3.G. Zuzel, LEGEND-1000 - a next generation
detector for searches of neutrino-less double beta decay,
PoSMEDEX2025 (2025) 038.; DOI:10.22323/1.495.0038
4.S. Abubakar et al., Joint neutrino oscillation
analysis from the T2K and NOvA experiments, Nature646 (2025) 818–824.; DOI:10.1038/s41586-025-09599-3
5.T. de Boer, J. Kubo, M. Lindner and M. Reinig, Gravity and the Hierarchy Problem (2025).;
Retrieved from https://arxiv.org/abs/2510.12882
6.T. Abrahão et al., First Measurement of Neutrino
Emissions from Spent Nuclear Fuel by the Double Chooz Experiment
(2025).; Retrieved from https://arxiv.org/abs/2510.04869
7.E. Aprile et al., Spectral Measurement of the
\(^{214}\)Bi beta-decay to the \(^{214}\)Po Ground State with XENONnT
(2025).; Retrieved from https://arxiv.org/abs/2510.04846
8.A. A. Smolnikov, Search for One- and Tri-Nucleon
Decays of \(^{76}\)Ge in the GERDA
Experiment, Bull. Russ. Acad. Sci. Phys.89 (2025) 1261–1268.; DOI:10.1134/S1062873825712024
9.T. de Boer, M. Lindner and A. Trautner, Hidden Sector Custodial
Naturalness (2025).; Retrieved from https://arxiv.org/abs/2507.22980
10.T. de Boer, F. Goertz and A. Incrocci, The
goofy-symmetric Standard Model and the Hierarchy Problem (2025).;
Retrieved from https://arxiv.org/abs/2507.22111
11.A. Y. Smirnov, Is flavor discrete?,
9th Symposium on Prospects in the Physics of
Discrete Symmetries.; Retrieved from https://arxiv.org/abs/2507.19278
12.G. Arcadi, M. Lindner and S. Profumo, Beyond the
Veil: Charting WIMP Territories at the Neutrino Floor (2025).;
Retrieved from https://arxiv.org/abs/2507.16987
13.M. Agostini et al., Search for the in-situ
production of \(^{77}\)Ge in the GERDA
neutrinoless double-beta decay experiment, Eur. Phys. J.
C85 (2025) 809.; DOI:10.1140/epjc/s10052-025-14445-x
14.J. P. Garcés, F. Goertz, M. Lindner and Á. Pastor-Gutiérrez, The quantum criticality of the Standard Model and the
hierarchy problem, JHEP10 (2025) 134.;
DOI:10.1007/JHEP10(2025)134
15.Y. Chung, Two coincidences are a clue: Probing a
GeV-scale dark QCD sector (2025).; Retrieved from https://arxiv.org/abs/2506.10928
16.S. Centelles Chuliá, T. Herbermann, A. Herrero-Brocal and A. Vicente,
Flavour and cosmological probes of Diracon
models, JHEP09 (2025) 110.; DOI:10.1007/JHEP09(2025)110
17.E. Aprile et al., Challenging Spontaneous
Quantum Collapse with XENONnT (2025).; Retrieved from https://arxiv.org/abs/2506.05507
18.R. Hammann, K. Böse, S. Form, L. Hötzsch and T. Marrodán Undagoitia,
Operation of a dual-phase xenon detector with
wavelength sensitivity from ultraviolet to infrared, Sci.
Technol.3 (2025) 1638362.; DOI:10.3389/fdest.2025.1638362
20.H. Acharya et al., First Results on the Search
for Lepton Number Violating Neutrinoless Double Beta Decay with the
LEGEND-200 Experiment (2025).; DOI:10.1103/25tk-nctn
21.M. Agostini et al., Measurement of the \(^{85}\)Kr specific activity in the GERDA
liquid argon, Eur. Phys. J. C85 (2025)
518.; DOI:10.1140/epjc/s10052-025-14135-8
22.A. Yu. Smirnov, Chiral interactions, chiral
states and “chiral neutrino
oscillations”, Nucl. Phys. B1020 (2025) 117136.; DOI:10.1016/j.nuclphysb.2025.117136
23.T. Herbermann and M. Lindner, Improved
cosmological limits on Z’ models with light right-handed
neutrinos, JCAP09 (2025) 078.; DOI:10.1088/1475-7516/2025/09/078
24.S. Bianco, P. F. Depta, J. Frerick, T. Hambye, M. Hufnagel and K.
Schmidt-Hoberg, Photo- and Hadrodisintegration
constraints on massive relics decaying into neutrinos (2025).;
Retrieved from https://arxiv.org/abs/2505.01492
27.M. Benedikt et al., Future Circular Collider Feasibility Study
Report: Volume 1, Physics, Experiments, Detectors (2025).; DOI:10.17181/CERN.9DKX.TDH9
28.M. Benedikt et al., Future Circular Collider
Feasibility Study Report: Volume 2, Accelerators, Technical
Infrastructure and Safety (2025).; DOI:10.17181/CERN.EBAY.7W4X
29.M. Benedikt et al., Future Circular Collider
Feasibility Study Report: Volume 3, Civil Engineering, Implementation
and Sustainability (2025).; DOI:10.1140/epjs/s11734-025-01958-5
30.A. Ahmed, J. P. Garcés and M. Lindner, Radiative
symmetry breaking with a scale invariant seesaw mechanism,
Phys. Rev. D112 (2025) 035026.; DOI:10.1103/3sgd-1466
31.L. Gráf, C. Hati, A. Martı́n-Galán and O. Scholer, Importance of Loop Effects in Probing Lepton Number
Violation (2025).; Retrieved from https://arxiv.org/abs/2504.00081
32.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(A_4\) Invariance, Springer Proc.
Phys.361 (2025) 303–312.; DOI:10.1007/978-981-97-7441-8_30
33.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted DM from DSNB,
PoSNOW2024 (2025) 014.; DOI:10.22323/1.473.0014
34.E. Aprile et al., WIMP Dark Matter Search using
a 3.1 tonne \(\times\) year Exposure of
the XENONnT Experiment (2025).; Retrieved from https://arxiv.org/abs/2502.18005
35.T. de Boer, M. Lindner and A. Trautner, Custodial
Naturalness, JHEP06 (2025) 047.;
DOI:10.1007/JHEP06(2025)047
36.O. Scholer, Towards distinguishing different
mechanisms of \(0\nu\beta\beta\), AIP Conf.
Proc.3143 (2025) 020019.; DOI:10.1063/5.0235385
37.E. Aprile et al., Radon Removal in XENONnT down
to the Solar Neutrino Level, Phys. Rev. X15 (2025) 031079.; DOI:10.1103/zc1w-88p6
38.J. Kubo and J. Kuntz, Primordial gravitational
waves in quadratic gravity, JCAP05
(2025) 093.; DOI:10.1088/1475-7516/2025/05/093
39.M. Guida, Y.-T. Lin and H. Simgen, Improved and
automated krypton assay for low-background xenon detectors with
Auto-RGMS, Eur. Phys. J. C85 (2025)
576.; DOI:10.1140/epjc/s10052-025-14262-2
40.N. Ackermann et al., Direct observation of
coherent elastic antineutrinonucleus scattering,
Nature643 (2025) 1229–1233.; DOI:10.1038/s41586-025-09322-2
41.M. Sen, Testing nonstandard neutrino
properties, PoSNOW2024 (2025) 026.;
DOI:10.22323/1.473.0026
42.Y. Chung, A. Bally and F. Goertz, Looking for
the solution to the Hierarchy Problem in Top physics,
PoSICHEP2024 (2025) 343.; DOI:10.22323/1.476.0343
43.A. Ahmed, Z. Chacko, I. Flood, C. Kilic and S. Najjari, General form of effective operators from hidden
sectors, JHEP05 (2025) 167.; DOI:10.1007/JHEP05(2025)167
44.E. Sanchez Garcia et al., Background
characterization of the CONUS+ experimental location, Eur.
Phys. J. C85 (2025) 465.; DOI:10.1140/epjc/s10052-025-14160-7
45.Á. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert and G. Ruisi, e+e-\(\mu\)+\(\mu\)- in the asymptotically safe
standard model, Phys. Rev. D111 (2025)
106005.; DOI:10.1103/PhysRevD.111.106005
46.C. Buck, The CONUS+ experiment,
PoSICHEP2024 (2025) 164.; DOI:10.22323/1.476.0164
47.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Gauge-fermion cartography: From confinement and chiral
symmetry breaking to conformality, Phys. Rev. D112 (2025) 034029.; DOI:10.1103/7dzj-k6k8
48.E. Aprile et al., Low-Energy Nuclear Recoil
Calibration of XENONnT with a \(^{88}\)YBe Photoneutron Source
(2024).; Retrieved from https://arxiv.org/abs/2412.10451
49.E. Aprile et al., The neutron veto of the
XENONnT experiment: results with demineralized water, Eur.
Phys. J. C85 (2025) 695.; DOI:10.1140/epjc/s10052-025-14105-0
50.Y. Chung, Generating the Dark Matter mass from
the QCD vacuum: A new approach to the Dark Matter-Baryon coincidence
problem (2024).; Retrieved from https://arxiv.org/abs/2411.18725
51.Y. Chung, Comparable Dark Matter and Baryon
energy densities from Dark Grand Unification (2024).; Retrieved
from https://arxiv.org/abs/2411.16860
52.E. Aprile et al., Search for Light Dark Matter
in Low-Energy Ionization Signals from XENONnT, Phys. Rev.
Lett.134 (2025) 161004.; DOI:10.1103/PhysRevLett.134.161004
53.G. Arcadi, D. Cabo-Almeida, S. Fabian and F. Goertz, Dark particles at the LHC: LHC-friendly dark matter
characterization via non-linear EFT, JHEP06 (2025) 126.; DOI:10.1007/JHEP06(2025)126
55.L. Nies et al., Refining the nuclear mass
surface with the mass of Sn103, Phys. Rev. C111 (2025) 014315.; DOI:10.1103/PhysRevC.111.014315
56.J. Aalbers et al., Neutrinoless double beta
decay sensitivity of the XLZD rare event observatory, J.
Phys. G52 (2025) 045102.; DOI:10.1088/1361-6471/adb900
57.J. Aalbers et al., The XLZD Design Book: towards
the next-generation liquid xenon observatory for dark matter and
neutrino physics, Eur. Phys. J. C85
(2025) 1192.; DOI:10.1140/epjc/s10052-025-14810-w
58.E. Akhmedov, Non-relativistic neutrinos and the
question of Dirac vs. Majorana neutrino nature (2024).; Retrieved
from https://arxiv.org/abs/2410.11940
59.C. Döring and A. Trautner, Symmetries from outer
automorphisms and unorthodox group extensions (2024).; Retrieved
from https://arxiv.org/abs/2410.11052
60.J. Kuntz, Unitarity through PT symmetry in
quantum quadratic gravity, Class. Quant. Grav.42 (2025) 175003.; DOI:10.1088/1361-6382/adf606
61.J. Aalbers et al., Model-independent searches of
new physics in DARWIN with a semi-supervised deep learning
pipeline (2024).; Retrieved from https://arxiv.org/abs/2410.00755
62.A. M. Suliga, P. C.-K. Cheong, J. Froustey, G. M. Fuller, L. Gráf, K.
Kehrer, O. Scholer and S. Shalgar, Nonconservation
of Lepton Numbers in the Neutrino Sector Could Change the Prospects for
Core Collapse Supernova Explosions, Phys. Rev. Lett.134 (2025) 241002.; DOI:10.1103/gnp5-4y8k
63.S. Centelles Chuliá, R. Srivastava and S. Yadav, Comprehensive phenomenology of the Dirac Scotogenic
Model: Novel low-mass dark matter, JHEP04 (2025) 038.; DOI:10.1007/JHEP04(2025)038
64.E. Aprile et al., First Search for Light Dark
Matter in the Neutrino Fog with XENONnT, Phys. Rev.
Lett.134 (2025) 111802.; DOI:10.1103/PhysRevLett.134.111802
66.E. Aprile et al., XENONnT analysis: Signal
reconstruction, calibration, and event selection, Phys. Rev.
