Publikationen der Abteilung in den letzten drei Jahren
1.J. P. Garcés, F. Goertz, M. Lindner and Á. Pastor-Gutiérrez, The quantum criticality of the Standard Model and the
hierarchy problem (2025).; Retrieved from https://arxiv.org/abs/2506.15919
2.Y. Chung, Two coincidences are a clue: Probing a
GeV-scale dark QCD sector (2025).; Retrieved from https://arxiv.org/abs/2506.10928
3.S. Centelles Chuliá, T. Herbermann, A. Herrero-Brocal and A. Vicente,
Flavour and cosmological probes of Diracon
models (2025).; Retrieved from https://arxiv.org/abs/2506.06449
4.R. Hammann, K. Böse, S. Form, L. Hötzsch and T. Marrodán Undagoitia,
Operation of a dual-phase xenon detector with
wavelength sensitivity from ultraviolet to infrared (2025).;
Retrieved from https://arxiv.org/abs/2505.24682
6.H. Acharya et al., First Results on the Search
for Lepton Number Violating Neutrinoless Double Beta Decay with the
LEGEND-200 Experiment (2025).; Retrieved from https://arxiv.org/abs/2505.10440
7.M. Agostini et al., Measurement of the \(^{85}\)Kr specific activity in the GERDA
liquid argon, Eur. Phys. J. C85 (2025)
518.; DOI:10.1140/epjc/s10052-025-14135-8
8.A. Yu. Smirnov, Chiral interactions, chiral
states and ”chiral neutrino oscillations” (2025).; Retrieved from
https://arxiv.org/abs/2505.06116
9.T. Herbermann and M. Lindner, Improved
cosmological limits on \(Z^\prime\)
models with light right-handed neutrinos (2025).; Retrieved from
https://arxiv.org/abs/2505.04695
10.S. Bianco, P. F. Depta, J. Frerick, T. Hambye, M. Hufnagel and K.
Schmidt-Hoberg, Photo- and Hadrodisintegration
constraints on massive relics decaying into neutrinos (2025).;
Retrieved from https://arxiv.org/abs/2505.01492
13.A. Ahmed, J. P. Garcés and M. Lindner, Radiative
Symmetry Breaking with a Scale Invariant Seesaw (2025).;
Retrieved from https://arxiv.org/abs/2504.13243
14.L. Gráf, C. Hati, A. Martı́n-Galán and O. Scholer, Importance of Loop Effects in Probing Lepton Number
Violation (2025).; Retrieved from https://arxiv.org/abs/2504.00081
15.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(A_4\) Invariance, Springer Proc.
Phys.361 (2025) 303–312.; DOI:10.1007/978-981-97-7441-8_30
16.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted DM from DSNB,
PoSNOW2024 (2025) 014.; DOI:10.22323/1.473.0014
17.E. Aprile et al., WIMP Dark Matter Search using
a 3.1 tonne \(\times\) year Exposure of
the XENONnT Experiment (2025).; Retrieved from https://arxiv.org/abs/2502.18005
18.T. de Boer, M. Lindner and A. Trautner, Custodial
Naturalness, JHEP06 (2025) 047.;
DOI:10.1007/JHEP06(2025)047
19.O. Scholer, Towards distinguishing different
mechanisms of \(0\nu\beta\beta\), AIP Conf.
Proc.3143 (2025) 020019.; DOI:10.1063/5.0235385
20.E. Aprile et al., Radon Removal in XENONnT down
to the Solar Neutrino Level (2025).; Retrieved from https://arxiv.org/abs/2502.04209
21.J. Kubo and J. Kuntz, Primordial gravitational
waves in quadratic gravity, JCAP05
(2025) 093.; DOI:10.1088/1475-7516/2025/05/093
22.M. Guida, Y.-T. Lin and H. Simgen, Improved and
automated krypton assay for low-background xenon detectors with
Auto-RGMS, Eur. Phys. J. C85 (2025)
576.; DOI:10.1140/epjc/s10052-025-14262-2
23.N. Ackermann et al., First observation of
reactor antineutrinos by coherent scattering (2025).; Retrieved
from https://arxiv.org/abs/2501.05206
24.M. Sen, Testing nonstandard neutrino
properties, PoSNOW2024 (2025) 026.;
DOI:10.22323/1.473.0026
25.Y. Chung, A. Bally and F. Goertz, Looking for
the solution to the Hierarchy Problem in Top physics,
PoSICHEP2024 (2025) 343.; DOI:10.22323/1.476.0343
26.A. Ahmed, Z. Chacko, I. Flood, C. Kilic and S. Najjari, General form of effective operators from hidden
sectors, JHEP05 (2025) 167.; DOI:10.1007/JHEP05(2025)167
27.E. Sanchez Garcia et al., Background
characterization of the CONUS+ experimental location, Eur.
