Abteilung für Teilchen- & Astroteilchen-Physik
 
 

Publikationen der Abteilung in den letzten drei Jahren

1.E. Aprile et al., The XENONnT Dark Matter Experiment (2024).; Retrieved from https://arxiv.org/abs/2402.10446
2.S. Jana, Electromagnetic Properties of Neutrinos, PoS TAUP2023 (2024) 184.; DOI:10.22323/1.441.0184
3.T. Cheng, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, PoS DISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
4.R. Deckert et al., The LEGEND-200 Liquid Argon Instrumentation: From a simple veto to a full-fledged detector, PoS TAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
5.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia, Investigating the slow component of the infrared scintillation time response in gaseous xenon, JINST 19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
6.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and Implications for LEGEND-1000, PoS TAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
7.M. Agostini et al., An improved limit on the neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys. J. C 84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
8.D. Basilico et al., Novel techniques for alpha/beta pulse shape discrimination in Borexino (2023).; Retrieved from https://arxiv.org/abs/2310.11826
9.M. Mukhopadhyay and M. Sen, On probing turbulence in core-collapse supernovae in upcoming neutrino detectors, JCAP 03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
10.M. Shaposhnikov and A. Y. Smirnov, Sterile Neutrino Dark Matter, Matter-Antimatter Separation, and the QCD Phase Transition (2023).; Retrieved from https://arxiv.org/abs/2309.13376
11.E. Aprile et al., Design and performance of the field cage for the XENONnT experiment, Eur. Phys. J. C 84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
12.A. Ahmed, M. Lindner and P. Saake, Conformal Little Higgs (2023).; Retrieved from https://arxiv.org/abs/2309.07845
13.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring Naturalness via Conjugate Fermions (2023).; Retrieved from https://arxiv.org/abs/2309.05698
14.Y. Chung, A Naturalness motivated Top Yukawa Model for the Composite Higgs (2023).; Retrieved from https://arxiv.org/abs/2309.00072
15.F. Goertz and Á. Pastor-Gutiérrez, New Phases of the Standard Model Higgs Potential (2023).; Retrieved from https://arxiv.org/abs/2308.13594
16.H. Bonet et al., Pulse shape discrimination for the CONUS experiment in the keV and sub-keV regime, Eur. Phys. J. C 84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
17.M. Agostini et al., Final Results of GERDA on the Two-Neutrino Double-\(\beta\) Decay Half-Life of Ge76, Phys. Rev. Lett. 131 (2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
18.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry, Phys. Rev. D 109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
19.J. Kubo and T. Kugo, Unitarity violation in field theories of LeeWick’s complex ghost, PTEP 2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
20.S. Jana and S. Klett, Muonic Force and Neutrino Non-Standard Interactions at Muon Colliders (2023).; Retrieved from https://arxiv.org/abs/2308.07375
21.Y. F. Perez-Gonzalez and M. Sen, From Dirac to Majorana: The cosmic neutrino background capture rate in the minimally extended Standard Model, Phys. Rev. D 109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
22.A. de Gouvêa, J. Weill and M. Sen, Solar neutrinos and \(\nu\)2 visible decays to \(\nu\)1, Phys. Rev. D 109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
23.M. Agostini et al., Search for tri-nucleon decays of \(^{76}\)Ge in GERDA, Eur. Phys. J. C 83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
24.M. P. Bento, J. P. Silva and A. Trautner, The basis invariant flavor puzzle, JHEP 01 (2024) 024.; DOI:10.1007/JHEP01(2024)024
25.J. Herms, S. Jana, V. P. K. and S. Saad, Light neutrinophilic dark matter from a scotogenic model, Phys. Lett. B 845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
26.G. Huang, Discovery potential of the Glashow resonance in an air shower neutrino telescope (2023).; Retrieved from https://arxiv.org/abs/2307.12153
27.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial compositeness, Phys. Rev. D 108 (2023) 095019.; DOI:10.1103/PhysRevD.108.095019
28.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous \(\gamma\) event, JCAP 11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
29.M. D. Astros, S. Fabian and F. Goertz, Minimal Inert Doublet benchmark for dark matter and the baryon asymmetry, JCAP 02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
30.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Do pulsar timing arrays observe merging primordial black holes? (2023).; Retrieved from https://arxiv.org/abs/2306.17836
31.M. Adrover et al., Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites, Eur. Phys. J. C 84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
32.M. Sen and A. Y. Smirnov, Refractive neutrino masses, ultralight dark matter and cosmology, JCAP 01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
33.E. Aprile et al., Search for events in XENON1T associated with gravitational waves, Phys. Rev. D 108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
34.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053.; DOI:10.1088/1475-7516/2023/11/053
35.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic recoil calibration of the XENONnT detector, JINST 18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
36.L. Angel et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 055030.; DOI:10.1103/PhysRevD.108.055030