D111 (2025) 062006.; DOI:10.1103/PhysRevD.111.062006
67.S. Jana, S. Klett, M. Lindner and R. N. Mohapatra, Radiative origin of fermion mass hierarchy in left-right
symmetric theory, JHEP01 (2025) 082.;
DOI:10.1007/JHEP01(2025)082
68.G. Arcadi, M. Lindner, J. P. Neto and F. S. Queiroz, Ultraheavy Dark Matter and WIMPs Production aided by
Primordial Black Holes (2024).; Retrieved from https://arxiv.org/abs/2408.13313
69.L. Baudis et al., Search for Pauli Exclusion
Principle violations with Gator at LNGS, Eur. Phys. J. C84 (2024) 1137.; DOI:10.1140/epjc/s10052-024-13510-1
70.T. Herbermann, M. Lindner and M. Sen, Attenuation of cosmic ray electron boosted dark
matter, Phys. Rev. D110 (2024)
123023.; DOI:10.1103/PhysRevD.110.123023
71.E. Aprile et al., First Indication of Solar B8
Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with
XENONnT, Phys. Rev. Lett.133 (2024)
191002.; DOI:10.1103/PhysRevLett.133.191002
72.S. Jana, L. Puetter and A. Yu. Smirnov, Restricting sterile neutrinos by neutrinoless double beta
decay, Phys. Rev. D111 (2025) 015011.;
DOI:10.1103/PhysRevD.111.015011
73.T. de Boer, M. Lindner and A. Trautner, Electroweak hierarchy from conformal and custodial
symmetry, Phys. Lett. B861 (2025)
139241.; DOI:10.1016/j.physletb.2025.139241
74.P. F. Depta, V. Domcke, G. Franciolini and M. Pieroni, Pulsar timing array sensitivity to anisotropies in the
gravitational wave background, Phys. Rev. D111 (2025) 083039.; DOI:10.1103/PhysRevD.111.083039
75.C. Accettura et al., Interim report for the
International Muon Collider Collaboration (IMCC), CERN Yellow
Rep. Monogr.2/2024 (2024) 176.; DOI:10.23731/CYRM-2024-002
76.S. Centelles Chulia, R. Srivastava and S. Yadav, CDF-II W Boson Mass in the Dirac Scotogenic Model,
Springer Proc. Phys.304 (2024) 946–948.;
DOI:10.1007/978-981-97-0289-3_249
78.S. Bhattacharya, S. Fabian, J. Herms and S. Jana, Flavor-specific dark matter signatures through the lens
of neutrino oscillations, JCAP01
(2025) 110.; DOI:10.1088/1475-7516/2025/01/110
79.S. Jana and Y. Porto, Non-standard interactions
of supernova neutrinos and mass ordering ambiguity at DUNE,
JCAP03 (2025) 046.; DOI:10.1088/1475-7516/2025/03/046
80.F. Goertz, M. Hager, G. Laverda and J. Rubio, Phasing out of darkness: from sterile neutrino dark
matter to neutrino masses via time-dependent mixing,
JHEP02 (2025) 213.; DOI:10.1007/JHEP02(2025)213
81.M. Sen and A. Y. Smirnov, Neutrinos with
refractive masses and the DESI baryon acoustic oscillation
results, Phys. Rev. D111 (2025)
103048.; DOI:10.1103/d9hh-b3r9
82.S. Jana, M. Klasen, V. P. K. and L. P. Wiggering, Neutrino masses and mixing from milli-charged dark
matter, JCAP02 (2025) 011.; DOI:10.1088/1475-7516/2025/02/011
83.E. Aprile et al., XENONnT WIMP search: Signal
and background modeling and statistical inference, Phys. Rev.
D111 (2025) 103040.; DOI:10.1103/PhysRevD.111.103040
84.P. Martı́nez-Miravé, Y. F. Perez-Gonzalez and M. Sen, Effects of neutrino-ultralight dark matter interaction on
the cosmic neutrino background, Phys. Rev. D110 (2024) 055005.; DOI:10.1103/PhysRevD.110.055005
85.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The eclectic flavor symmetries of
\(\mathbb{T}^2/\mathbb{Z}_K\)
orbifolds, JHEP09 (2024) 159.; DOI:10.1007/JHEP09(2024)159
86.M. Sen, Supernova Neutrinos: Flavour Conversion
Mechanisms and New Physics Scenarios, Universe10 (2024) 238.; DOI:10.3390/universe10060238
87.M. Agostini et al., Searches for new physics
below twice the electron mass with GERDA, Eur. Phys. J.
C84 (2024) 940.; DOI:10.1140/epjc/s10052-024-13020-0
88.E. Akhmedov and M. Pospelov, BBN catalysis by
doubly charged particles, JCAP08
(2024) 028.; DOI:10.1088/1475-7516/2024/08/028
89.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing
the Origins of Neutrino Mass with Supernova-Neutrino Time Delay,
Phys. Rev. Lett.133 (2024) 121802.; DOI:10.1103/PhysRevLett.133.121802
90.S. Centelles Chuliá, A. Herrero-Brocal and A. Vicente, The Type-I Seesaw family, JHEP07 (2024) 060.; DOI:10.1007/JHEP07(2024)060
91.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y.
Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame?, Eur. Phys.
J. C85 (2025) 152.; DOI:10.1140/epjc/s10052-024-13672-y
92.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted dark matter from diffuse
supernova neutrino background, JCAP07
(2024) 045.; DOI:10.1088/1475-7516/2024/07/045
93.E. Aprile et al., Offline tagging of
radon-induced backgrounds in XENON1T and applicability to other liquid
xenon time projection chambers, Phys. Rev. D110 (2024) 012011.; DOI:10.1103/PhysRevD.110.012011
94.P. Soldin, Precision Neutrino Mixing Angle
Measurement with the Double Chooz Experiment and Latest Results,
PoSTAUP2023 (2024) 228.; DOI:10.22323/1.441.0228
95.J. Kubo and T. Kugo, Anti-Instability of Complex
Ghost, PTEP2024 (2024) 053B01.; DOI:10.1093/ptep/ptae053
97.S. Jana, Electromagnetic Properties of
Neutrinos, PoSTAUP2023 (2024) 184.;
DOI:10.22323/1.441.0184
98.E. Akhmedov and A. Trautner, Can quantum
statistics help distinguish Dirac from Majorana neutrinos?,
JHEP05 (2024) 156.; DOI:10.1007/JHEP05(2024)156
99.S. Centelles Chuliá, O. G. Miranda and J. W. F. Valle, Leptonic neutral-current probes in a short-distance
DUNE-like setup, Phys. Rev. D109
(2024) 115007.; DOI:10.1103/PhysRevD.109.115007
100.T. Cheng, Implications of a matter-antimatter
mass asymmetry in Penning-trap experiments, PoSDISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
101.R. Deckert et al., The LEGEND-200 Liquid Argon
Instrumentation: From a simple veto to a full-fledged detector,
PoSTAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
102.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right
symmetric model: Catalyzed nuclear fusion and collider
implications, Phys. Lett. B852 (2024)
138616.; DOI:10.1016/j.physletb.2024.138616
103.M. Lindner, T. Rink and M. Sen, Light vector
bosons and the weak mixing angle in the light of future germanium-based
reactor CE\(\nu\)NS
experiments, JHEP08 (2024) 171.;
DOI:10.1007/JHEP08(2024)171
104.M. Aoki, J. Kubo and J. Yang, Scale invariant
extension of the Standard Model: a nightmare scenario in
cosmology, JCAP05 (2024) 096.; DOI:10.1088/1475-7516/2024/05/096
106.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia,
Investigating the slow component of the infrared
scintillation time response in gaseous xenon, JINST19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
107.N. Ackermann et al., Final CONUS Results on
Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf
Reactor, Phys. Rev. Lett.133 (2024)
251802.; DOI:10.1103/PhysRevLett.133.251802
108.Á. Pastor-Gutiérrez and M. Yamada, Phase
structure of extra-dimensional gauge theories with fermions,
Phys. Rev. D109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
109.G. Huang, Neutrino-antineutrino asymmetry of
C\(\nu\)B on the surface
of the round Earth, JHEP11 (2024)
153.; DOI:10.1007/JHEP11(2024)153
110.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and
Implications for LEGEND-1000, PoSTAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
111.N. Volmer, On neutrino telescopes and their
ability to infer astrophysical neutrino sources via the Glashow
resonance (2024).; DOI:10.1393/ncc/i2024-24380-8
112.P. S. B. Dev, S. Jana and Y. Porto, Flavor
Matters, but Matter Flavors: Matter Effects on Flavor Composition of
Astrophysical Neutrinos (2023).; Retrieved from https://arxiv.org/abs/2312.17315
113.L. Gráf, S. Jana, O. Scholer and N. Volmer, Neutrinoless double beta decay without vacuum Majorana
neutrino mass, Phys. Lett. B859 (2024)
139111.; DOI:10.1016/j.physletb.2024.139111
114.V. Brdar, T. Cheng, H.-J. Kuan and Y.-Y. Li, Magnetar-powered neutrinos and magnetic moment signatures
at IceCube, JCAP07 (2024) 026.; DOI:10.1088/1475-7516/2024/07/026
118.Y. Chung and F. Goertz, Third-generation-philic
hidden naturalness, Phys. Rev. D110
(2024) 115019.; DOI:10.1103/PhysRevD.110.115019
119.M. Agostini et al., An improved limit on the
neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys.
J. C84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
120.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial
Compositeness, PoSEPS-HEP2023 (2024)
369.; DOI:10.22323/1.449.0369
121.D. Basilico et al., Optimized \(\alpha\)/\(\beta\) pulse shape discrimination
in Borexino, Phys. Rev. D109 (2024)
112014.; DOI:10.1103/PhysRevD.109.112014
122.M. Mukhopadhyay and M. Sen, On probing
turbulence in core-collapse supernovae in upcoming neutrino
detectors, JCAP03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
123.M. Shaposhnikov and A. Y. Smirnov, Sterile
neutrino dark matter, matter-antimatter separation, and the QCD phase
transition, Phys. Rev. D110 (2024)
063520.; DOI:10.1103/PhysRevD.110.063520
124.E. Aprile et al., Design and performance of the
field cage for the XENONnT experiment, Eur. Phys. J. C84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
125.A. Ahmed, M. Lindner and P. Saake, Conformal
little Higgs models, Phys. Rev. D109
(2024) 075041.; DOI:10.1103/PhysRevD.109.075041
126.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring naturalness via conjugate fermions,
Phys. Rev. D110 (2024) 115023.; DOI:10.1103/PhysRevD.110.115023
127.Y. Chung, Naturalness-motivated composite Higgs
model for generating the top Yukawa coupling, Phys. Rev.
D109 (2024) 095021.; DOI:10.1103/PhysRevD.109.095021
128.F. Goertz and Á. Pastor-Gutiérrez, Unveiling
new phases of the Standard Model Higgs potential, Eur. Phys.
J. C85 (2025) 116.; DOI:10.1140/epjc/s10052-025-13842-6
129.H. Bonet et al., Pulse shape discrimination for
the CONUS experiment in the keV and sub-keV regime, Eur.
Phys. J. C84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
130.M. Agostini et al., Final Results of GERDA on
the Two-Neutrino Double-\(\beta\) Decay Half-Life of
Ge76, Phys. Rev. Lett.131 (2023)
142501.; DOI:10.1103/PhysRevLett.131.142501
131.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry,
Phys. Rev. D109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
132.J. Kubo and T. Kugo, Unitarity violation in
field theories of LeeWick’s complex
ghost, PTEP2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
133.S. Jana and S. Klett, Muonic force and
nonstandard neutrino interactions at muon colliders, Phys.
Rev. D110 (2024) 095011.; DOI:10.1103/PhysRevD.110.095011
134.Y. F. Perez-Gonzalez and M. Sen, From Dirac to
Majorana: The cosmic neutrino background capture rate in the minimally
extended Standard Model, Phys. Rev. D109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
135.A. de Gouvêa, J. Weill and M. Sen, Solar
neutrinos and \(\nu\)2
visible decays to \(\nu\)1, Phys. Rev. D109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
136.M. Agostini et al., Search for tri-nucleon
decays of \(^{76}\)Ge in GERDA,
Eur. Phys. J. C83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
137.M. P. Bento, J. P. Silva and A. Trautner, The
basis invariant flavor puzzle, JHEP01
(2024) 024.; DOI:10.1007/JHEP01(2024)024
138.J. Herms, S. Jana, V. P. K. and S. Saad, Light
neutrinophilic dark matter from a scotogenic model, Phys.
Lett. B845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
139.G. Huang, Discovery potential of the Glashow
resonance in an air shower neutrino telescope*, Chin. Phys.
C48 (2024) 085107.; DOI:10.1088/1674-1137/ad4c5c
140.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial
compositeness, Phys. Rev. D108 (2023)
095019.; DOI:10.1103/PhysRevD.108.095019
141.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining
LHAASO anomalous \(\gamma\) event, JCAP11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
142.M. D. Astros, S. Fabian and F. Goertz, Minimal
Inert Doublet benchmark for dark matter and the baryon asymmetry,
JCAP02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
143.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Signals of merging supermassive black holes in pulsar
timing arrays, Phys. Rev. Res.7 (2025)
013196.; DOI:10.1103/PhysRevResearch.7.013196
144.M. Adrover et al., Cosmogenic background
simulations for neutrinoless double beta decay with the DARWIN
observatory at various underground sites, Eur. Phys. J.