Phys. J. C85 (2025) 465.; DOI:10.1140/epjc/s10052-025-14160-7
28.Á. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert and G. Ruisi, e+e-\(\mu\)+\(\mu\)- in the asymptotically safe
standard model, Phys. Rev. D111 (2025)
106005.; DOI:10.1103/PhysRevD.111.106005
29.C. Buck, The CONUS+ experiment,
PoSICHEP2024 (2025) 164.; DOI:10.22323/1.476.0164
30.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Gauge-Fermion Cartography: from confinement and chiral
symmetry breaking to conformality (2024).; Retrieved from https://arxiv.org/abs/2412.12254
31.E. Aprile et al., Low-Energy Nuclear Recoil
Calibration of XENONnT with a \(^{88}\)YBe Photoneutron Source
(2024).; Retrieved from https://arxiv.org/abs/2412.10451
32.E. Aprile et al., The neutron veto of the
XENONnT experiment: results with demineralized water, Eur.
Phys. J. C85 (2025) 695.; DOI:10.1140/epjc/s10052-025-14105-0
33.Y. Chung, Generating the Dark Matter mass from
the QCD vacuum: A new approach to the Dark Matter-Baryon coincidence
problem (2024).; Retrieved from https://arxiv.org/abs/2411.18725
34.Y. Chung, Comparable Dark Matter and Baryon
energy densities from Dark Grand Unification (2024).; Retrieved
from https://arxiv.org/abs/2411.16860
35.E. Aprile et al., Search for Light Dark Matter
in Low-Energy Ionization Signals from XENONnT, Phys. Rev.
Lett.134 (2025) 161004.; DOI:10.1103/PhysRevLett.134.161004
36.G. Arcadi, D. Cabo-Almeida, S. Fabian and F. Goertz, Dark particles at the LHC: LHC-friendly dark matter
characterization via non-linear EFT, JHEP06 (2025) 126.; DOI:10.1007/JHEP06(2025)126
38.L. Nies et al., Refining the nuclear mass
surface with the mass of Sn103, Phys. Rev. C111 (2025) 014315.; DOI:10.1103/PhysRevC.111.014315
39.J. Aalbers et al., Neutrinoless double beta
decay sensitivity of the XLZD rare event observatory, J.
Phys. G52 (2025) 045102.; DOI:10.1088/1361-6471/adb900
40.J. Aalbers et al., The XLZD Design Book: Towards
the Next-Generation Liquid Xenon Observatory for Dark Matter and
Neutrino Physics (2024).; Retrieved from https://arxiv.org/abs/2410.17137
41.E. Akhmedov, Non-relativistic neutrinos and the
question of Dirac vs. Majorana neutrino nature (2024).; Retrieved
from https://arxiv.org/abs/2410.11940
42.C. Döring and A. Trautner, Symmetries from outer
automorphisms and unorthodox group extensions (2024).; Retrieved
from https://arxiv.org/abs/2410.11052
43.J. Kuntz, Unitarity through PT symmetry in
Quantum Quadratic Gravity (2024).; Retrieved from https://arxiv.org/abs/2410.08278
44.J. Aalbers et al., Model-independent searches of
new physics in DARWIN with a semi-supervised deep learning
pipeline (2024).; Retrieved from https://arxiv.org/abs/2410.00755
45.A. M. Suliga, P. C.-K. Cheong, J. Froustey, G. M. Fuller, L. Gráf, K.
Kehrer, O. Scholer and S. Shalgar, Nonconservation
of Lepton Numbers in the Neutrino Sector Could Change the Prospects for
Core Collapse Supernova Explosions, Phys. Rev. Lett.134 (2025) 241002.; DOI:10.1103/gnp5-4y8k
46.S. Centelles Chuliá, R. Srivastava and S. Yadav, Comprehensive phenomenology of the Dirac Scotogenic
Model: Novel low-mass dark matter, JHEP04 (2025) 038.; DOI:10.1007/JHEP04(2025)038
47.E. Aprile et al., First Search for Light Dark
Matter in the Neutrino Fog with XENONnT, Phys. Rev.
Lett.134 (2025) 111802.; DOI:10.1103/PhysRevLett.134.111802
49.E. Aprile et al., XENONnT analysis: Signal
reconstruction, calibration, and event selection, Phys. Rev.