37.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari, Composite Dark Matter and Neutrino Masses from a Light Hidden Sector (2023).; Retrieved from https://arxiv.org/abs/2305.09719
38.A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa, 57th Rencontres de Moriond on QCD and High Energy Interactions.; Retrieved from https://arxiv.org/abs/2304.11891
39.E. Aprile et al., Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Phys. Rev. Lett. 130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
40.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless double beta decay, JHEP 08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
41.E. Aprile et al., Detector signal characterization with a Bayesian network in XENONnT, Phys. Rev. D 108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
42.E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
43.S. Jana and Y. Porto, Resonances of Supernova Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett. 132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
44.G. Huang, M. Lindner and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
45.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán Undagoitia, First time-resolved measurement of infrared scintillation light in gaseous xenon, Eur. Phys. J. C 83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
46.C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83 (2023) 864.; DOI:10.1140/epjc/s10052-023-11889-x
47.A. Trautner, Modular Flavor Symmetries and CP from the top down, PoS DISCRETE2022 (2024) 013.; DOI:10.22323/1.431.0013
48.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter model, PoS DISCRETE2022 (2024) 076.; DOI:10.22323/1.431.0076
49.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino mass scales, JHEP 06 (2023) 078.; DOI:10.1007/JHEP06(2023)078
50.N. Ackermann et al., Monte Carlo simulation of background components in low level Germanium spectrometry, Appl. Radiat. Isot. 194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
51.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector for the CONUS experiment, Appl. Radiat. Isot. 194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
52.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F. Meggendorfer and S. Skambraks, Operation of the Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware Perspective, J. Phys. Conf. Ser. 2438 (2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
53.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of neutrino magnetic moments from a galactic supernova burst at upcoming detectors, PoS ICHEP2022 (2022) 597.; DOI:10.22323/1.414.0597
54.E. Aprile et al., The triggerless data acquisition system of the XENONnT experiment, JINST 18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
55.S. Blasi, J. Bollig and F. Goertz, Holographic composite Higgs model building: soft breaking, maximal symmetry, and the Higgs mass, JHEP 07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
56.I. Bischer, C. Döring and A. Trautner, Telling compositeness at a distance with outer automorphisms and CP, J. Phys. A 56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
57.M. Agostini et al., Liquid argon light collection and veto modeling in GERDA Phase II, Eur. Phys. J. C 83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
58.A. Bally, Y. Chung and F. Goertz, Hierarchy problem and the top Yukawa coupling: An alternative to top partner solutions, Phys. Rev. D 108 (2023) 055008.; DOI:10.1103/PhysRevD.108.055008
59.T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, Phys. Lett. B 851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
60.E. Aprile et al., Low-energy calibration of XENON1T with an internal \(^{{\textbf {37}}}\)Ar source, Eur. Phys. J. C 83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
61.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev. Lett. 131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
62.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with Gauged \(U(1)_{L(-R)}\) (2022).; Retrieved from https://arxiv.org/abs/2210.13402
63.T. Cheng, M. Lindner and M. Sen, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, Phys. Lett. B 844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
64.H. Almazán et al., STEREO neutrino spectrum of \(^{235}\)U fission rejects sterile neutrino hypothesis, Nature 613 (2023) 257–261.; DOI:10.1038/s41586-022-05568-2
65.E. Aprile et al., Effective Field Theory and Inelastic Dark Matter Results from XENON1T (2022).; Retrieved from https://arxiv.org/abs/2210.07591
66.E. Aprile et al., An approximate likelihood for nuclear recoil searches with XENON1T data, Eur. Phys. J. C 82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
67.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment on ”Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
68.J. Herms, S. Jana, V. P. K. and S. Saad, Light thermal relics enabled by a second Higgs, SciPost Phys. Proc. 12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
69.I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106 (2022) 106007.; DOI:10.1103/PhysRevD.106.106007
70.A. de Gouvêa et al., Theory of Neutrino Physics – Snowmass TF11 (aka NF08) Topical Group Report (2022).; Retrieved from https://arxiv.org/abs/2209.07983
71.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, Moscow Univ. Phys. Bull. 77 (2022) 371–374.; DOI:10.3103/S0027134922020461
72.M. Agostini et al., Search for exotic physics in double-\(\beta\) decays with GERDA Phase II, JCAP 12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
73.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable models and flavor, JHEP 04 (2023) 012.; DOI:10.1007/JHEP04(2023)012