C84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
145.M. Sen and A. Y. Smirnov, Refractive neutrino
masses, ultralight dark matter and cosmology, JCAP01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
146.E. Aprile et al., Search for events in XENON1T
associated with gravitational waves, Phys. Rev. D108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
147.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C.
Tasillo, Does NANOGrav observe a dark sector phase
transition?, JCAP11 (2023) 053.;
DOI:10.1088/1475-7516/2023/11/053
148.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic
recoil calibration of the XENONnT detector, JINST18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
149.L. Angel et al., Toward a search for axionlike
particles at the LNLS, Phys. Rev. D108
(2023) 055030.; DOI:10.1103/PhysRevD.108.055030
150.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari,
Composite dark matter and neutrino masses from a
light hidden sector, JHEP07 (2024)
260.; DOI:10.1007/JHEP07(2024)260
151.A. Bally, Y. Chung and F. Goertz, The Hierarchy
Problem and the Top Yukawa, 57th
Rencontres de Moriond on QCD and High Energy Interactions.;
Retrieved from https://arxiv.org/abs/2304.11891
152.E. Aprile et al., Searching for Heavy Dark
Matter near the Planck Mass with XENON1T, Phys. Rev.
Lett.130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
153.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe
A Python tool for neutrinoless double beta decay,
JHEP08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
154.E. Aprile et al., Detector signal
characterization with a Bayesian network in XENONnT, Phys.
Rev. D108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
155.E. Aprile et al., First Dark Matter Search with
Nuclear Recoils from the XENONnT Experiment, Phys. Rev.
Lett.131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
156.S. Jana and Y. Porto, Resonances of Supernova
Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett.132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
157.G. Huang, M. Lindner and N. Volmer, Inferring
astrophysical neutrino sources from the Glashow resonance,
JHEP11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
158.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T.
Marrodán Undagoitia, First time-resolved
measurement of infrared scintillation light in gaseous xenon,
Eur. Phys. J. C83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
160.A. Trautner, Modular Flavor Symmetries and CP
from the top down, PoSDISCRETE2022
(2024) 013.; DOI:10.22323/1.431.0013
161.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter
model, PoSDISCRETE2022 (2024) 076.;
DOI:10.22323/1.431.0076
162.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino
mass scales, JHEP06 (2023) 078.;
DOI:10.1007/JHEP06(2023)078
163.N. Ackermann et al., Monte Carlo simulation of
background components in low level Germanium spectrometry,
Appl. Radiat. Isot.194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
164.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector
for the CONUS experiment, Appl. Radiat. Isot.194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
165.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F.
Meggendorfer and S. Skambraks, Operation of the
Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware
Perspective, J. Phys. Conf. Ser.2438
(2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
166.S. Jana, Y. P. Porto-Silva and M. Sen, Signal
of neutrino magnetic moments from a galactic supernova burst at upcoming
detectors, PoSICHEP2022 (2022) 597.;
DOI:10.22323/1.414.0597
167.E. Aprile et al., The triggerless data
acquisition system of the XENONnT experiment, JINST18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
168.S. Blasi, J. Bollig and F. Goertz, Holographic
composite Higgs model building: soft breaking, maximal symmetry, and the
Higgs mass, JHEP07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
169.I. Bischer, C. Döring and A. Trautner, Telling
compositeness at a distance with outer automorphisms and CP,
J. Phys. A56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
170.M. Agostini et al., Liquid argon light
collection and veto modeling in GERDA Phase II, Eur. Phys. J.
C83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
171.A. Bally, Y. Chung and F. Goertz, Hierarchy
problem and the top Yukawa coupling: An alternative to top partner
solutions, Phys. Rev. D108 (2023)
055008.; DOI:10.1103/PhysRevD.108.055008
172.T. Rink and M. Sen, Constraints on pseudo-Dirac
neutrinos using high-energy neutrinos from NGC 1068, Phys.
Lett. B851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
173.E. Aprile et al., Low-energy calibration of
XENON1T with an internal \(^{{\textbf
{37}}}\)Ar source, Eur. Phys. J. C83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
174.A. Y. Smirnov and A. Trautner, GRB 221009A
Gamma Rays from the Radiative Decay of Heavy Neutrinos?,
Phys. Rev. Lett.131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
175.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with
Gauged \(U(1)_{L(-R)}\) (2022).;
Retrieved from https://arxiv.org/abs/2210.13402
176.T. Cheng, M. Lindner and M. Sen, Implications
of a matter-antimatter mass asymmetry in Penning-trap
experiments, Phys. Lett. B844 (2023)
138068.; DOI:10.1016/j.physletb.2023.138068
177.H. Almazán et al., STEREO neutrino spectrum of
\(^{235}\)U fission rejects sterile
neutrino hypothesis, Nature613 (2023)
257–261.; DOI:10.1038/s41586-022-05568-2
178.E. Aprile et al., Effective field theory and
inelastic dark matter results from XENON1T, Phys. Rev. D109 (2024) 112017.; DOI:10.1103/PhysRevD.109.112017
179.E. Aprile et al., An approximate likelihood for
nuclear recoil searches with XENON1T data, Eur. Phys. J.
C82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
180.E. Akhmedov and A. Y. Smirnov, Reply to
”Comment on ”Damping of neutrino oscillations, decoherence and the
lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
181.J. Herms, S. Jana, V. P. K. and S. Saad, Light
thermal relics enabled by a second Higgs, SciPost Phys.
Proc.12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
182.I. Oda and P. Saake, BRST formalism of Weyl
conformal gravity, Phys. Rev. D106
(2022) 106007.; DOI:10.1103/PhysRevD.106.106007
183.A. de Gouvêa et al., Theory of Neutrino Physics
– Snowmass TF11 (aka NF08) Topical Group Report (2022).;
Retrieved from https://arxiv.org/abs/2209.07983
184.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, Moscow Univ. Phys. Bull.77 (2022) 371–374.; DOI:10.3103/S0027134922020461
185.M. Agostini et al., Search for exotic physics
in double-\(\beta\) decays
with GERDA Phase II, JCAP12 (2022)
012.; DOI:10.1088/1475-7516/2022/12/012
186.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable
models and flavor, JHEP04 (2023) 012.;
DOI:10.1007/JHEP04(2023)012
187.J. Kubo and J. Kuntz, Spontaneous conformal
symmetry breaking and quantum quadratic gravity, Phys. Rev.
D106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
188.A. N. Khan, Extra dimensions with light and
heavy neutral leptons: an application to CE\(\nu\)NS, JHEP01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
189.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of
heavy-ion collisions and their impact on particle correlations,
Phys. Rev. C108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
190.E. Akhmedov and A. Y. Smirnov, Damping of
neutrino oscillations, decoherence and the lengths of neutrino wave
packets, JHEP11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
191.A. N. Khan, Light new physics and neutrino
electromagnetic interactions in XENONnT, Phys. Lett. B837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
192.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts,
JCAP11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
193.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of
sterile neutrino dark matter via neutrino self-interactions,
JCAP11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
194.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
boson induced reheating and ultraviolet frozen-in dark matter,
JHEP02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
195.H. Almazan et al., Improved FIFRELIN
de-excitation model for neutrino applications, Eur. Phys. J.
A59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
196.E. Aprile et al., Search for New Physics in
Electronic Recoil Data from XENONnT, Phys. Rev. Lett.129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
198.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The first string-derived eclectic
flavor model with realistic phenomenology, JHEP09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
199.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum
gravity to dynamical chiral symmetry breaking, SciPost
Phys.15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
200.B. Batell et al., Dark Sector Studies with
Neutrino Beams, Snowmass 2021.; DOI:10.2172/1882578
201.M. Aker et al., Search for Lorentz-invariance
violation with the first KATRIN data, Phys. Rev. D107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
202.M. Aker et al., Search for keV-scale sterile
neutrinos with the first KATRIN data, Eur. Phys. J. C83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
203.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting
bounds on neutrino magnetic moments and solar magnetic field,
JHEP10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
204.S. Richers and M. Sen, Fast Flavor Transformations, In
I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).;
DOI:10.1007/978-981-15-8818-1_125-1
205.J. Berger et al., Snowmass 2021 White Paper:
Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino
Experiments, Snowmass 2021.; Retrieved from
https://arxiv.org/abs/2207.02882
206.G. Huang, Double and multiple bangs at tau
neutrino telescopes, Eur. Phys. J. C82
(2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
207.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann,
Search for leptophilic dark matter at the
LHeC, J. Phys. G50 (2023) 065001.;
DOI:10.1088/1361-6471/accc4a
208.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model,
Mod. Phys. Lett. A38 (2023).; DOI:10.1142/S0217732323500499
209.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman
and K. Schmidt-Hoberg, Minimal sterile neutrino
dark matter, Phys. Rev. D107 (2023)
L071702.; DOI:10.1103/PhysRevD.107.L071702
210.G. Huang and N. Nath, Inference of neutrino
nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with
inverted mass ordering, Eur. Phys. J. C82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
211.S. Jana, Horizontal Symmetry and Large Neutrino
Magnetic Moments, PoSDISCRETE2020-2021
(2022) 037.; DOI:10.22323/1.405.0037
212.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S.
de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian
synchrotron, Eur. Phys. J. C83 (2023)
514.; DOI:10.1140/epjc/s10052-023-11603-x
213.A. Schneider et al., Direct measurement of the
\(^{3}\)He\(^{+}\) magnetic moments,
Nature606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
214.F. Jörg, G. Eurin and H. Simgen, Production and
characterization of a 222Rn-emanating stainless steel source,
Appl. Radiat. Isot.194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
215.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale
detectors, JINST17 (2022) P11025.;
DOI:10.1088/1748-0221/17/11/P11025
216.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark
condensation, SciPost Phys.14 (2023)
076.; DOI:10.21468/SciPostPhys.14.4.076
217.Á. Pastor-Gutiérrez and M. Yamada, UV
completion of extradimensional Yang-Mills theory for Gauge-Higgs
unification, SciPost Phys.15 (2023)
101.; DOI:10.21468/SciPostPhys.15.3.101
218.M. Sen, Constraining pseudo-Dirac neutrinos
from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
219.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the
sterile neutrino portal, Phys. Rev. D106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
220.T. Rink, Coherent elastic neutrino-nucleus
scattering – First constraints/observations and future potential,
56th Rencontres de Moriond on Electroweak
Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
221.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of
mu-tau neutrinos, Phys. Rev. D106
(2022) 083011.; DOI:10.1103/PhysRevD.106.083011
222.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT
Experiments, Phys. Rev. C106 (2022)
024328.; DOI:10.1103/PhysRevC.106.024328
223.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen,
Diffuse supernova neutrino background as a probe of
late-time neutrino mass generation, Phys. Rev. D106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
225.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability
from flavour symmetry, JHEP10 (2022)
080.; DOI:10.1007/JHEP10(2022)080
226.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the
cosmic neutrino background, Phys. Rev. D106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
227.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of
neutrino oscillations, JHEP08 (2022)
111.; DOI:10.1007/JHEP08(2022)111
228.L. Gráf, M. Lindner and O. Scholer, Unraveling
the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms,
Phys. Rev. D106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
229.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes
via the dipole portal, Phys. Lett. B840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
230.A. Trautner, Anatomy of a top-down approach to
discrete and modular flavor symmetry, PoSDISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
231.K. S. Babu, S. Jana and V. P. K., Correlating
W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model,
Phys. Rev. Lett.129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
232.J. Hakenmüller and W. Maneschg, Identification
of radiopure tungsten for low background applications, J.
Phys. G49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
233.A. de Gouvêa, M. Sen and J. Weill, Visible
neutrino decays and the impact of the daughter-neutrino mass,
Phys. Rev. D106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
234.L. Althueser et al., GPU-based optical
simulation of the DARWIN detector, JINST17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
235.L. A. Ruso et al., Theoretical tools for
neutrino scattering: interplay between lattice QCD, EFTs, nuclear
physics, phenomenology, and neutrino event generators, J.
Phys. G52 (2025) 043001.; DOI:10.1088/1361-6471/adae26
236.A. N. Khan, \(\sin^2\theta_W\) and neutrino
electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching
factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
237.M. Aker et al., KATRIN: status and prospects
for the neutrino mass and beyond, J. Phys. G49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
238.N. Bartosik et al., Simulated Detector
Performance at the Muon Collider (2022).; DOI:10.2172/1886011
239.D. Stratakis et al., A Muon Collider Facility
for Physics Discovery (2022).; DOI:10.2172/1881942
240.S. Jindariani et al., Promising Technologies
and R&D Directions for the Future Muon Collider
Detectors (2022).; DOI:10.2172/1881962
241.C. Awe et al., Particle physics using reactor
antineutrinos, (O. A. Akindele et al., Eds.)J. Phys. G51 (2024) 080501.; DOI:10.1088/1361-6471/ad3a84
244.M. Abdullah et al., Coherent elastic
neutrino-nucleus scattering: Terrestrial and astrophysical
applications (2022).; DOI:10.2172/1856010
245.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter,
Phys. Rev. Lett.129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
246.R. Mammen Abraham et al., Tau neutrinos in the
next decade: from GeV to EeV, J. Phys. G49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
247.J. L. Feng et al., The Forward Physics Facility
at the High-Luminosity LHC, J. Phys. G50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
248.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\)
Anomaly with Neutrino Magnetic Moments, PoSEPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
249.J. Aalbers et al., A next-generation liquid
xenon observatory for dark matter and neutrino physics, J.
