E. Akhmedov and A. Y. Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, JHEP 11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
175.A. N. Khan, Light new physics and neutrino electromagnetic interactions in XENONnT, Phys. Lett. B 837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
176.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts, JCAP 11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
177.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of sterile neutrino dark matter via neutrino self-interactions, JCAP 11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
178.A. Ahmed, B. Grzadkowski and A. Socha, Higgs boson induced reheating and ultraviolet frozen-in dark matter, JHEP 02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
179.H. Almazan et al., Improved FIFRELIN de-excitation model for neutrino applications, Eur. Phys. J. A 59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
180.E. Aprile et al., Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
181.C. Jaramillo, Reviving keV sterile neutrino dark matter, JCAP 10 (2022) 093.; DOI:10.1088/1475-7516/2022/10/093
182.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The first string-derived eclectic flavor model with realistic phenomenology, JHEP 09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
183.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking, SciPost Phys. 15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
184.B. Batell et al., Dark Sector Studies with Neutrino Beams, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.06898
185.M. Aker et al., Search for Lorentz-invariance violation with the first KATRIN data, Phys. Rev. D 107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
186.M. Aker et al., Search for keV-scale sterile neutrinos with the first KATRIN data, Eur. Phys. J. C 83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
187.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting bounds on neutrino magnetic moments and solar magnetic field, JHEP 10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
188.S. Richers and M. Sen, Fast Flavor Transformations, In I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).; DOI:10.1007/978-981-15-8818-1_125-1
189.J. Berger et al., Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.02882
190.G. Huang, Double and multiple bangs at tau neutrino telescopes, Eur. Phys. J. C 82 (2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
191.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, Search for leptophilic dark matter at the LHeC, J. Phys. G 50 (2023) 065001.; DOI:10.1088/1361-6471/accc4a
192.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model, Mod. Phys. Lett. A 38 (2023).; DOI:10.1142/S0217732323500499
193.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman and K. Schmidt-Hoberg, Minimal sterile neutrino dark matter, Phys. Rev. D 107 (2023) L071702.; DOI:10.1103/PhysRevD.107.L071702
194.G. Huang and N. Nath, Inference of neutrino nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with inverted mass ordering, Eur. Phys. J. C 82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
195.S. Jana, Horizontal Symmetry and Large Neutrino Magnetic Moments, PoS DISCRETE2020-2021 (2022) 037.; DOI:10.22323/1.405.0037
196.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S. de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian synchrotron, Eur. Phys. J. C 83 (2023) 514.; DOI:10.1140/epjc/s10052-023-11603-x
197.A. Schneider et al., Direct measurement of the \(^{3}\)He\(^{+}\) magnetic moments, Nature 606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
198.F. Jörg, G. Eurin and H. Simgen, Production and characterization of a 222Rn-emanating stainless steel source, Appl. Radiat. Isot. 194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
199.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale detectors, JINST 17 (2022) P11025.; DOI:10.1088/1748-0221/17/11/P11025
200.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark condensation, SciPost Phys. 14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
201.Á. Pastor-Gutiérrez and M. Yamada, UV completion of extradimensional Yang-Mills theory for Gauge-Higgs unification, SciPost Phys. 15 (2023) 101.; DOI:10.21468/SciPostPhys.15.3.101
202.M. Sen, Constraining pseudo-Dirac neutrinos from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
203.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Phys. Rev. D 106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
204.T. Rink, Coherent elastic neutrino-nucleus scattering – First constraints/observations and future potential, 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
205.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos, Phys. Rev. D 106 (2022) 083011.; DOI:10.1103/PhysRevD.106.083011
206.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT Experiments, Phys. Rev. C 106 (2022) 024328.; DOI:10.1103/PhysRevC.106.024328
207.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, Diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Phys. Rev. D 106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
208.S. Weber, Quantum Field Theory and Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand Unification (Master’s thesis). Heidelberg U.