74.J. Kubo and J. Kuntz, Spontaneous conformal symmetry breaking and quantum quadratic gravity, Phys. Rev. D 106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
75.A. N. Khan, Extra dimensions with light and heavy neutral leptons: an application to CE\(\nu\)NS, JHEP 01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
76.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of heavy-ion collisions and their impact on particle correlations, Phys. Rev. C 108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
77.E. Akhmedov and A. Y. Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, JHEP 11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
78.A. N. Khan, Light new physics and neutrino electromagnetic interactions in XENONnT, Phys. Lett. B 837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
79.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts, JCAP 11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
80.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of sterile neutrino dark matter via neutrino self-interactions, JCAP 11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
81.A. Ahmed, B. Grzadkowski and A. Socha, Higgs boson induced reheating and ultraviolet frozen-in dark matter, JHEP 02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
82.H. Almazan et al., Improved FIFRELIN de-excitation model for neutrino applications, Eur. Phys. J. A 59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
83.E. Aprile et al., Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
84.C. Jaramillo, Reviving keV sterile neutrino dark matter, JCAP 10 (2022) 093.; DOI:10.1088/1475-7516/2022/10/093
85.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The first string-derived eclectic flavor model with realistic phenomenology, JHEP 09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
86.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking, SciPost Phys. 15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
87.B. Batell et al., Dark Sector Studies with Neutrino Beams, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.06898
88.M. Aker et al., Search for Lorentz-invariance violation with the first KATRIN data, Phys. Rev. D 107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
89.M. Aker et al., Search for keV-scale sterile neutrinos with the first KATRIN data, Eur. Phys. J. C 83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
90.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting bounds on neutrino magnetic moments and solar magnetic field, JHEP 10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
91.S. Richers and M. Sen, Fast Flavor Transformations, In I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).; DOI:10.1007/978-981-15-8818-1_125-1
92.J. Berger et al., Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.02882
93.G. Huang, Double and multiple bangs at tau neutrino telescopes, Eur. Phys. J. C 82 (2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
94.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, Search for leptophilic dark matter at the LHeC, J. Phys. G 50 (2023) 065001.; DOI:10.1088/1361-6471/accc4a
95.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model, Mod. Phys. Lett. A 38 (2023).; DOI:10.1142/S0217732323500499
96.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman and K. Schmidt-Hoberg, Minimal sterile neutrino dark matter, Phys. Rev. D 107 (2023) L071702.; DOI:10.1103/PhysRevD.107.L071702
97.G. Huang and N. Nath, Inference of neutrino nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with inverted mass ordering, Eur. Phys. J. C 82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
98.S. Jana, Horizontal Symmetry and Large Neutrino Magnetic Moments, PoS DISCRETE2020-2021 (2022) 037.; DOI:10.22323/1.405.0037
99.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S. de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian synchrotron, Eur. Phys. J. C 83 (2023) 514.; DOI:10.1140/epjc/s10052-023-11603-x
100.A. Schneider et al., Direct measurement of the \(^{3}\)He\(^{+}\) magnetic moments, Nature 606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
101.F. Jörg, G. Eurin and H. Simgen, Production and characterization of a 222Rn-emanating stainless steel source, Appl. Radiat. Isot. 194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
102.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale detectors, JINST 17 (2022) P11025.; DOI:10.1088/1748-0221/17/11/P11025
103.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark condensation, SciPost Phys. 14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
104.Á. Pastor-Gutiérrez and M. Yamada, UV completion of extradimensional Yang-Mills theory for Gauge-Higgs unification, SciPost Phys. 15 (2023) 101.; DOI:10.21468/SciPostPhys.15.3.101
105.M. Sen, Constraining pseudo-Dirac neutrinos from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
106.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Phys. Rev. D 106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
107.T. Rink, Coherent elastic neutrino-nucleus scattering – First constraints/observations and future potential, 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
108.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos, Phys. Rev. D 106 (2022) 083011.; DOI:10.1103/PhysRevD.106.083011
109.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT Experiments, Phys. Rev. C 106 (2022) 024328.; DOI:10.1103/PhysRevC.106.024328
110.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, Diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Phys. Rev. D 106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
111.S. Weber, Quantum Field Theory and Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand Unification (Master’s thesis). Heidelberg U.