Phys. G50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
250.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino
magnetic moments, JCAP09 (2022) 079.;
DOI:10.1088/1475-7516/2022/09/079
251.J. M. Berryman et al., Neutrino
self-interactions: A white paper, Phys. Dark Univ.42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
252.G. Busoni, Capture of DM in Compact
Stars, PoSPANIC2021 (2022) 046.;
DOI:10.22323/1.380.0046
253.M. Agostini et al., Pulse shape analysis in
Gerda Phase II, Eur. Phys. J. C82
(2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
254.J. Kubo and J. Kuntz, Analysis of unitarity in
conformal quantum gravity, Class. Quant. Grav.39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
255.K. S. Babu, P. S. B. Dev and S. Jana, Probing
neutrino mass models through resonances at neutrino telescopes,
Int. J. Mod. Phys. A37 (2022) 2230003.;
DOI:10.1142/S0217751X22300034
256.M. Aker et al., New Constraint on the Local
Relic Neutrino Background Overdensity with the First KATRIN Data
Runs, Phys. Rev. Lett.129 (2022)
011806.; DOI:10.1103/PhysRevLett.129.011806
257.A. Bonhomme et al., Direct measurement of the
ionization quenching factor of nuclear recoils in germanium in the keV
energy range, Eur. Phys. J. C82 (2022)
815.; DOI:10.1140/epjc/s10052-022-10768-1
258.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
Boson-Induced Reheating and Dark Matter Production,
Symmetry14 (2022) 306.; DOI:10.3390/sym14020306
259.H. de Kerret et al., The Double Chooz
antineutrino detectors, Eur. Phys. J. C82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
260.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoSEPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
261.H. Bonet et al., First upper limits on neutrino
electromagnetic properties from the CONUS experiment, Eur.
Phys. J. C82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
262.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles
and electrons in liquid xenon, Rev. Sci. Instrum.93 (2022) 113302.; DOI:10.1063/5.0087216
263.M. Aker et al., Improved eV-scale
sterile-neutrino constraints from the second KATRIN measurement
campaign, Phys. Rev. D105 (2022)
072004.; DOI:10.1103/PhysRevD.105.072004
264.A. N. Khan, Neutrino millicharge and other
electromagnetic interactions with COHERENT-2021 data, Nucl.
Phys. B986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
266.A. Yu. Smirnov and X.-J. Xu, Neutrino bound
states and bound systems, JHEP08
(2022) 170.; DOI:10.1007/JHEP08(2022)170
267.L. Šerkšnytė et al., Reevaluation of the cosmic
antideuteron flux from cosmic-ray interactions and from exotic
sources, Phys. Rev. D105 (2022)
083021.; DOI:10.1103/PhysRevD.105.083021
268.G. Busoni, Capture of Dark Matter in Neutron
Stars, Moscow Univ. Phys. Bull.77
(2022) 301–305.; DOI:10.3103/S0027134922020205
269.A. Ahmed and S. Najjari, Ultraviolet freeze-in
dark matter through the dilaton portal, Phys. Rev. D107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
270.K. S. Babu, S. Jana and A. Thapa, Vector boson
dark matter from trinification, JHEP02
(2022) 051.; DOI:10.1007/JHEP02(2022)051
271.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang,
Searching for new physics from SMEFT and
leptoquarks at the P2 experiment, Phys. Rev. D105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
272.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model
with minimal Higgs sector, JCAP05
(2022) 003.; DOI:10.1088/1475-7516/2022/05/003
273.E. Aprile et al., Emission of single and few
electrons in XENON1T and limits on light dark matter, Phys.
Rev. D106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
274.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs:
singlet-assisted baryogenesis w/o topological defects,
JHEP10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
275.E. Aprile et al., Application and modeling of
an online distillation method to reduce krypton and argon in
XENON1T, PTEP2022 (2022) 053H01.;
DOI:10.1093/ptep/ptac074
276.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino
telescopes, JCAP02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
277.S. Jana, S. Klett and M. Lindner, Flavor seesaw
mechanism, Phys. Rev. D105 (2022)
115015.; DOI:10.1103/PhysRevD.105.115015
278.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Top-down anatomy of flavor symmetry
breakdown, Phys. Rev. D105 (2022)
055018.; DOI:10.1103/PhysRevD.105.055018
279.E. Aprile et al., Material radiopurity control
in the XENONnT experiment, Eur. Phys. J. C82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
281.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of
nonstandard neutrino self-interactions: An EFT approach,
Phys. Rev. D105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
282.G. Huang and N. Nath, Neutrino meets ultralight
dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology,
JCAP05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
283.M. Sajjad Athar et al., Status and perspectives
of neutrino physics, Prog. Part. Nucl. Phys.124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
284.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on
reheating and dark matter production, Phys. Lett. B831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
285.H. Almazán et al., Searching for Hidden
Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO
Experiment, Phys. Rev. Lett.128 (2022)
061801.; DOI:10.1103/PhysRevLett.128.061801
286.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar
extensions, JHEP05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
287.M. Sen, Sterile neutrino dark matter, neutrino
secret self-interactions and extra radiation, J. Phys. Conf.
Ser.2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
288.G. Huang and W. Rodejohann, Tritium beta decay
with modified neutrino dispersion relations: KATRIN in the dark
sea, Nucl. Phys. B993 (2023) 116262.;
DOI:10.1016/j.nuclphysb.2023.116262
289.H. Bonet et al., Novel constraints on neutrino
physics beyond the standard model from the CONUS experiment,
JHEP05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
290.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their
breaking, PoSEPS-HEP2021 (2022) 698.;
DOI:10.22323/1.398.0698
291.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and
N. Rupp, Characterization of alpha and beta
interactions in liquid xenon, Eur. Phys. J. C82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
292.E. Akhmedov, Nuclear fusion catalyzed by doubly
charged scalars: Implications for energy production, Phys.
Rev. D106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
293.L. A. Anchordoqui et al., The Forward Physics
Facility: Sites, experiments, and physics potential, Phys.
Rept.968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
294.M. Aoki, J. Kubo and J. Yang, Inflation and
dark matter after spontaneous Planck scale generation by hidden chiral
symmetry breaking, JCAP01 (2022) 005.;
DOI:10.1088/1475-7516/2022/01/005
295.A. Ismail, S. Jana and R. M. Abraham, Neutrino
up-scattering via the dipole portal at forward LHC detectors,
Phys. Rev. D105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
296.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W.
Thomas and M. Virgato, Improved treatment of dark
matter capture in neutron stars III: nucleon and exotic targets,
JCAP11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
297.F. Goertz, Flavour observables and composite
dynamics: leptons, Eur. Phys. J. ST231
(2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
298.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M.
Bartelmann, Gravitational wave induced baryon
acoustic oscillations, SciPost Phys.12
(2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
299.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei,
Science with the TianQin Observatory: Preliminary
results on stochastic gravitational-wave background, Phys.
Rev. D105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
300.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark
matter particles, PTEP2022 (2022)
013F01.; DOI:10.1093/ptep/ptab139
301.H. Almazán et al., Joint Measurement of the
\(^{235}\)U Antineutrino Spectrum by
Prospect and Stereo, Phys. Rev. Lett.128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
302.A. Y. Smirnov and V. B. Valera, Resonance
refraction and neutrino oscillations, JHEP09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
303.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of
same-sign diboson+\(+{E\!\!\!\!/}_{T}\), Phys. Rev.
D105 (2022) 055014.; DOI:10.1103/PhysRevD.105.055014
304.M. Aker et al., Direct neutrino-mass
measurement with sub-electronvolt sensitivity, Nature
Phys.18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
305.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Orbifolds from Sp(4,Z) and their
modular symmetries, Nucl. Phys. B971
(2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
306.M. Aker et al., Precision measurement of the
electron energy-loss function in tritium and deuterium gas for the
KATRIN experiment, Eur. Phys. J. C81
(2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
307.A. Trautner, Living on the Fermi edge: On
baryon transport and Fermi condensation, Phys. Lett. B833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
308.V. C. Antochi et al., Improved quality tests of
R11410-21 photomultiplier tubes for the XENONnT experiment,
JINST16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
309.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M.
Virgato, Improved treatment of dark matter capture
in white dwarfs, JCAP10 (2021) 083.;
DOI:10.1088/1475-7516/2021/10/083
310.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M.
Schmelling, Sub-TeV hadronic interaction model
differences and their impact on air showers, Eur. Phys. J.
C81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
311.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification,
Phys. Rev. D105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
312.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly and neutrino magnetic
moments, JHEP10 (2021) 240.; DOI:10.1007/JHEP10(2021)240
313.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an
explanation of Fermilab muon g \(-\) 2 measurement, Phys.
Lett. B820 (2021) 136529.; DOI:10.1016/j.physletb.2021.136529
314.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard
interactions in CE\(\nu\)NS, Phys. Rev.
D104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
315.M. Agostini et al., Characterization of
inverted coaxial \(^{76}\)Ge detectors
in GERDA for future double-\(\beta\)
decay experiments, Eur. Phys. J. C81
(2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
316.M. Agostini et al., Calibration of the Gerda
experiment, Eur. Phys. J. C81 (2021)
682.; DOI:10.1140/epjc/s10052-021-09403-2
317.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O.
Sumensari, Single leptoquark solutions to the
B-physics anomalies, Phys. Rev. D104
(2021) 055017.; DOI:10.1103/PhysRevD.104.055017
318.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence
of oscillations in matter and supernova neutrinos, JCAP06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
319.J. Herms and A. Ibarra, Production and
signatures of multi-flavour dark matter scenarios with t-channel
mediators, JCAP10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
320.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment,
JHEP06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
321.M. Aker et al., The design, construction, and
commissioning of the KATRIN experiment, JINST16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
322.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider,
Phys. Rev. D105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
323.G. Huang and W. Rodejohann, Solving the Hubble
tension without spoiling Big Bang Nucleosynthesis, Phys. Rev.
D103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
324.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon
collider, Phys. Rev. D103 (2021)
095005.; DOI:10.1103/PhysRevD.103.095005
325.K. S. Babu, D. Goncalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
between LHC and Oscillation Experiments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.28
326.S. Jana, V. P. K. and S. Saad, Light Scalar and
Lepton Anomalous Magnetic Moments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.23
327.M. Schmelling, Á. Pastor-Gutiérrez, H. Schorlemmer and R. D.
Parsons, Sub-TeV hadronic interaction model
differences and their impact on air showers, PoSICRC2021 (2021) 476.; DOI:10.21468/SciPostPhysProc.15.015
328.I. Bischer, C. Döring and A. Trautner, Simultaneous Block Diagonalization of Matrices of Finite
Order, J. Phys. A54 (2021) 085203.;
DOI:10.1088/1751-8121/abd979
329.S. Fabian, F. Goertz and Y. Jiang, Dark matter
and nature of electroweak phase transition with an inert doublet,
JCAP09 (2021) 011.; DOI:10.1088/1475-7516/2021/09/011
330.P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F.
Keilbach, T. Plehn, G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost
Phys.13 (2022) 064.; DOI:10.21468/SciPostPhys.13.3.064
331.C. Bonilla, J. Herms, A. Ibarra and P. Strobl, Neutrino parameters in the Planck-scale lepton number
breaking scenario with extended scalar sectors, Phys. Rev.
D103 (2021) 035010.; DOI:10.1103/PhysRevD.103.035010
332.J. Kubo, J. Kuntz, M. Lindner, J. Rezacek, P. Saake and A. Trautner,
Unified emergence of energy scales and cosmic
inflation, JHEP08 (2021) 016.; DOI:10.1007/JHEP08(2021)016
333.N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M.
Virgato, Nucleon Structure and Strong Interactions
in Dark Matter Capture in Neutron Stars, Phys. Rev.