D111 (2025) 062006.; DOI:10.1103/PhysRevD.111.062006
50.S. Jana, S. Klett, M. Lindner and R. N. Mohapatra, Radiative origin of fermion mass hierarchy in left-right
symmetric theory, JHEP01 (2025) 082.;
DOI:10.1007/JHEP01(2025)082
51.G. Arcadi, M. Lindner, J. P. Neto and F. S. Queiroz, Ultraheavy Dark Matter and WIMPs Production aided by
Primordial Black Holes (2024).; Retrieved from https://arxiv.org/abs/2408.13313
52.L. Baudis et al., Search for Pauli Exclusion
Principle violations with Gator at LNGS, Eur. Phys. J. C84 (2024) 1137.; DOI:10.1140/epjc/s10052-024-13510-1
53.T. Herbermann, M. Lindner and M. Sen, Attenuation of cosmic ray electron boosted dark
matter, Phys. Rev. D110 (2024)
123023.; DOI:10.1103/PhysRevD.110.123023
54.E. Aprile et al., First Indication of Solar B8
Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with
XENONnT, Phys. Rev. Lett.133 (2024)
191002.; DOI:10.1103/PhysRevLett.133.191002
55.S. Jana, L. Puetter and A. Yu. Smirnov, Restricting sterile neutrinos by neutrinoless double beta
decay, Phys. Rev. D111 (2025) 015011.;
DOI:10.1103/PhysRevD.111.015011
56.T. de Boer, M. Lindner and A. Trautner, Electroweak hierarchy from conformal and custodial
symmetry, Phys. Lett. B861 (2025)
139241.; DOI:10.1016/j.physletb.2025.139241
57.P. F. Depta, V. Domcke, G. Franciolini and M. Pieroni, Pulsar timing array sensitivity to anisotropies in the
gravitational wave background, Phys. Rev. D111 (2025) 083039.; DOI:10.1103/PhysRevD.111.083039
58.C. Accettura et al., Interim report for the
International Muon Collider Collaboration (IMCC), CERN Yellow
Rep. Monogr.2/2024 (2024) 176.; DOI:10.23731/CYRM-2024-002
59.S. Centelles Chulia, R. Srivastava and S. Yadav, CDF-II W Boson Mass in the Dirac Scotogenic Model,
Springer Proc. Phys.304 (2024) 946–948.;
DOI:10.1007/978-981-97-0289-3_249
61.S. Bhattacharya, S. Fabian, J. Herms and S. Jana, Flavor-specific dark matter signatures through the lens
of neutrino oscillations, JCAP01
(2025) 110.; DOI:10.1088/1475-7516/2025/01/110
62.S. Jana and Y. Porto, Non-standard interactions
of supernova neutrinos and mass ordering ambiguity at DUNE,
JCAP03 (2025) 046.; DOI:10.1088/1475-7516/2025/03/046
63.F. Goertz, M. Hager, G. Laverda and J. Rubio, Phasing out of darkness: from sterile neutrino dark
matter to neutrino masses via time-dependent mixing,
JHEP02 (2025) 213.; DOI:10.1007/JHEP02(2025)213
64.M. Sen and A. Y. Smirnov, Neutrinos with
refractive masses and the DESI baryon acoustic oscillation
results, Phys. Rev. D111 (2025)
103048.; DOI:10.1103/d9hh-b3r9
65.S. Jana, M. Klasen, V. P. K. and L. P. Wiggering, Neutrino masses and mixing from milli-charged dark
matter, JCAP02 (2025) 011.; DOI:10.1088/1475-7516/2025/02/011
66.E. Aprile et al., XENONnT WIMP search: Signal
and background modeling and statistical inference, Phys. Rev.
D111 (2025) 103040.; DOI:10.1103/PhysRevD.111.103040
67.P. Martı́nez-Miravé, Y. F. Perez-Gonzalez and M. Sen, Effects of neutrino-ultralight dark matter interaction on
the cosmic neutrino background, Phys. Rev. D110 (2024) 055005.; DOI:10.1103/PhysRevD.110.055005
68.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The eclectic flavor symmetries of
\(\mathbb{T}^2/\mathbb{Z}_K\)
orbifolds, JHEP09 (2024) 159.; DOI:10.1007/JHEP09(2024)159
69.M. Sen, Supernova Neutrinos: Flavour Conversion
Mechanisms and New Physics Scenarios, Universe10 (2024) 238.; DOI:10.3390/universe10060238
70.M. Agostini et al., Searches for new physics
below twice the electron mass with GERDA, Eur. Phys. J.
C84 (2024) 940.; DOI:10.1140/epjc/s10052-024-13020-0
71.E. Akhmedov and M. Pospelov, BBN catalysis by
doubly charged particles, JCAP08
(2024) 028.; DOI:10.1088/1475-7516/2024/08/028
72.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing
the Origins of Neutrino Mass with Supernova-Neutrino Time Delay,
Phys. Rev. Lett.133 (2024) 121802.; DOI:10.1103/PhysRevLett.133.121802
73.S. Centelles Chuliá, A. Herrero-Brocal and A. Vicente, The Type-I Seesaw family, JHEP07 (2024) 060.; DOI:10.1007/JHEP07(2024)060
74.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y.
Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame?, Eur. Phys.