112.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability from flavour symmetry, JHEP 10 (2022) 080.; DOI:10.1007/JHEP10(2022)080
113.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the cosmic neutrino background, Phys. Rev. D 106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
114.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111.; DOI:10.1007/JHEP08(2022)111
115.L. Gráf, M. Lindner and O. Scholer, Unraveling the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys. Rev. D 106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
116.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes via the dipole portal, Phys. Lett. B 840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
117.A. Trautner, Anatomy of a top-down approach to discrete and modular flavor symmetry, PoS DISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
118.K. S. Babu, S. Jana and V. P. K., Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
119.J. Hakenmüller and W. Maneschg, Identification of radiopure tungsten for low background applications, J. Phys. G 49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
120.A. de Gouvêa, M. Sen and J. Weill, Visible neutrino decays and the impact of the daughter-neutrino mass, Phys. Rev. D 106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
121.L. Althueser et al., GPU-based optical simulation of the DARWIN detector, JINST 17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
122.A. N. Khan, \(\sin^2\theta_W\) and neutrino electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
123.M. Aker et al., KATRIN: status and prospects for the neutrino mass and beyond, J. Phys. G 49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
124.N. Bartosik et al., Simulated Detector Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
125.D. Stratakis et al., A Muon Collider Facility for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
126.S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
127.C. Awe et al., High Energy Physics Opportunities Using Reactor Antineutrinos (2022).; Retrieved from https://arxiv.org/abs/2203.07214
128.C. Aime et al., Muon Collider Physics Summary (2022).; Retrieved from https://arxiv.org/abs/2203.07256
129.J. de Blas et al., The physics case of a 3 TeV muon collider stage (2022).; Retrieved from https://arxiv.org/abs/2203.07261
130.M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
131.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
132.R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
133.J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, J. Phys. G 50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
134.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\) Anomaly with Neutrino Magnetic Moments, PoS EPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
135.J. Aalbers et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G 50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
136.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino magnetic moments, JCAP 09 (2022) 079.; DOI:10.1088/1475-7516/2022/09/079
137.J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
138.G. Busoni, Capture of DM in Compact Stars, PoS PANIC2021 (2022) 046.; DOI:10.22323/1.380.0046
139.M. Agostini et al., Pulse shape analysis in Gerda Phase II, Eur. Phys. J. C 82 (2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
140.J. Kubo and J. Kuntz, Analysis of unitarity in conformal quantum gravity, Class. Quant. Grav. 39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
141.K. S. Babu, P. S. B. Dev and S. Jana, Probing neutrino mass models through resonances at neutrino telescopes, Int. J. Mod. Phys. A 37 (2022) 2230003.; DOI:10.1142/S0217751X22300034
142.M. Aker et al., New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, Phys. Rev. Lett. 129 (2022) 011806.; DOI:10.1103/PhysRevLett.129.011806
143.A. Bonhomme et al., Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the keV energy range, Eur. Phys. J. C 82 (2022) 815.; DOI:10.1140/epjc/s10052-022-10768-1
144.A. Ahmed, B. Grzadkowski and A. Socha, Higgs Boson-Induced Reheating and Dark Matter Production, Symmetry 14 (2022) 306.; DOI:10.3390/sym14020306
145.H. de Kerret et al., The Double Chooz antineutrino detectors, Eur. Phys. J. C 82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
146.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoS EPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
147.H. Bonet et al., First upper limits on neutrino electromagnetic properties from the CONUS experiment, Eur. Phys. J. C 82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
148.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles and electrons in liquid xenon, Rev. Sci. Instrum. 93 (2022) 113302.; DOI:10.1063/5.0087216
149.M. Aker et al., Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign, Phys. Rev. D 105 (2022) 072004.; DOI:10.1103/PhysRevD.105.072004