Lett.127 (2021) 111803.; DOI:10.1103/PhysRevLett.127.111803
334.O. Fischer, M. Reininghaus and R. Ulrich, Avenues to new-physics searches in cosmic ray air
showers, PoSICHEP2020 (2021) 602.;
DOI:10.22323/1.390.0602
335.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, PoSICHEP2020
(2021) 143.; DOI:10.22323/1.390.0143
336.E. Aprile et al., Search for Coherent Elastic
Scattering of Solar \(^8\)B Neutrinos
in the XENON1T Dark Matter Experiment, Phys. Rev. Lett.126 (2021) 091301.; DOI:10.1103/PhysRevLett.126.091301
337.P. D. Bolton, F. F. Deppisch, L. Gráf and F. Šimkovic, Two-Neutrino Double Beta Decay with Sterile
Neutrinos, Phys. Rev. D103 (2021)
055019.; DOI:10.1103/PhysRevD.103.055019
338.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and N\(_{eff}\). Part II. The
freeze-in case, JCAP03 (2021) 082.;
DOI:10.1088/1475-7516/2021/03/082
339.E. Aprile et al., Search for inelastic
scattering of WIMP dark matter in XENON1T, Phys. Rev. D103 (2021) 063028.; DOI:10.1103/PhysRevD.103.063028
340.H. Bonet et al., Constraints on elastic
neutrino nucleus scattering in the fully coherent regime from the CONUS
experiment, Phys. Rev. Lett.126 (2021)
041804.; DOI:10.1103/PhysRevLett.126.041804
341.G. Huang and S. Zhou, Tentative sensitivity of
future \(0\nu \beta\beta\)-decay
experiments to neutrino masses and Majorana CP phases,
JHEP03 (2021) 084.; DOI:10.1007/JHEP03(2021)084
342.S. Al Kharusi et al., SNEWS 2.0: a
next-generation supernova early warning system for multi-messenger
astronomy, New J. Phys.23 (2021)
031201.; DOI:10.1088/1367-2630/abde33
343.L. Graf, S. Jana, M. Lindner, W. Rodejohann and X.-J. Xu, Flavored neutrinoless double beta decay, Phys.
Rev. D103 (2021) 055007.; DOI:10.1103/PhysRevD.103.055007
344.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars II: Leptonic Targets, JCAP03
(2021) 086.; DOI:10.1088/1475-7516/2021/03/086
345.H. Bonet et al., Large-size sub-keV sensitive
germanium detectors for the CONUS experiment, Eur. Phys. J.
C81 (2021) 267.; DOI:10.1140/epjc/s10052-021-09038-3
346.E. Akhmedov, Neutrino oscillations in matter:
from microscopic to macroscopic description, JHEP02 (2021) 107.; DOI:10.1007/JHEP02(2021)107
347.J. L. Diaz-Cruz, U. J. Saldana-Salazar, K. M. Tame-Narvaez and V. T.
Tenorth, Natural 2HDMs without FCNCs,
Phys. Rev. D104 (2021) 035018.; DOI:10.1103/PhysRevD.104.035018
348.H. Almazán et al., First antineutrino energy
spectrum from \(^{235}\)U fissions with
the STEREO detector at ILL, J. Phys. G48 (2021) 075107.; DOI:10.1088/1361-6471/abd37a
349.E. Aprile et al., \(^{222}\)Rn emanation measurements for the
XENON1T experiment, Eur. Phys. J. C81
(2021) 337.; DOI:10.1140/epjc/s10052-020-08777-z
350.F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range
mechanisms in \(0\nu\beta\beta\)
decay, Phys. Rev. D102 (2020) 095016.;
DOI:10.1103/PhysRevD.102.095016
351.S. Bruenner, D. Cichon, G. Eurin, P. Herrero Gómez, F. Jörg, T.
Marrodán Undagoitia, H. Simgen and N. Rupp, Radon
daughter removal from PTFE surfaces and its application in liquid xenon
detectors, Eur. Phys. J. C81 (2021)
343.; DOI:10.1140/epjc/s10052-021-09047-2
352.K. S. Babu, P. S. B. Dev, S. Jana and A. Thapa, Unified framework for \(B\)-anomalies, muon \(g − 2\) and neutrino masses,
JHEP03 (2021) 179.; DOI:10.1007/JHEP03(2021)179
353.S. Blasi, V. Brdar and K. Schmitz, Has NANOGrav
found first evidence for cosmic strings?, Phys. Rev.
Lett.126 (2021) 041305.; DOI:10.1103/PhysRevLett.126.041305
354.M. Agostini et al., Final Results of GERDA on
the Search for Neutrinoless Double-\(\beta\) Decay, Phys. Rev.
Lett.125 (2020) 252502.; DOI:10.1103/PhysRevLett.125.252502
355.T. Abrahão et al., Search for signatures of
sterile neutrinos with Double Chooz, Eur. Phys. J. C81 (2021) 775.; DOI:10.1140/epjc/s10052-021-09459-0
356.L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, : a
Hilbert series for the QCD chiral Lagrangian, JHEP01 (2021) 142.; DOI:10.1007/JHEP01(2021)142
357.M. P. Bento, R. Boto, J. P. Silva and A. Trautner, A fully basis invariant Symmetry Map of the 2HDM,
JHEP21 (2020) 229.; DOI:10.1007/JHEP02(2021)220
358.A. N. Khan, Constraints on general light
mediators from PandaX-II electron recoil data, Phys. Lett.
B819 (2021) 136415.; DOI:10.1016/j.physletb.2021.136415
359.T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus, N.
Koivunen and K. Tuominen, Pseudo-Goldstone dark
matter: gravitational waves and direct-detection blind spots,
JHEP10 (2020) 080.; DOI:10.1007/JHEP10(2020)080
360.K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, Exotic Higgs decays into displaced jets at the
LHeC, JHEP02 (2021) 161.; DOI:10.1007/JHEP02(2021)161
361.I. Bischer, T. Plehn and W. Rodejohann, Dark
Matter EFT, the Third – Neutrino WIMPs, SciPost Phys.10 (2021) 039.; DOI:10.21468/SciPostPhys.10.2.039
362.S. Jana, P. K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments
and neutrino masses, Phys. Rev. D102
(2020) 075003.; DOI:10.1103/PhysRevD.102.075003
363.V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology,
Astrophysics, and Direct Detection, JCAP01 (2021) 039.; DOI:10.1088/1475-7516/2021/01/039
364.V. Brdar, O. Fischer and A. Yu. Smirnov, Model-independent bounds on the nonoscillatory
explanations of the MiniBooNE excess, Phys. Rev. D103 (2021) 075008.; DOI:10.1103/PhysRevD.103.075008
365.P. Agostini et al., The Large
HadronElectron Collider at the HL-LHC, J. Phys.
G48 (2021) 110501.; DOI:10.1088/1361-6471/abf3ba
366.T. Abrahão et al., Reactor rate modulation
oscillation analysis with two detectors in Double Chooz,
JHEP01 (2021) 190.; DOI:10.1007/JHEP01(2021)190
367.E. Aprile et al., Projected WIMP sensitivity of
the XENONnT dark matter experiment, JCAP11 (2020) 031.; DOI:10.1088/1475-7516/2020/11/031
368.G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S.
Vogl, EFT interpretation of XENON1T electron recoil
excess: Neutrinos and dark matter, Phys. Rev. D103 (2021) 023024.; DOI:10.1103/PhysRevD.103.023024
369.K. S. Babu, S. Jana and M. Lindner, Large
Neutrino Magnetic Moments in the Light of Recent Experiments,
JHEP10 (2020) 040.; DOI:10.1007/JHEP10(2020)040
370.M. Aoki, V. Brdar and J. Kubo, Heavy dark
matter, neutrino masses, and Higgs naturalness from a strongly
interacting hidden sector, Phys. Rev. D102 (2020) 035026.; DOI:10.1103/PhysRevD.102.035026
371.M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, XENON1T anomaly: A light Z’ from a Two Higgs Doublet
Model, Phys. Lett. B811 (2020)
135972.; DOI:10.1016/j.physletb.2020.135972
372.M. Andriamirado et al., Note on
arXiv:2005.05301, ’Preparation of the Neutrino-4 experiment on search
for sterile neutrino and the obtained results of measurements’
(2020).; Retrieved from https://arxiv.org/abs/2006.13147
373.A. N. Khan, Can Nonstandard Neutrino
Interactions explain the XENON1T spectral excess?, Phys.
Lett. B809 (2020) 135782.; DOI:10.1016/j.physletb.2020.135782
374.A. Bally, S. Jana and A. Trautner, Neutrino
self-interactions and XENON1T electron recoil excess, Phys.
Rev. Lett.125 (2020) 161802.; DOI:10.1103/PhysRevLett.125.161802
375.E. Aprile et al., Excess electronic recoil
events in XENON1T, Phys. Rev. D102
(2020) 072004.; DOI:10.1103/PhysRevD.102.072004
376.T. Alanne, G. Arcadi, F. Goertz, V. Tenorth and S. Vogl, Model-independent constraints with extended dark matter
EFT, JHEP10 (2020) 172.; DOI:10.1007/JHEP10(2020)172
377.T. Rink, W. Rodejohann and K. Schmitz, Leptogenesis and low-energy CP violation in a
type-II-dominated left-right seesaw model, Nucl. Phys. B972 (2021) 115552.; DOI:10.1016/j.nuclphysb.2021.115552
378.J. Aalbers et al., Solar neutrino detection
sensitivity in DARWIN via electron scattering, Eur. Phys. J.
C80 (2020) 1133.; DOI:10.1140/epjc/s10052-020-08602-7
379.M. Agostini et al., First Search for Bosonic
Superweakly Interacting Massive Particles with Masses up to 1 MeV/\(c^2\) with GERDA, Phys. Rev.
Lett.125 (2020) 011801.; DOI:10.1103/PhysRevLett.125.011801
380.S. Centelles Chuliá, C. Döring, W. Rodejohann and U. J.
Saldaña-Salazar, Natural axion model from
flavour, JHEP09 (2020) 137.; DOI:10.1007/JHEP09(2020)137
381.M. J. Zurowski, E. Barberio and G. Busoni, Inelastic Dark Matter and the SABRE Experiment,
JCAP12 (2020) 014.; DOI:10.1088/1475-7516/2020/12/014
382.D. Cichon, G. Eurin, F. Jörg, T. Marrodán Undagoitia and N. Rupp,
Transmission of xenon scintillation light through
PTFE, JINST15 (2020) P09010.; DOI:10.1088/1748-0221/15/09/P09010
383.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and \(N_{{\rm eff}}\),
JCAP06 (2020) 058.; DOI:10.1088/1475-7516/2020/06/058
384.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars, JCAP09 (2020) 028.; DOI:10.1088/1475-7516/2020/09/028
385.C. Jaramillo, M. Lindner and W. Rodejohann, Seesaw neutrino dark matter by freeze-out,
JCAP04 (2021) 023.; DOI:10.1088/1475-7516/2021/04/023
386.M. Berbig, S. Jana and A. Trautner, The Hubble
tension and a renormalizable model of gauged neutrino
self-interactions, Phys. Rev. D102
(2020) 115008.; DOI:10.1103/PhysRevD.102.115008
387.F. F. Deppisch, L. Graf, W. Rodejohann and X.-J. Xu, Neutrino Self-Interactions and Double Beta Decay,
Phys. Rev. D102 (2020) 051701.; DOI:10.1103/PhysRevD.102.051701
388.S. Blasi, C. Csaki and F. Goertz, A natural
composite Higgs via universal boundary conditions, SciPost
Phys.10 (2021) 121.; DOI:10.21468/SciPostPhys.10.5.121
389.H. Almazán et al., Accurate Measurement of the
Electron Antineutrino Yield of \(^{235}\)U Fissions from the STEREO
Experiment with 119 Days of Reactor-On Data, Phys. Rev.
Lett.125 (2020) 201801.; DOI:10.1103/PhysRevLett.125.201801
390.S. Blasi, V. Brdar and K. Schmitz, Fingerprint
of low-scale leptogenesis in the primordial gravitational-wave
spectrum, Phys. Rev. Res.2 (2020)
043321.; DOI:10.1103/PhysRevResearch.2.043321
391.S. Jana, N. Okada and D. Raut, Displaced vertex
and disappearing track signatures in type-III seesaw, Eur.
Phys. J. C82 (2022) 927.; DOI:10.1140/epjc/s10052-022-10855-3
392.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S.
Hannestad, MeV-scale reheating temperature and
cosmological production of light sterile neutrinos, JCAP08 (2020) 015.; DOI:10.1088/1475-7516/2020/08/015
393.F. F. Deppisch, L. Graf and F. Šimkovic, Searching for New Physics in Two-Neutrino Double Beta
Decay, Phys. Rev. Lett.125 (2020)
171801.; DOI:10.1103/PhysRevLett.125.171801
394.F. Agostini et al., Sensitivity of the DARWIN
observatory to the neutrinoless double beta decay of \(^{136}\)Xe, Eur. Phys. J. C80 (2020) 808.; DOI:10.1140/epjc/s10052-020-8196-z
395.V. Brdar, M. Lindner, S. Vogl and X.-J. Xu, Revisiting neutrino self-interaction constraints from
\(Z\) and \(\tau\) decays, Phys. Rev. D101 (2020) 115001.; DOI:10.1103/PhysRevD.101.115001
396.E. Aprile et al., Energy resolution and
linearity of XENON1T in the MeV energy range, Eur. Phys. J.