J. C85 (2025) 152.; DOI:10.1140/epjc/s10052-024-13672-y
75.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted dark matter from diffuse
supernova neutrino background, JCAP07
(2024) 045.; DOI:10.1088/1475-7516/2024/07/045
76.E. Aprile et al., Offline tagging of
radon-induced backgrounds in XENON1T and applicability to other liquid
xenon time projection chambers, Phys. Rev. D110 (2024) 012011.; DOI:10.1103/PhysRevD.110.012011
77.J. Kubo and T. Kugo, Anti-Instability of Complex
Ghost, PTEP2024 (2024) 053B01.; DOI:10.1093/ptep/ptae053
79.S. Jana, Electromagnetic Properties of
Neutrinos, PoSTAUP2023 (2024) 184.;
DOI:10.22323/1.441.0184
80.E. Akhmedov and A. Trautner, Can quantum
statistics help distinguish Dirac from Majorana neutrinos?,
JHEP05 (2024) 156.; DOI:10.1007/JHEP05(2024)156
81.S. Centelles Chuliá, O. G. Miranda and J. W. F. Valle, Leptonic neutral-current probes in a short-distance
DUNE-like setup, Phys. Rev. D109
(2024) 115007.; DOI:10.1103/PhysRevD.109.115007
82.T. Cheng, Implications of a matter-antimatter
mass asymmetry in Penning-trap experiments, PoSDISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
83.R. Deckert et al., The LEGEND-200 Liquid Argon
Instrumentation: From a simple veto to a full-fledged detector,
PoSTAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
84.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right
symmetric model: Catalyzed nuclear fusion and collider
implications, Phys. Lett. B852 (2024)
138616.; DOI:10.1016/j.physletb.2024.138616
85.M. Lindner, T. Rink and M. Sen, Light vector
bosons and the weak mixing angle in the light of future germanium-based
reactor CE\(\nu\)NS
experiments, JHEP08 (2024) 171.;
DOI:10.1007/JHEP08(2024)171
86.M. Aoki, J. Kubo and J. Yang, Scale invariant
extension of the Standard Model: a nightmare scenario in
cosmology, JCAP05 (2024) 096.; DOI:10.1088/1475-7516/2024/05/096
88.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia,
Investigating the slow component of the infrared
scintillation time response in gaseous xenon, JINST19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
89.N. Ackermann et al., Final CONUS Results on
Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf
Reactor, Phys. Rev. Lett.133 (2024)
251802.; DOI:10.1103/PhysRevLett.133.251802
90.Á. Pastor-Gutiérrez and M. Yamada, Phase
structure of extra-dimensional gauge theories with fermions,
Phys. Rev. D109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
91.G. Huang, Neutrino-antineutrino asymmetry of
C\(\nu\)B on the surface
of the round Earth, JHEP11 (2024)
153.; DOI:10.1007/JHEP11(2024)153
92.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and
Implications for LEGEND-1000, PoSTAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
93.N. Volmer, On neutrino telescopes and their
ability to infer astrophysical neutrino sources via the Glashow
resonance (2024).; DOI:10.1393/ncc/i2024-24380-8
94.P. S. B. Dev, S. Jana and Y. Porto, Flavor
Matters, but Matter Flavors: Matter Effects on Flavor Composition of
Astrophysical Neutrinos (2023).; Retrieved from https://arxiv.org/abs/2312.17315
95.L. Gráf, S. Jana, O. Scholer and N. Volmer, Neutrinoless double beta decay without vacuum Majorana
neutrino mass, Phys. Lett. B859 (2024)
139111.; DOI:10.1016/j.physletb.2024.139111
96.V. Brdar, T. Cheng, H.-J. Kuan and Y.-Y. Li, Magnetar-powered neutrinos and magnetic moment signatures
at IceCube, JCAP07 (2024) 026.; DOI:10.1088/1475-7516/2024/07/026
100.Y. Chung and F. Goertz, Third-generation-philic
hidden naturalness, Phys. Rev. D110
(2024) 115019.; DOI:10.1103/PhysRevD.110.115019
101.M. Agostini et al., An improved limit on the
neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys.
J. C84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
102.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial
Compositeness, PoSEPS-HEP2023 (2024)
369.; DOI:10.22323/1.449.0369
103.D. Basilico et al., Optimized \(\alpha\)/\(\beta\) pulse shape discrimination
in Borexino, Phys. Rev. D109 (2024)
112014.; DOI:10.1103/PhysRevD.109.112014
104.M. Mukhopadhyay and M. Sen, On probing
turbulence in core-collapse supernovae in upcoming neutrino
detectors, JCAP03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
105.M. Shaposhnikov and A. Y. Smirnov, Sterile
neutrino dark matter, matter-antimatter separation, and the QCD phase
transition, Phys. Rev. D110 (2024)
063520.; DOI:10.1103/PhysRevD.110.063520
106.E. Aprile et al., Design and performance of the
field cage for the XENONnT experiment, Eur. Phys. J. C84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
107.A. Ahmed, M. Lindner and P. Saake, Conformal
little Higgs models, Phys. Rev. D109
(2024) 075041.; DOI:10.1103/PhysRevD.109.075041
108.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring naturalness via conjugate fermions,
Phys. Rev. D110 (2024) 115023.; DOI:10.1103/PhysRevD.110.115023
109.Y. Chung, Naturalness-motivated composite Higgs
model for generating the top Yukawa coupling, Phys. Rev.