150.A. N. Khan, Neutrino millicharge and other electromagnetic interactions with COHERENT-2021 data, Nucl. Phys. B 986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
151.I. Brivio et al., Truncation, validity, uncertainties (2022).; Retrieved from https://arxiv.org/abs/2201.04974
152.A. Yu. Smirnov and X.-J. Xu, Neutrino bound states and bound systems, JHEP 08 (2022) 170.; DOI:10.1007/JHEP08(2022)170
153.L. Šerkšnytė et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105 (2022) 083021.; DOI:10.1103/PhysRevD.105.083021
154.G. Busoni, Capture of Dark Matter in Neutron Stars, Moscow Univ. Phys. Bull. 77 (2022) 301–305.; DOI:10.3103/S0027134922020205
155.A. Ahmed and S. Najjari, Ultraviolet freeze-in dark matter through the dilaton portal, Phys. Rev. D 107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
156.K. S. Babu, S. Jana and A. Thapa, Vector boson dark matter from trinification, JHEP 02 (2022) 051.; DOI:10.1007/JHEP02(2022)051
157.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang, Searching for new physics from SMEFT and leptoquarks at the P2 experiment, Phys. Rev. D 105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
158.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model with minimal Higgs sector, JCAP 05 (2022) 003.; DOI:10.1088/1475-7516/2022/05/003
159.E. Aprile et al., Emission of single and few electrons in XENON1T and limits on light dark matter, Phys. Rev. D 106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
160.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs: singlet-assisted baryogenesis w/o topological defects, JHEP 10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
161.E. Aprile et al., Application and modeling of an online distillation method to reduce krypton and argon in XENON1T, PTEP 2022 (2022) 053H01.; DOI:10.1093/ptep/ptac074
162.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino telescopes, JCAP 02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
163.S. Jana, S. Klett and M. Lindner, Flavor seesaw mechanism, Phys. Rev. D 105 (2022) 115015.; DOI:10.1103/PhysRevD.105.115015
164.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Top-down anatomy of flavor symmetry breakdown, Phys. Rev. D 105 (2022) 055018.; DOI:10.1103/PhysRevD.105.055018
165.E. Aprile et al., Material radiopurity control in the XENONnT experiment, Eur. Phys. J. C 82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
166.F. Goertz, Lepton Flavor in Composite Higgs Models, PoS PANIC2021 (2022) 149.; DOI:10.22323/1.380.0149
167.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of nonstandard neutrino self-interactions: An EFT approach, Phys. Rev. D 105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
168.G. Huang and N. Nath, Neutrino meets ultralight dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology, JCAP 05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
169.M. Sajjad Athar et al., Status and perspectives of neutrino physics, Prog. Part. Nucl. Phys. 124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
170.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on reheating and dark matter production, Phys. Lett. B 831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
171.H. Almazán et al., Searching for Hidden Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO Experiment, Phys. Rev. Lett. 128 (2022) 061801.; DOI:10.1103/PhysRevLett.128.061801
172.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar extensions, JHEP 05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
173.M. Sen, Sterile neutrino dark matter, neutrino secret self-interactions and extra radiation, J. Phys. Conf. Ser. 2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
174.G. Huang and W. Rodejohann, Tritium beta decay with modified neutrino dispersion relations: KATRIN in the dark sea, Nucl. Phys. B 993 (2023) 116262.; DOI:10.1016/j.nuclphysb.2023.116262
175.H. Bonet et al., Novel constraints on neutrino physics beyond the standard model from the CONUS experiment, JHEP 05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
176.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their breaking, PoS EPS-HEP2021 (2022) 698.; DOI:10.22323/1.398.0698
177.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and N. Rupp, Characterization of alpha and beta interactions in liquid xenon, Eur. Phys. J. C 82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
178.E. Akhmedov, Nuclear fusion catalyzed by doubly charged scalars: Implications for energy production, Phys. Rev. D 106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
179.L. A. Anchordoqui et al., The Forward Physics Facility: Sites, experiments, and physics potential, Phys. Rept. 968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
180.M. Aoki, J. Kubo and J. Yang, Inflation and dark matter after spontaneous Planck scale generation by hidden chiral symmetry breaking, JCAP 01 (2022) 005.; DOI:10.1088/1475-7516/2022/01/005
181.A. Ismail, S. Jana and R. M. Abraham, Neutrino up-scattering via the dipole portal at forward LHC detectors, Phys. Rev. D 105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