C80 (2020) 785.; DOI:10.1140/epjc/s10052-020-8284-0
397.K. S. Babu, D. Gonçalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
Between LHC and Oscillation Experiments, Phys. Lett. B815 (2021) 136131.; DOI:10.1016/j.physletb.2021.136131
398.S. Jana, V. P. K. and S. Saad, Resolving
electron and muon \(g-2\) within the
2HDM, Phys. Rev. D101 (2020) 115037.;
DOI:10.1103/PhysRevD.101.115037
399.Y. P. Porto-Silva, S. Prakash, O. L. G. Peres, H. Nunokawa and H.
Minakata, Constraining visible neutrino decay at
KamLAND and JUNO, Eur. Phys. J. C80
(2020) 999.; DOI:10.1140/epjc/s10052-020-08573-9
400.A. Trautner, On the systematic construction of
basis invariants, (E. Widmann, J. Marton, A. Pichler, M. Simon,
& D. Murtagh, Eds.)J. Phys. Conf. Ser.1586 (2020) 012005.; DOI:10.1088/1742-6596/1586/1/012005
401.Y. P. Porto-Silva and M. C. de Oliveira, Theory
of Neutrino Detection – Flavor Oscillations and Weak Values,
Eur. Phys. J. C81 (2021) 330.; DOI:10.1140/epjc/s10052-021-09108-6
402.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, MUonE sensitivity to new physics explanations of the muon
anomalous magnetic moment, JHEP05
(2020) 053.; DOI:10.1007/JHEP05(2020)053
403.G. Arcadi, G. Busoni, T. Hugle and V. T. Tenorth, Comparing 2HDM \(+\)
Scalar and Pseudoscalar Simplified Models at LHC, JHEP06 (2020) 098.; DOI:10.1007/JHEP06(2020)098
404.P. Bakhti and A. Yu. Smirnov, Oscillation
tomography of the Earth with solar neutrinos and future
experiments, Phys. Rev. D101 (2020)
123031.; DOI:10.1103/PhysRevD.101.123031
405.A. E. Cárcamo Hernández, C. O. Dib and U. J. Saldaña-Salazar, When \(\tan \beta\)
meets all the mixing angles, Phys. Lett. B809 (2020) 135750.; DOI:10.1016/j.physletb.2020.135750
406.C. Buck et al., A novel experiment for coherent
elastic neutrino nucleus scattering: CONUS, (K. Clark, C.
Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf.
Ser.1342 (2020) 012094.; DOI:10.1088/1742-6596/1342/1/012094
407.S. Baumholzer, V. Brdar, P. Schwaller and A. Segner, Shining Light on the Scotogenic Model: Interplay of
Colliders and Cosmology, JHEP09 (2020)
136.; DOI:10.1007/JHEP09(2020)136
408.H. Almazán et al., Improved sterile neutrino
constraints from the STEREO experiment with 179 days of reactor-on
data, Phys. Rev. D102 (2020) 052002.;
DOI:10.1103/PhysRevD.102.052002
409.S. Centelles Chuliá and A. Trautner, Asymmetric
tri-bi-maximal mixing and residual symmetries, Mod. Phys.
Lett. A35 (2020) 2050292.; DOI:10.1142/S0217732320502922
410.A. Bonhomme, Latest results of the STEREO
sterile neutrino search at the ILL Grenoble, PoSLeptonPhoton2019 (2019) 087.; DOI:10.22323/1.367.0087
411.J. Kawamura, S. Raby and A. Trautner, Complete
vectorlike fourth family with U(1)’ : A global analysis,
Phys. Rev. D101 (2020) 035026.; DOI:10.1103/PhysRevD.101.035026
412.S. Centelles Chuliá, W. Rodejohann and U. J. Saldaña-Salazar, Two-Higgs-doublet models with a flavored \(\mathbb{Z}_2\) symmetry, Phys.
Rev. D101 (2020) 035013.; DOI:10.1103/PhysRevD.101.035013
413.C. Schwanenberger and O. Fischer, Beyond the
Standard Model physics at the LHeC and the FCC-he, PoSEPS-HEP2019 (2020) 563.; DOI:10.22323/1.364.0563
414.C. Benso, V. Brdar, M. Lindner and W. Rodejohann, Prospects for Finding Sterile Neutrino Dark Matter at
KATRIN, Phys. Rev. D100 (2019)
115035.; DOI:10.1103/PhysRevD.100.115035
415.V. Brdar, A. J. Helmboldt and M. Lindner, Strong Supercooling as a Consequence of Renormalization
Group Consistency, JHEP12 (2019) 158.;
DOI:10.1007/JHEP12(2019)158
416.A. N. Khan, H. Nunokawa and S. J. Parke, Why
matter effects matter for JUNO, Phys. Lett. B803 (2020) 135354.; DOI:10.1016/j.physletb.2020.135354
417.L. Graf, Particle physics of non-standard
0\(\nu \beta \beta\) decay, (O.
Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc.2165 (2019) 020009.; DOI:10.1063/1.5130970
418.J. Kotila, L. Graf, F. F. Deppisch and F. Iachello, Nuclear physics of non-standard \(0 \nu \beta\beta\)-decay, (O.
Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc.2165 (2019) 020017.; DOI:10.1063/1.5130978
419.A. Smolnikov, GERDA searches for 0\(\nu \beta\beta\) and other \(\beta\beta\) decay modes of \(^{76}\)Ge, (O. Civitarese, I. Stekl,
& J. Suhonen, Eds.)AIP Conf. Proc.2165
(2019) 020024.; DOI:10.1063/1.5130985
420.S. Jana, P. K. Vishnu and S. Saad, Minimal
realizations of Dirac neutrino mass from generic one-loop and two-loop
topologies at \(d = 5\),
JCAP04 (2020) 018.; DOI:10.1088/1475-7516/2020/04/018
421.G. Huang, W. Rodejohann and S. Zhou, Effective
neutrino masses in KATRIN and future tritium beta-decay
experiments, Phys. Rev. D101 (2020)
016003.; DOI:10.1103/PhysRevD.101.016003
422.D. Aristizabal Sierra et al., Proceedings
of The Magnificent CE\(\nu\)NS Workshop
2018.; DOI:10.5281/zenodo.3489190
423.J. Alison et al., Higgs boson potential at
colliders: Status and perspectives, (B. Di Micco, M. Gouzevitch,
J. Mazzitelli, & C. Vernieri, Eds.)Rev. Phys.5 (2020) 100045.; DOI:10.1016/j.revip.2020.100045
424.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave signal from
cosmological phase transitions, JHEP03
(2020) 004.; DOI:10.1007/JHEP03(2020)004
425.F. Goertz, E. Madge, P. Schwaller and V. T. Tenorth, Discovering the \(h\to Z
\gamma\) decay in \(t \bar t\)
associated production, Phys. Rev. D102
(2020) 053004.; DOI:10.1103/PhysRevD.102.053004
426.A. Y. Smirnov and X.-J. Xu, Wolfenstein
potentials for neutrinos induced by ultra-light mediators,
JHEP12 (2019) 046.; DOI:10.1007/JHEP12(2019)046
427.M. Agostini et al., Modeling of GERDA Phase II
data, JHEP03 (2020) 139.; DOI:10.1007/JHEP03(2020)139
428.V. Brdar, L. Graf, A. J. Helmboldt and X.-J. Xu, Gravitational Waves as a Probe of Left-Right Symmetry
Breaking, JCAP12 (2019) 027.; DOI:10.1088/1475-7516/2019/12/027
429.S. Schoppmann, Search for eV Sterile Neutrinos
The Stereo Experiment, (K. Clark, C. Jillings, C.
Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser.1342 (2020) 012042.; DOI:10.1088/1742-6596/1342/1/012042
430.S. Schoppmann, Search for eV Sterile Neutrinos
- The STEREO Experiment [Blois 2019], 31st Rencontres de Blois on Particle Physics and
Cosmology.; Retrieved from https://arxiv.org/abs/1909.01017
432.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S.
Hannestad, MeV-scale reheating temperature and
thermalization of oscillating neutrinos by radiative and hadronic decays
of massive particles, JCAP12 (2019)
012.; DOI:10.1088/1475-7516/2019/12/012
433.C. Buck, B. Gramlich and S. Schoppmann, Novel
Opaque Scintillator for Neutrino Detection, JINST14 (2019) P11007.; DOI:10.1088/1748-0221/14/11/P11007
434.A. Cabrera et al., Neutrino Physics with an
Opaque Detector, Commun. Phys.4 (2021)
273.; DOI:10.1038/s42005-021-00763-5
435.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, A String Theory of Flavor and \(\mathscr {CP}\), Nucl. Phys.
B947 (2019) 114737.; DOI:10.1016/j.nuclphysb.2019.114737
436.E. Aprile et al., Search for Light Dark Matter
Interactions Enhanced by the Migdal Effect or Bremsstrahlung in
XENON1T, Phys. Rev. Lett.123 (2019)
241803.; DOI:10.1103/PhysRevLett.123.241803
437.A. N. Khan and W. Rodejohann, New physics from
COHERENT data with an improved quenching factor, Phys. Rev.
D100 (2019) 113003.; DOI:10.1103/PhysRevD.100.113003
438.W. Rodejohann and X.-J. Xu, Loop-enhanced rate
of neutrinoless double beta decay, JHEP11 (2019) 029.; DOI:10.1007/JHEP11(2019)029
439.E. Aprile et al., Light Dark Matter Search with
Ionization Signals in XENON1T, Phys. Rev. Lett.123 (2019) 251801.; DOI:10.1103/PhysRevLett.123.251801
440.P.-H. Gu, Double type II seesaw mechanism
accompanied by Dirac fermionic dark matter, Phys. Rev. D101 (2020) 015006.; DOI:10.1103/PhysRevD.101.015006
441.S. Biondini and S. Vogl, Scalar dark matter
coannihilating with a coloured fermion, JHEP11 (2019) 147.; DOI:10.1007/JHEP11(2019)147
442.C. Klein, M. Lindner and S. Vogl, Radiative
neutrino masses and successful \(SU(5)\) unification, Phys. Rev.
D100 (2019) 075024.; DOI:10.1103/PhysRevD.100.075024
443.A. N. Khan, W. Rodejohann and X.-J. Xu, Borexino and general neutrino interactions,
Phys. Rev. D101 (2020) 055047.; DOI:10.1103/PhysRevD.101.055047
444.J. Kawamura, S. Raby and A. Trautner, Complete
vectorlike fourth family and new U(1)’ for muon anomalies,
Phys. Rev. D100 (2019) 055030.; DOI:10.1103/PhysRevD.100.055030
445.G. Arcadi, C. Döring, C. Hasterok and S. Vogl, Inelastic dark matter nucleus scattering,
JCAP12 (2019) 053.; DOI:10.1088/1475-7516/2019/12/053
446.F. Goertz, K. Tame-Narvaez and V. T. Tenorth, Di-jet/\(e^+e^-\)+ MET
to Probe \(Z_2-\)Odd Mediators to the
Dark Sector, Eur. Phys. J. C79 (2019)
860.; DOI:10.1140/epjc/s10052-019-7374-3
447.G. Arcadi, O. Lebedev, S. Pokorski and T. Toma, Real Scalar
Dark Matter: Relativistic Treatment, JHEP08 (2019) 050.; DOI:10.1007/JHEP08(2019)050
448.E. Aprile et al., XENON1T Dark Matter Data
Analysis: Signal Reconstruction, Calibration and Event Selection,
Phys. Rev. D100 (2019) 052014.; DOI:10.1103/PhysRevD.100.052014
449.G. Arcadi, M. Lindner, J. Martins and F. S. Queiroz, New physics probes: Atomic parity violation, polarized
electron scattering and neutrino-nucleus coherent scattering,
Nucl. Phys. B959 (2020) 115158.; DOI:10.1016/j.nuclphysb.2020.115158
450.S. Böser, C. Buck, C. Giunti, J. Lesgourgues, L. Ludhova, S.
Mertens, A. Schukraft and M. Wurm, Status of Light
Sterile Neutrino Searches, Prog. Part. Nucl. Phys.111 (2020) 103736.; DOI:10.1016/j.ppnp.2019.103736
452.R. S. L. Hansen and A. Y. Smirnov, Effect of
extended \(\nu\) production region on
collective oscillations in supernovae, JCAP10 (2019) 027.; DOI:10.1088/1475-7516/2019/10/027
453.V. Brdar, A. J. Helmboldt, S. Iwamoto and K. Schmitz, Type-I Seesaw as the Common Origin of Neutrino Mass,
Baryon Asymmetry, and the Electroweak Scale, Phys. Rev.