D109 (2024) 095021.; DOI:10.1103/PhysRevD.109.095021
110.F. Goertz and Á. Pastor-Gutiérrez, Unveiling
new phases of the Standard Model Higgs potential, Eur. Phys.
J. C85 (2025) 116.; DOI:10.1140/epjc/s10052-025-13842-6
111.H. Bonet et al., Pulse shape discrimination for
the CONUS experiment in the keV and sub-keV regime, Eur.
Phys. J. C84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
112.M. Agostini et al., Final Results of GERDA on
the Two-Neutrino Double-\(\beta\) Decay Half-Life of
Ge76, Phys. Rev. Lett.131 (2023)
142501.; DOI:10.1103/PhysRevLett.131.142501
113.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry,
Phys. Rev. D109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
114.J. Kubo and T. Kugo, Unitarity violation in
field theories of LeeWick’s complex
ghost, PTEP2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
115.S. Jana and S. Klett, Muonic force and
nonstandard neutrino interactions at muon colliders, Phys.
Rev. D110 (2024) 095011.; DOI:10.1103/PhysRevD.110.095011
116.Y. F. Perez-Gonzalez and M. Sen, From Dirac to
Majorana: The cosmic neutrino background capture rate in the minimally
extended Standard Model, Phys. Rev. D109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
117.A. de Gouvêa, J. Weill and M. Sen, Solar
neutrinos and \(\nu\)2
visible decays to \(\nu\)1, Phys. Rev. D109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
118.M. Agostini et al., Search for tri-nucleon
decays of \(^{76}\)Ge in GERDA,
Eur. Phys. J. C83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
119.M. P. Bento, J. P. Silva and A. Trautner, The
basis invariant flavor puzzle, JHEP01
(2024) 024.; DOI:10.1007/JHEP01(2024)024
120.J. Herms, S. Jana, V. P. K. and S. Saad, Light
neutrinophilic dark matter from a scotogenic model, Phys.
Lett. B845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
121.G. Huang, Discovery potential of the Glashow
resonance in an air shower neutrino telescope*, Chin. Phys.
C48 (2024) 085107.; DOI:10.1088/1674-1137/ad4c5c
122.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial
compositeness, Phys. Rev. D108 (2023)
095019.; DOI:10.1103/PhysRevD.108.095019
123.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining
LHAASO anomalous \(\gamma\) event, JCAP11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
124.M. D. Astros, S. Fabian and F. Goertz, Minimal
Inert Doublet benchmark for dark matter and the baryon asymmetry,
JCAP02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
125.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Signals of merging supermassive black holes in pulsar
timing arrays, Phys. Rev. Res.7 (2025)
013196.; DOI:10.1103/PhysRevResearch.7.013196
126.M. Adrover et al., Cosmogenic background
simulations for neutrinoless double beta decay with the DARWIN
observatory at various underground sites, Eur. Phys. J.
C84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
127.M. Sen and A. Y. Smirnov, Refractive neutrino
masses, ultralight dark matter and cosmology, JCAP01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
128.E. Aprile et al., Search for events in XENON1T
associated with gravitational waves, Phys. Rev. D108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
129.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C.
Tasillo, Does NANOGrav observe a dark sector phase
transition?, JCAP11 (2023) 053.;
DOI:10.1088/1475-7516/2023/11/053
130.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic
recoil calibration of the XENONnT detector, JINST18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
131.L. Angel et al., Toward a search for axionlike
particles at the LNLS, Phys. Rev. D108
(2023) 055030.; DOI:10.1103/PhysRevD.108.055030
132.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari,
Composite dark matter and neutrino masses from a
light hidden sector, JHEP07 (2024)
260.; DOI:10.1007/JHEP07(2024)260
133.A. Bally, Y. Chung and F. Goertz, The Hierarchy
Problem and the Top Yukawa, 57th
Rencontres de Moriond on QCD and High Energy Interactions.;
Retrieved from https://arxiv.org/abs/2304.11891
134.E. Aprile et al., Searching for Heavy Dark
Matter near the Planck Mass with XENON1T, Phys. Rev.
Lett.130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
135.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe
A Python tool for neutrinoless double beta decay,
JHEP08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
136.E. Aprile et al., Detector signal
characterization with a Bayesian network in XENONnT, Phys.
Rev. D108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
137.E. Aprile et al., First Dark Matter Search with
Nuclear Recoils from the XENONnT Experiment, Phys. Rev.