182.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M. Virgato, Improved treatment of dark matter capture in neutron stars III: nucleon and exotic targets, JCAP 11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
183.F. Goertz, Flavour observables and composite dynamics: leptons, Eur. Phys. J. ST 231 (2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
184.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M. Bartelmann, Gravitational wave induced baryon acoustic oscillations, SciPost Phys. 12 (2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
185.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei, Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background, Phys. Rev. D 105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
186.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark matter particles, PTEP 2022 (2022) 013F01.; DOI:10.1093/ptep/ptab139
187.H. Almazán et al., Joint Measurement of the \(^{235}\)U Antineutrino Spectrum by Prospect and Stereo, Phys. Rev. Lett. 128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
188.A. Y. Smirnov and V. B. Valera, Resonance refraction and neutrino oscillations, JHEP 09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
189.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of same-sign diboson+\(+{E\!\!\!\!/}_{T}\), Phys. Rev. D 105 (2022) 055014.; DOI:10.1103/PhysRevD.105.055014
190.M. Aker et al., Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys. 18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
191.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Orbifolds from Sp(4,Z) and their modular symmetries, Nucl. Phys. B 971 (2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
192.M. Aker et al., Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment, Eur. Phys. J. C 81 (2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
193.A. Trautner, Living on the Fermi edge: On baryon transport and Fermi condensation, Phys. Lett. B 833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
194.V. C. Antochi et al., Improved quality tests of R11410-21 photomultiplier tubes for the XENONnT experiment, JINST 16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
195.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M. Virgato, Improved treatment of dark matter capture in white dwarfs, JCAP 10 (2021) 083.; DOI:10.1088/1475-7516/2021/10/083
196.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M. Schmelling, Sub-TeV hadronic interaction model differences and their impact on air showers, Eur. Phys. J. C 81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
197.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification, Phys. Rev. D 105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
198.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly and neutrino magnetic moments, JHEP 10 (2021) 240.; DOI:10.1007/JHEP10(2021)240
199.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an explanation of Fermilab muon g \(-\) 2 measurement, Phys. Lett. B 820 (2021) 136529.; DOI:10.1016/j.physletb.2021.136529
200.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard interactions in CE\(\nu\)NS, Phys. Rev. D 104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
201.M. Agostini et al., Characterization of inverted coaxial \(^{76}\)Ge detectors in GERDA for future double-\(\beta\) decay experiments, Eur. Phys. J. C 81 (2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
202.M. Agostini et al., Calibration of the Gerda experiment, Eur. Phys. J. C 81 (2021) 682.; DOI:10.1140/epjc/s10052-021-09403-2
203.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O. Sumensari, Single leptoquark solutions to the B-physics anomalies, Phys. Rev. D 104 (2021) 055017.; DOI:10.1103/PhysRevD.104.055017
204.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence of oscillations in matter and supernova neutrinos, JCAP 06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
205.J. Herms and A. Ibarra, Production and signatures of multi-flavour dark matter scenarios with t-channel mediators, JCAP 10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
206.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment, JHEP 06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
207.M. Aker et al., The design, construction, and commissioning of the KATRIN experiment, JINST 16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
208.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider, Phys. Rev. D 105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
209.G. Huang and W. Rodejohann, Solving the Hubble tension without spoiling Big Bang Nucleosynthesis, Phys. Rev. D 103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
210.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon collider, Phys. Rev. D 103 (2021) 095005.; DOI:10.1103/PhysRevD.103.095005
 
 


Last modified: Tue 28. November 2023 at 14:14:42 , Impressum , Datenschutzhinweis