D100 (2019) 075029.; DOI:10.1103/PhysRevD.100.075029
454.H. Almazán Molina et al., Improved STEREO
simulation with a new gamma ray spectrum of excited gadolinium isotopes
using FIFRELIN, Eur. Phys. J. A55
(2019) 183.; DOI:10.1140/epja/i2019-12886-y
455.E. Akhmedov, Relic neutrino detection through
angular correlations in inverse \(\beta\)-decay, JCAP09 (2019) 031.; DOI:10.1088/1475-7516/2019/09/031
456.G. Alonso-Álvarez, T. Hugle and J. Jaeckel, Misalignment \& Co.:
(Pseudo-)scalar and vector dark matter with curvature couplings,
JCAP02 (2020) 014.; DOI:10.1088/1475-7516/2020/02/014
457.I. Bischer and W. Rodejohann, General neutrino
interactions from an effective field theory perspective,
Nucl. Phys. B947 (2019) 114746.; DOI:10.1016/j.nuclphysb.2019.114746
458.T. Alanne, S. Blasi and N. A. Dondi, Critical
Look at \(\beta\) -Function
Singularities at Large \(N\),
Phys. Rev. Lett.123 (2019) 131602.; DOI:10.1103/PhysRevLett.123.131602
459.T. Alanne, S. Blasi and F. Goertz, Axiflavon-Higgs
Unification, 54th Rencontres de Moriond
on Electroweak Interactions and Unified Theories (pp.
111–116).; Retrieved from https://arxiv.org/abs/1905.07285
460.C. Döring, R. S. L. Hansen and M. Lindner, Stability of three neutrino flavor conversion in
supernovae, JCAP08 (2019) 003.; DOI:10.1088/1475-7516/2019/08/003
461.A. Y. Smirnov, Neutrino Mixing via the Neutrino
Portal, Prospects in Neutrino
Physics.; Retrieved from https://arxiv.org/abs/1905.00838
462.R. S. L. Hansen, M. Lindner and O. Scholer, Timing the neutrino signal of a Galactic
supernova, Phys. Rev. D101 (2020)
123018.; DOI:10.1103/PhysRevD.101.123018
463.E. Aprile et al., Observation of two-neutrino
double electron capture in \(^{124}\)Xe
with XENON1T, Nature568 (2019)
532–535.; DOI:10.1038/s41586-019-1124-4
464.N. F. Bell, G. Busoni and S. Robles, Capture of
Leptophilic Dark Matter in Neutron Stars, JCAP06 (2019) 054.; DOI:10.1088/1475-7516/2019/06/054
465.A. E. Cárcamo Hernández, J. Marchant González and U. J.
Saldaña-Salazar, Viable low-scale model with
universal and inverse seesaw mechanisms, Phys. Rev. D100 (2019) 035024.; DOI:10.1103/PhysRevD.100.035024
466.A. J. Helmboldt, J. Kubo and S. van der Woude, Observational prospects for gravitational waves from
hidden or dark chiral phase transitions, Phys. Rev. D100 (2019) 055025.; DOI:10.1103/PhysRevD.100.055025
467.T. Alanne, S. Blasi and N. A. Dondi, Bubble-resummation and critical-point methods for \(\beta\)-functions at large \(N\), Eur. Phys. J. C79 (2019) 689.; DOI:10.1140/epjc/s10052-019-7190-9
468.A. Acharyya et al., Monte Carlo studies for the
optimisation of the Cherenkov Telescope Array layout,
Astropart. Phys.111 (2019) 35–53.; DOI:10.1016/j.astropartphys.2019.04.001
469.M. Garny, J. Heisig, M. Hufnagel, B. Lülf and S. Vogl, Conversion-driven freeze-out: Dark matter genesis beyond
the WIMP paradigm, (K. Anagnostopoulos et al., Eds.)PoSCORFU2018 (2019) 092.; DOI:10.22323/1.347.0092
470.J. Hakenmüller et al., Neutron-induced
background in the CONUS experiment, Eur. Phys. J. C79 (2019) 699.; DOI:10.1140/epjc/s10052-019-7160-2
471.S. Blasi and F. Goertz, Softened Symmetry
Breaking in Composite Higgs Models, Phys. Rev. Lett.123 (2019) 221801.; DOI:10.1103/PhysRevLett.123.221801
472.I. Bischer, T. Grandou and R. Hofmann, Perturbative Peculiarities of Quantum Field Theories at
High Temperatures, Universe5 (2019)
81.; DOI:10.3390/universe5030081
473.D. Croon, T. E. Gonzalo, L. Graf, N. Košnik and G. White, GUT Physics in the era of the LHC, Front. in
Phys.7 (2019) 76.; DOI:10.3389/fphy.2019.00076
474.G. Arcadi, A. Djouadi and M. Raidal, Dark
Matter through the Higgs portal, Phys. Rept.842 (2020) 1–180.; DOI:10.1016/j.physrep.2019.11.003
475.W. Rodejohann and U. Saldaña-Salazar, Multi-Higgs-Doublet Models and Singular Alignment,
JHEP07 (2019) 036.; DOI:10.1007/JHEP07(2019)036
476.E. Aprile et al., XENON1T dark matter data
analysis: Signal and background models and statistical inference,
Phys. Rev. D99 (2019) 112009.; DOI:10.1103/PhysRevD.99.112009
477.M. J. Dolinski, A. W. P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and
Prospects, Ann. Rev. Nucl. Part. Sci.69 (2019) 219–251.; DOI:10.1146/annurev-nucl-101918-023407
478.E. Aprile et al., Constraining the
spin-dependent WIMP-nucleon cross sections with XENON1T,
Phys. Rev. Lett.122 (2019) 141301.; DOI:10.1103/PhysRevLett.122.141301
479.I. P. Ivanov, C. C. Nishi and A. Trautner, Beyond basis invariants, Eur. Phys. J. C79 (2019) 315.; DOI:10.1140/epjc/s10052-019-6845-x
480.A. Y. Smirnov, The Mikheyev-Smirnov-Wolfenstein (MSW)
Effect, International Conference on
History of the Neutrino: 1930-2018.; Retrieved
from https://arxiv.org/abs/1901.11473
481.R. S. L. Hansen, Extended neutrinosphere
effects on SN nu oscillations, (A. Marrone, A. Mirizzi, & D.
Montanino, Eds.)PoSNOW2018 (2019) 050.;
DOI:10.22323/1.337.0050
482.H. de Kerret et al., Double Chooz \(\theta_{13}\) measurement via total neutron
capture detection, Nature Phys.16
(2020) 558–564.; DOI:10.1038/s41567-020-0831-y
483.M. Agostini et al., Characterization of 30\(^{76}\)Ge enriched Broad Energy Ge
detectors for GERDA Phase II, Eur. Phys. J. C79 (2019) 978.; DOI:10.1140/epjc/s10052-019-7353-8
484.E. Akhmedov, Quantum mechanics aspects and
subtleties of neutrino oscillations, International Conference on History of the
Neutrino: 1930-2018.; Retrieved from https://arxiv.org/abs/1901.05232
485.D. A. Camargo, M. D. Campos, T. B. de Melo and F. S. Queiroz, A Two Higgs Doublet Model for Dark Matter and Neutrino
Masses, Phys. Lett. B795 (2019)
319–326.; DOI:10.1016/j.physletb.2019.06.020
486.I. Bischer, T. Grandou and R. Hofmann, On
Quantum Fields at High Temperature, Universe5 (2019) 26.; DOI:10.3390/universe5010026
487.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Unification of Flavor, CP, and Modular Symmetries,
Phys. Lett. B795 (2019) 7–14.; DOI:10.1016/j.physletb.2019.03.066
488.C. Klein, M. Lindner and S. Ohmer, Minimal Radiative Neutrino
Masses, JHEP03 (2019) 018.; DOI:10.1007/JHEP03(2019)018
489.T. A. Kirsten, GALLEX/GNO: Context and
recollections, In M. Meyer & K. Zuber (Eds.),
Proceedings, 5th International Solar Neutrino
Conference: Dresden, Germany, June 11-14, 2018
(pp. 47–68).; DOI:10.1142/9789811204296_0003
490.A. Y. Smirnov, The MSW effect, solar neutrinos
and searches for new physics, In M. Meyer & K. Zuber (Eds.),
Proceedings, 5th International Solar Neutrino
Conference: Dresden, Germany, June 11-14, 2018
(pp. 143–160).; DOI:10.1142/9789811204296_0007
491.C. K. M. Klein, Minimal radiative neutrino
mass -A systematic study- (Master’s thesis). Heidelberg, Max
Planck Inst.
492.H. Almazán et al., Search for light sterile
neutrinos with the STEREO experiment, (T. Jenke, S. Degenkolb, P.
Geltenbort, M. Jentschel, V. V. Nesvizhevsky, D. Rebreyend, S. Roccia,
et al., Eds.)EPJ Web Conf.219 (2019) 08001.;
DOI:10.1051/epjconf/201921908001
493.T. A. Kirsten, Solar neutrinos: the pioneering
experiments, International Conference on
History of the Neutrino: 1930-2018.
494.A. Smolnikov, Fifty years of searching for
neutrinoless double beta decay with Ge detectors, International Conference on History of the
Neutrino: 1930-2018.
495.C. Buck, Latest results of the CONUS reactor
neutrino experiment, 54th Rencontres de
Moriond on Electroweak Interactions and Unified Theories
(pp. 163–168).
496.G. Arcadi, A. Abada and M. Lucente, Leptogenesis from tiny violation of Lepton Number,
(A. Marrone, A. Mirizzi, & D. Montanino, Eds.)PoSNOW2018 (2018) 090.; DOI:10.22323/1.337.0090
497.A. Abada et al., HE-LHC: The High-Energy Large Hadron
Collider: Future Circular Collider Conceptual Design Report
Volume 4, Eur. Phys. J. ST228 (2019)
1109–1382.; DOI:10.1140/epjst/e2019-900088-6
498.A. Abada et al., FCC-hh: The Hadron
Collider: Future Circular Collider Conceptual Design Report
Volume 3, Eur. Phys. J. ST228 (2019)
755–1107.; DOI:10.1140/epjst/e2019-900087-0
499.A. Abada et al., FCC-ee: The Lepton
Collider: Future Circular Collider Conceptual Design Report
Volume 2, Eur. Phys. J. ST228 (2019)
261–623.; DOI:10.1140/epjst/e2019-900045-4
500.T. Alanne, M. Heikinheimo, V. Keus, N. Koivunen and K. Tuominen,
Direct and indirect probes of Goldstone dark
matter, Phys. Rev. D99 (2019) 075028.;
DOI:10.1103/PhysRevD.99.075028
502.V. Brdar and R. S. L. Hansen, IceCube Flavor
Ratios with Identified Astrophysical Sources: Towards Improving New
Physics Testability, JCAP02 (2019)
023.; DOI:10.1088/1475-7516/2019/02/023
503.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, Low-scale leptogenesis assisted by a real scalar
singlet, JCAP03 (2019) 037.; DOI:10.1088/1475-7516/2019/03/037
504.J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-Standard Neutrino Interactions and Neutral Gauge
Bosons, SciPost Phys.6 (2019) 038.;
DOI:10.21468/SciPostPhys.6.3.038
505.A. Trautner, Systematic construction of basis
invariants in the 2HDM, JHEP05 (2019)
208.; DOI:10.1007/JHEP05(2019)208
506.E. Aprile et al., First results on the scalar
WIMP-pion coupling, using the XENON1T experiment, Phys. Rev.
Lett.122 (2019) 071301.; DOI:10.1103/PhysRevLett.122.071301
507.P. S. Bhupal Dev, R. N. Mohapatra, W. Rodejohann and X.-J. Xu, Vacuum structure of the left-right symmetric
model, JHEP02 (2019) 154.; DOI:10.1007/JHEP02(2019)154
508.M. Lucente, A. Abada, G. Arcadi, V. Domcke, M. Drewes and J. Klaric,
Freeze-in leptogenesis with 3 right-handed
neutrinos, PoSICHEP2018 (2019) 306.;
DOI:10.5281/zenodo.1289773
509.J. Kubo, M. Lindner, K. Schmitz and M. Yamada, Planck mass and inflation as consequences of dynamically
broken scale invariance, Phys. Rev. D100 (2019) 015037.; DOI:10.1103/PhysRevD.100.015037
510.G. Arcadi, J. Heeck, F. Heizmann, S. Mertens, F. S. Queiroz, W.