Lett.131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
138.S. Jana and Y. Porto, Resonances of Supernova
Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett.132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
139.G. Huang, M. Lindner and N. Volmer, Inferring
astrophysical neutrino sources from the Glashow resonance,
JHEP11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
140.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T.
Marrodán Undagoitia, First time-resolved
measurement of infrared scintillation light in gaseous xenon,
Eur. Phys. J. C83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
142.A. Trautner, Modular Flavor Symmetries and CP
from the top down, PoSDISCRETE2022
(2024) 013.; DOI:10.22323/1.431.0013
143.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter
model, PoSDISCRETE2022 (2024) 076.;
DOI:10.22323/1.431.0076
144.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino
mass scales, JHEP06 (2023) 078.;
DOI:10.1007/JHEP06(2023)078
145.N. Ackermann et al., Monte Carlo simulation of
background components in low level Germanium spectrometry,
Appl. Radiat. Isot.194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
146.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector
for the CONUS experiment, Appl. Radiat. Isot.194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
147.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F.
Meggendorfer and S. Skambraks, Operation of the
Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware
Perspective, J. Phys. Conf. Ser.2438
(2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
148.S. Jana, Y. P. Porto-Silva and M. Sen, Signal
of neutrino magnetic moments from a galactic supernova burst at upcoming
detectors, PoSICHEP2022 (2022) 597.;
DOI:10.22323/1.414.0597
149.E. Aprile et al., The triggerless data
acquisition system of the XENONnT experiment, JINST18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
150.S. Blasi, J. Bollig and F. Goertz, Holographic
composite Higgs model building: soft breaking, maximal symmetry, and the
Higgs mass, JHEP07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
151.I. Bischer, C. Döring and A. Trautner, Telling
compositeness at a distance with outer automorphisms and CP,
J. Phys. A56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
152.M. Agostini et al., Liquid argon light
collection and veto modeling in GERDA Phase II, Eur. Phys. J.
C83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
153.A. Bally, Y. Chung and F. Goertz, Hierarchy
problem and the top Yukawa coupling: An alternative to top partner
solutions, Phys. Rev. D108 (2023)
055008.; DOI:10.1103/PhysRevD.108.055008
154.T. Rink and M. Sen, Constraints on pseudo-Dirac
neutrinos using high-energy neutrinos from NGC 1068, Phys.
Lett. B851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
155.E. Aprile et al., Low-energy calibration of
XENON1T with an internal \(^{{\textbf
{37}}}\)Ar source, Eur. Phys. J. C83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
156.A. Y. Smirnov and A. Trautner, GRB 221009A
Gamma Rays from the Radiative Decay of Heavy Neutrinos?,
Phys. Rev. Lett.131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
157.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with
Gauged \(U(1)_{L(-R)}\) (2022).;
Retrieved from https://arxiv.org/abs/2210.13402
158.T. Cheng, M. Lindner and M. Sen, Implications
of a matter-antimatter mass asymmetry in Penning-trap
experiments, Phys. Lett. B844 (2023)
138068.; DOI:10.1016/j.physletb.2023.138068
159.H. Almazán et al., STEREO neutrino spectrum of
\(^{235}\)U fission rejects sterile
neutrino hypothesis, Nature613 (2023)
257–261.; DOI:10.1038/s41586-022-05568-2
160.E. Aprile et al., Effective field theory and
inelastic dark matter results from XENON1T, Phys. Rev. D109 (2024) 112017.; DOI:10.1103/PhysRevD.109.112017
161.E. Aprile et al., An approximate likelihood for
nuclear recoil searches with XENON1T data, Eur. Phys. J.
C82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
162.E. Akhmedov and A. Y. Smirnov, Reply to
”Comment on ”Damping of neutrino oscillations, decoherence and the
lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
163.J. Herms, S. Jana, V. P. K. and S. Saad, Light
thermal relics enabled by a second Higgs, SciPost Phys.
Proc.12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
164.I. Oda and P. Saake, BRST formalism of Weyl
conformal gravity, Phys. Rev. D106
(2022) 106007.; DOI:10.1103/PhysRevD.106.106007
165.A. de Gouvêa et al., Theory of Neutrino Physics
– Snowmass TF11 (aka NF08) Topical Group Report (2022).;
Retrieved from https://arxiv.org/abs/2209.07983
166.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, Moscow Univ. Phys. Bull.77 (2022) 371–374.; DOI:10.3103/S0027134922020461
167.M. Agostini et al., Search for exotic physics
in double-\(\beta\) decays
with GERDA Phase II, JCAP12 (2022)
012.; DOI:10.1088/1475-7516/2022/12/012
168.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable
models and flavor, JHEP04 (2023) 012.;
DOI:10.1007/JHEP04(2023)012
169.J. Kubo and J. Kuntz, Spontaneous conformal
symmetry breaking and quantum quadratic gravity, Phys. Rev.