209.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability from flavour symmetry, JHEP 10 (2022) 080.; DOI:10.1007/JHEP10(2022)080
210.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the cosmic neutrino background, Phys. Rev. D 106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
211.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111.; DOI:10.1007/JHEP08(2022)111
212.L. Gráf, M. Lindner and O. Scholer, Unraveling the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys. Rev. D 106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
213.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes via the dipole portal, Phys. Lett. B 840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
214.A. Trautner, Anatomy of a top-down approach to discrete and modular flavor symmetry, PoS DISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
215.K. S. Babu, S. Jana and V. P. K., Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
216.J. Hakenmüller and W. Maneschg, Identification of radiopure tungsten for low background applications, J. Phys. G 49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
217.A. de Gouvêa, M. Sen and J. Weill, Visible neutrino decays and the impact of the daughter-neutrino mass, Phys. Rev. D 106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
218.L. Althueser et al., GPU-based optical simulation of the DARWIN detector, JINST 17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
219.L. A. Ruso et al., Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators, J. Phys. G 52 (2025) 043001.; DOI:10.1088/1361-6471/adae26
220.A. N. Khan, \(\sin^2\theta_W\) and neutrino electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
221.M. Aker et al., KATRIN: status and prospects for the neutrino mass and beyond, J. Phys. G 49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
222.N. Bartosik et al., Simulated Detector Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
223.D. Stratakis et al., A Muon Collider Facility for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
224.S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
225.C. Awe et al., Particle physics using reactor antineutrinos, (O. A. Akindele et al., Eds.)J. Phys. G 51 (2024) 080501.; DOI:10.1088/1361-6471/ad3a84
226.C. Aime et al., Muon Collider Physics Summary (2022).; Retrieved from https://arxiv.org/abs/2203.07256
227.J. de Blas et al., The physics case of a 3 TeV muon collider stage (2022).; Retrieved from https://arxiv.org/abs/2203.07261
228.M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
229.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
230.R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
231.J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, J. Phys. G 50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
232.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\) Anomaly with Neutrino Magnetic Moments, PoS EPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
233.J. Aalbers et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G 50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
234.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino magnetic moments, JCAP 09 (2022) 079.; DOI:10.1088/1475-7516/2022/09/079
235.J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
236.G. Busoni, Capture of DM in Compact Stars, PoS PANIC2021 (2022) 046.; DOI:10.22323/1.380.0046
237.M. Agostini et al., Pulse shape analysis in Gerda Phase II, Eur. Phys. J. C 82 (2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
238.J. Kubo and J. Kuntz, Analysis of unitarity in conformal quantum gravity, Class. Quant. Grav. 39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
239.K. S. Babu, P. S. B. Dev and S. Jana, Probing neutrino mass models through resonances at neutrino telescopes, Int. J. Mod. Phys. A 37 (2022) 2230003.; DOI:10.1142/S0217751X22300034
240.M. Aker et al., New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, Phys. Rev. Lett. 129 (2022) 011806.; DOI:10.1103/PhysRevLett.129.011806
241.A. Bonhomme et al., Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the keV energy range, Eur. Phys. J. C 82 (2022) 815.; DOI:10.1140/epjc/s10052-022-10768-1
242.A. Ahmed, B. Grzadkowski and A. Socha, Higgs Boson-Induced Reheating and Dark Matter Production, Symmetry 14 (2022) 306.; DOI:10.3390/sym14020306
243.H. de Kerret et al., The Double Chooz antineutrino detectors, Eur. Phys. J. C 82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
244.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoS EPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
245.H. Bonet et al., First upper limits on neutrino electromagnetic properties from the CONUS experiment, Eur. Phys. J. C 82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
246.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles and electrons in liquid xenon, Rev. Sci. Instrum. 93 (2022) 113302.; DOI:10.1063/5.0087216
247.M. Aker et al., Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign, Phys. Rev. D 105 (2022) 072004.; DOI:10.1103/PhysRevD.105.072004
248.A. N. Khan, Neutrino millicharge and other electromagnetic interactions with COHERENT-2021 data, Nucl. Phys. B 986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
249.I. Brivio et al., Truncation, validity, uncertainties (2022).; Retrieved from https://arxiv.org/abs/2201.04974
250.A. Yu. Smirnov and X.-J. Xu, Neutrino bound states and bound systems, JHEP 08 (2022) 170.; DOI:10.1007/JHEP08(2022)170
251.L. Šerkšnytė et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105 (2022) 083021.; DOI:10.1103/PhysRevD.105.083021
 
 


Last modified: Wed 12. February 2025 at 00:59:46 , Impressum , Datenschutzhinweis