D106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
170.A. N. Khan, Extra dimensions with light and
heavy neutral leptons: an application to CE\(\nu\)NS, JHEP01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
171.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of
heavy-ion collisions and their impact on particle correlations,
Phys. Rev. C108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
172.E. Akhmedov and A. Y. Smirnov, Damping of
neutrino oscillations, decoherence and the lengths of neutrino wave
packets, JHEP11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
173.A. N. Khan, Light new physics and neutrino
electromagnetic interactions in XENONnT, Phys. Lett. B837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
174.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts,
JCAP11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
175.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of
sterile neutrino dark matter via neutrino self-interactions,
JCAP11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
176.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
boson induced reheating and ultraviolet frozen-in dark matter,
JHEP02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
177.H. Almazan et al., Improved FIFRELIN
de-excitation model for neutrino applications, Eur. Phys. J.
A59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
178.E. Aprile et al., Search for New Physics in
Electronic Recoil Data from XENONnT, Phys. Rev. Lett.129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
180.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The first string-derived eclectic
flavor model with realistic phenomenology, JHEP09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
181.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum
gravity to dynamical chiral symmetry breaking, SciPost
Phys.15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
183.M. Aker et al., Search for Lorentz-invariance
violation with the first KATRIN data, Phys. Rev. D107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
184.M. Aker et al., Search for keV-scale sterile
neutrinos with the first KATRIN data, Eur. Phys. J. C83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
185.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting
bounds on neutrino magnetic moments and solar magnetic field,
JHEP10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
186.S. Richers and M. Sen, Fast Flavor Transformations, In
I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).;
DOI:10.1007/978-981-15-8818-1_125-1
187.J. Berger et al., Snowmass 2021 White Paper:
Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino
Experiments, Snowmass 2021.; Retrieved from
https://arxiv.org/abs/2207.02882
188.G. Huang, Double and multiple bangs at tau
neutrino telescopes, Eur. Phys. J. C82
(2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
189.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann,
Search for leptophilic dark matter at the
LHeC, J. Phys. G50 (2023) 065001.;
DOI:10.1088/1361-6471/accc4a
190.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model,
Mod. Phys. Lett. A38 (2023).; DOI:10.1142/S0217732323500499
191.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman
and K. Schmidt-Hoberg, Minimal sterile neutrino
dark matter, Phys. Rev. D107 (2023)
L071702.; DOI:10.1103/PhysRevD.107.L071702
192.G. Huang and N. Nath, Inference of neutrino
nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with
inverted mass ordering, Eur. Phys. J. C82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
193.S. Jana, Horizontal Symmetry and Large Neutrino
Magnetic Moments, PoSDISCRETE2020-2021
(2022) 037.; DOI:10.22323/1.405.0037
194.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S.
de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian
synchrotron, Eur. Phys. J. C83 (2023)
514.; DOI:10.1140/epjc/s10052-023-11603-x
195.A. Schneider et al., Direct measurement of the
\(^{3}\)He\(^{+}\) magnetic moments,
Nature606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
196.F. Jörg, G. Eurin and H. Simgen, Production and
characterization of a 222Rn-emanating stainless steel source,
Appl. Radiat. Isot.194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
197.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale
detectors, JINST17 (2022) P11025.;
DOI:10.1088/1748-0221/17/11/P11025
198.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark
condensation, SciPost Phys.14 (2023)
076.; DOI:10.21468/SciPostPhys.14.4.076
199.Á. Pastor-Gutiérrez and M. Yamada, UV
completion of extradimensional Yang-Mills theory for Gauge-Higgs
unification, SciPost Phys.15 (2023)
101.; DOI:10.21468/SciPostPhys.15.3.101
200.M. Sen, Constraining pseudo-Dirac neutrinos
from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
201.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the
sterile neutrino portal, Phys. Rev. D106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
202.T. Rink, Coherent elastic neutrino-nucleus
scattering – First constraints/observations and future potential,
56th Rencontres de Moriond on Electroweak
Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
203.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of
mu-tau neutrinos, Phys. Rev. D106
(2022) 083011.; DOI:10.1103/PhysRevD.106.083011
204.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT
Experiments, Phys. Rev. C106 (2022)
024328.; DOI:10.1103/PhysRevC.106.024328
205.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen,
Diffuse supernova neutrino background as a probe of
late-time neutrino mass generation, Phys. Rev. D106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
206.S. Weber, Quantum Field Theory and
Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand
Unification (Master’s thesis). Heidelberg U.
207.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability
from flavour symmetry, JHEP10 (2022)
080.; DOI:10.1007/JHEP10(2022)080
208.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the
cosmic neutrino background, Phys. Rev. D106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
209.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of
neutrino oscillations, JHEP08 (2022)
111.; DOI:10.1007/JHEP08(2022)111
210.L. Gráf, M. Lindner and O. Scholer, Unraveling
the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms,
Phys. Rev. D106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
211.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes
via the dipole portal, Phys. Lett. B840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
212.A. Trautner, Anatomy of a top-down approach to
discrete and modular flavor symmetry, PoSDISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
213.K. S. Babu, S. Jana and V. P. K., Correlating
W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model,
Phys. Rev. Lett.129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
214.J. Hakenmüller and W. Maneschg, Identification
of radiopure tungsten for low background applications, J.
Phys. G49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
215.A. de Gouvêa, M. Sen and J. Weill, Visible
neutrino decays and the impact of the daughter-neutrino mass,
Phys. Rev. D106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
216.L. Althueser et al., GPU-based optical
simulation of the DARWIN detector, JINST17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
217.L. A. Ruso et al., Theoretical tools for
neutrino scattering: interplay between lattice QCD, EFTs, nuclear
physics, phenomenology, and neutrino event generators, J.
Phys. G52 (2025) 043001.; DOI:10.1088/1361-6471/adae26
218.A. N. Khan, \(\sin^2\theta_W\) and neutrino
electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching
factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
219.M. Aker et al., KATRIN: status and prospects
for the neutrino mass and beyond, J. Phys. G49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
220.N. Bartosik et al., Simulated Detector
Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
221.D. Stratakis et al., A Muon Collider Facility
for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
222.S. Jindariani et al., Promising Technologies
and R&D Directions for the Future Muon Collider
Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
223.C. Awe et al., Particle physics using reactor
antineutrinos, (O. A. Akindele et al., Eds.)J. Phys. G51 (2024) 080501.; DOI:10.1088/1361-6471/ad3a84
226.M. Abdullah et al., Coherent elastic
neutrino-nucleus scattering: Terrestrial and astrophysical
applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
227.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter,
Phys. Rev. Lett.129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
228.R. Mammen Abraham et al., Tau neutrinos in the
next decade: from GeV to EeV, J. Phys. G49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
229.J. L. Feng et al., The Forward Physics Facility
at the High-Luminosity LHC, J. Phys. G50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
230.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\)
Anomaly with Neutrino Magnetic Moments, PoSEPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
231.J. Aalbers et al., A next-generation liquid
xenon observatory for dark matter and neutrino physics, J.
Phys. G50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
232.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino
magnetic moments, JCAP09 (2022) 079.;
DOI:10.1088/1475-7516/2022/09/079
233.J. M. Berryman et al., Neutrino
self-interactions: A white paper, Phys. Dark Univ.42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
234.G. Busoni, Capture of DM in Compact
Stars, PoSPANIC2021 (2022) 046.;
DOI:10.22323/1.380.0046
235.M. Agostini et al., Pulse shape analysis in
Gerda Phase II, Eur. Phys. J. C82
(2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
236.J. Kubo and J. Kuntz, Analysis of unitarity in
conformal quantum gravity, Class. Quant. Grav.39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
237.K. S. Babu, P. S. B. Dev and S. Jana, Probing
neutrino mass models through resonances at neutrino telescopes,
Int. J. Mod. Phys. A37 (2022) 2230003.;
DOI:10.1142/S0217751X22300034
238.M. Aker et al., New Constraint on the Local
Relic Neutrino Background Overdensity with the First KATRIN Data
Runs, Phys. Rev. Lett.129 (2022)
011806.; DOI:10.1103/PhysRevLett.129.011806
239.A. Bonhomme et al., Direct measurement of the
ionization quenching factor of nuclear recoils in germanium in the keV
energy range, Eur. Phys. J. C82 (2022)
815.; DOI:10.1140/epjc/s10052-022-10768-1
240.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
Boson-Induced Reheating and Dark Matter Production,
Symmetry14 (2022) 306.; DOI:10.3390/sym14020306
241.H. de Kerret et al., The Double Chooz
antineutrino detectors, Eur. Phys. J. C82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
242.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoSEPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
243.H. Bonet et al., First upper limits on neutrino
electromagnetic properties from the CONUS experiment, Eur.
Phys. J. C82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
244.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles
and electrons in liquid xenon, Rev. Sci. Instrum.93 (2022) 113302.; DOI:10.1063/5.0087216
245.M. Aker et al., Improved eV-scale
sterile-neutrino constraints from the second KATRIN measurement
campaign, Phys. Rev. D105 (2022)
072004.; DOI:10.1103/PhysRevD.105.072004
246.A. N. Khan, Neutrino millicharge and other
electromagnetic interactions with COHERENT-2021 data, Nucl.
Phys. B986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
248.A. Yu. Smirnov and X.-J. Xu, Neutrino bound
states and bound systems, JHEP08
(2022) 170.; DOI:10.1007/JHEP08(2022)170
249.L. Šerkšnytė et al., Reevaluation of the cosmic
antideuteron flux from cosmic-ray interactions and from exotic
sources, Phys. Rev. D105 (2022)
083021.; DOI:10.1103/PhysRevD.105.083021