Rodejohann, M. Slezák and K. Valerius, Tritium beta
decay with additional emission of new light bosons, JHEP01 (2019) 206.; DOI:10.1007/JHEP01(2019)206
511.R. Carr et al., Neutrino-based tools for
nuclear verification and diplomacy in North Korea (2018).; DOI:10.1080/08929882.2019.1603007
512.S. Biondini and S. Vogl, Coloured
coannihilations: Dark matter phenomenology meets non-relativistic
EFTs, JHEP02 (2019) 016.; DOI:10.1007/JHEP02(2019)016
513.I. P. Ivanov, C. C. Nishi, J. P. Silva and A. Trautner, Basis-invariant conditions for \(CP\) symmetry of order four,
Phys. Rev. D99 (2019) 015039.; DOI:10.1103/PhysRevD.99.015039
514.A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente,
Low-scale leptogenesis with three heavy
neutrinos, JHEP01 (2019) 164.; DOI:10.1007/JHEP01(2019)164
515.V. Brdar, A. J. Helmboldt and J. Kubo, Gravitational Waves from First-Order Phase Transitions:
LIGO as a Window to Unexplored Seesaw Scales, JCAP02 (2019) 021.; DOI:10.1088/1475-7516/2019/02/021
516.V. Brdar, W. Rodejohann and X.-J. Xu, Producing
a new Fermion in Coherent Elastic Neutrino-Nucleus Scattering: from
Neutrino Mass to Dark Matter, JHEP12
(2018) 024.; DOI:10.1007/JHEP12(2018)024
517.I. Bischer and W. Rodejohann, General Neutrino
Interactions at the DUNE Near Detector, Phys. Rev. D99 (2019) 036006.; DOI:10.1103/PhysRevD.99.036006
518.V. Brdar and A. Y. Smirnov, Low Scale
Left-Right Symmetry and Naturally Small Neutrino Mass,
JHEP02 (2019) 045.; DOI:10.1007/JHEP02(2019)045
519.A. Ibarra, E. Molinaro and S. Vogl, Potential
for probing three-body decays of Long-Lived Particles with
MATHUSLA, Phys. Lett. B789 (2019)
127–131.; DOI:10.1016/j.physletb.2018.12.015
521.T. Alanne, D. Buarque Franzosi, M. T. Frandsen and M. Rosenlyst,
Dark matter in (partially) composite Higgs
models, JHEP12 (2018) 088.; DOI:10.1007/JHEP12(2018)088
522.T. Alanne and S. Blasi, Abelian gauge-Yukawa
\(\beta\)-functions at large \(N_f\), Phys. Rev. D98 (2018) 116004.; DOI:10.1103/PhysRevD.98.116004
523.J. Kubo and M. Yamada, Scale and confinement
phase transitions in scale invariant \(SU(N)\) scalar gauge theory,
JHEP10 (2018) 003.; DOI:10.1007/JHEP10(2018)003
524.S. Ohmer, Spontaneous CP Violation and the
Strong CP Problem in Left-Right Symmetric Theories, Phys.
Rev. D99 (2019) 115031.; DOI:10.1103/PhysRevD.99.115031
525.V. Brdar, Y. Emonds, A. J. Helmboldt and M. Lindner, Conformal Realization of the Neutrino Option,
Phys. Rev. D99 (2019) 055014.; DOI:10.1103/PhysRevD.99.055014
526.T. Alanne, S. Blasi and F. Goertz, Common
source for scalars: Flavored axion-Higgs unification, Phys.
Rev. D99 (2019) 015028.; DOI:10.1103/PhysRevD.99.015028
527.I. Bischer, W. Rodejohann and X.-J. Xu, Loop-induced Neutrino Non-Standard Interactions,
JHEP10 (2018) 096.; DOI:10.1007/JHEP10(2018)096
528.E. Akhmedov, G. Arcadi, M. Lindner and S. Vogl, Coherent scattering and macroscopic coherence:
Implications for neutrino, dark matter and axion detection,
JHEP10 (2018) 045.; DOI:10.1007/JHEP10(2018)045
529.S. Baumholzer, V. Brdar and P. Schwaller, The
New \(\nu\)MSM (\(\nu\nu\)MSM): Radiative Neutrino Masses,
keV-Scale Dark Matter and Viable Leptogenesis with sub-TeV New
Physics, JHEP08 (2018) 067.; DOI:10.1007/JHEP08(2018)067
530.T. Alanne and S. Blasi, The \(\beta\)-function for Yukawa theory at large
\(N_f\), JHEP08 (2018) 081.; DOI:10.1007/JHEP08(2018)081
531.K. Schmitz and T. T. Yanagida, Axion
Isocurvature Perturbations in Low-Scale Models of Hybrid
Inflation, Phys. Rev. D98 (2018)
075003.; DOI:10.1103/PhysRevD.98.075003
532.H. Almazán et al., Sterile Neutrino Constraints
from the STEREO Experiment with 66 Days of Reactor-On Data,
Phys. Rev. Lett.121 (2018) 161801.; DOI:10.1103/PhysRevLett.121.161801
533.E. Aprile et al., Dark Matter Search Results
from a One Ton-Year Exposure of XENON1T, Phys. Rev.
Lett.121 (2018) 111302.; DOI:10.1103/PhysRevLett.121.111302
534.F. Mackenroth, N. Kumar, N. Neitz and C. H. Keitel, Nonlinear Compton scattering of an ultraintense laser
pulse in a plasma, Phys. Rev. E99
(2019) 033205.; DOI:10.1103/PhysRevE.99.033205
535.T. Hugle, M. Platscher and K. Schmitz, Low-Scale Leptogenesis in the Scotogenic Neutrino Mass
Model, Phys. Rev. D98 (2018) 023020.;
DOI:10.1103/PhysRevD.98.023020
537.G. Arcadi, 2HDM portal for Singlet-Doublet Dark
Matter, Eur. Phys. J. C78 (2018) 864.;
DOI:10.1140/epjc/s10052-018-6327-6
538.M. Agostini et al., New Data Release of GERDA
Phase II: Search for \(0\nu\beta\beta\)
decay of \(^{76}\)Ge, KnE
Energ. Phys.3 (2018) 202–209.; DOI:10.18502/ken.v3i1.1745
539.M. Agostini et al., GERDA results and the
future perspectives for the neutrinoless double beta decay search using
\(^{76}\)Ge, Int. J. Mod.
Phys. A33 (2018) 1843004.; DOI:10.1142/S0217751X18430042
540.M. Lucente, A. Abada, G. Arcadi and V. Domcke, Leptogenesis, dark matter and neutrino masses,
Prospects in Neutrino Physics (pp.
70–78).; Retrieved from https://arxiv.org/abs/1803.10826
541.M. Agostini et al., Improved Limit on
Neutrinoless Double-\(\beta\) Decay of
\(^{76}\)Ge from GERDA Phase II,
Phys. Rev. Lett.120 (2018) 132503.; DOI:10.1103/PhysRevLett.120.132503
542.J. M. Berryman, V. Brdar and P. Huber, Particle
physics origin of the 5 MeV bump in the reactor antineutrino
spectrum?, Phys. Rev. D99 (2019)
055045.; DOI:10.1103/PhysRevD.99.055045
543.A. Y. Smirnov and X.-J. Xu, Neutrino mixing in
SO(10) GUTs with a non-Abelian flavor symmetry in the hidden
sector, Phys. Rev. D97 (2018) 095030.;
DOI:10.1103/PhysRevD.97.095030
544.G. Arcadi, T. Hugle and F. S. Queiroz, The Dark
\(L_\mu - L_\tau\) Rises via Kinetic
Mixing, Phys. Lett. B784 (2018)
151–158.; DOI:10.1016/j.physletb.2018.07.028
545.M. Lindner, F. S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on
Z\(^{′}\) and dark photon
models, JHEP05 (2018) 098.; DOI:10.1007/JHEP05(2018)098
546.H. de Kerret et al., Yields and production
rates of cosmogenic \(^9\)Li and \(^8\)He measured with the Double Chooz near
and far detectors, JHEP11 (2018) 053.;
DOI:10.1007/JHEP11(2018)053
547.Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent
neutrino scattering, JHEP05 (2018)
066.; DOI:10.1007/JHEP05(2018)066
548.V. Brdar, M. Lindner and X.-J. Xu, Neutrino
astronomy with supernova neutrinos, JCAP04 (2018) 025.; DOI:10.1088/1475-7516/2018/04/025
549.R. S. L. Hansen and A. Y. Smirnov, Neutrino
conversion in a neutrino flux: Towards an effective theory of collective
oscillations, JCAP04 (2018) 057.;
DOI:10.1088/1475-7516/2018/04/057
550.T. Alanne, N. Bizot, G. Cacciapaglia and F. Sannino, Classification of NLO operators for composite Higgs
models, Phys. Rev. D97 (2018) 075028.;
DOI:10.1103/PhysRevD.97.075028
551.M. Dutra, M. Lindner, S. Profumo, F. S. Queiroz, W. Rodejohann and
C. Siqueira, MeV Dark Matter Complementarity and
the Dark Photon Portal, JCAP03 (2018)
037.; DOI:10.1088/1475-7516/2018/03/037
552.A. Y. Smirnov, Solar Neutrinos and Matter
Effects, Adv. Ser. Direct. High Energy Phys.28 (2018) 149–209.; DOI:10.1142/9789813226098_0004
553.V. Domcke, A. Abada, G. Arcadi and M. Lucente, Neutrino masses and leptogenesis from small lepton number
violation, 53rd Rencontres de Moriond on
Electroweak Interactions and Unified Theories (pp. 285–290).
554.V. Domcke and K. Schmitz, Inflation from
High-Scale Supersymmetry Breaking, Phys. Rev. D97 (2018) 115025.; DOI:10.1103/PhysRevD.97.115025
556.T. Alanne and F. Goertz, Extended Dark Matter EFT,
Eur. Phys. J. C80 (2020) 446.; DOI:10.1140/epjc/s10052-020-7999-2
557.K. Max, M. Platscher and J. Smirnov, Decoherence of Gravitational Wave Oscillations in
Bigravity, Phys. Rev. D97 (2018)
064009.; DOI:10.1103/PhysRevD.97.064009
558.M. Bauer, M. Klassen and V. Tenorth, Universal
properties of pseudoscalar mediators in dark matter extensions of
2HDMs, JHEP07 (2018) 107.; DOI:10.1007/JHEP07(2018)107
559.A. Carmona and F. Goertz, Recent \(B\) physics anomalies: a first hint for
compositeness?, Eur. Phys. J. C78
(2018) 979.; DOI:10.1140/epjc/s10052-018-6437-1
560.G. Arcadi, C. P. Ferreira, F. Goertz, M. M. Guzzo, F. S. Queiroz and
A. C. O. Santos, Lepton Flavor Violation Induced by
Dark Matter, Phys. Rev. D97 (2018)
075022.; DOI:10.1103/PhysRevD.97.075022
561.T. Alanne, D. Buarque Franzosi, M. T. Frandsen, M. L. A. Kristensen,
A. Meroni and M. Rosenlyst, Partially composite
Higgs models: Phenomenology and RG analysis, JHEP01 (2018) 051.; DOI:10.1007/JHEP01(2018)051
562.G. Benato et al., Radon mitigation during the
installation of the CUORE 0\(\nu\beta\beta\) decay detector,
JINST13 (2018) P01010.; DOI:10.1088/1748-0221/13/01/P01010
563.O. Yu. Smirnov et al., Borexino: Recent results
and future plans, Phys. Part. Nucl.48
(2017) 1026–1029.; DOI:10.1134/S1063779617060533
564.S. Profumo, F. S. Queiroz, J. Silk and C. Siqueira, Searching for Secluded Dark Matter with H.E.S.S.,
Fermi-LAT, and Planck, JCAP03 (2018)
010.; DOI:10.1088/1475-7516/2018/03/010
565.F. Goertz, Indirect estimation of masses beyond
collider reach in EFT, JHEP05 (2019) 090.; DOI:10.1007/JHEP05(2019)090
566.G. Arcadi, M. Lindner, F. S. Queiroz, W. Rodejohann and S. Vogl,
Pseudoscalar Mediators: A WIMP model at the
Neutrino Floor, JCAP03 (2018) 042.;
DOI:10.1088/1475-7516/2018/03/042
567.M. Agostini et al., Upgrade for Phase II of the
Gerda experiment, Eur. Phys. J. C78
(2018) 388.; DOI:10.1140/epjc/s10052-018-5812-2
568.M. Tavani et al., Science with e-ASTROGAM: A
space mission for MeVGeV gamma-ray astrophysics, (A.
De Angelis, V. Tatischeff, I. A. Grenier, J. McEnery, & M.
Mallamaci, Eds.)JHEAp19 (2018) 1–106.; DOI:10.1016/j.jheap.2018.07.001
569.A. Carvalho, F. Goertz, K. Mimasu, M. Gouzevitch and A. Aggarwal,
On the reinterpretation of non-resonant searches
for Higgs boson pairs, JHEP02 (2021)
049.; DOI:10.1007/JHEP02(2021)049
570.F. S. Queiroz, WIMP Theory Review, (P. Checchia et al.,
Eds.)PoSEPS-HEP2017 (2017) 080.; DOI:10.22323/1.314.0080
571.M. Agostini et al., Searching for neutrinoless
double beta decay with GERDA, (K. Clark, C. Jillings, C. Kraus,
J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser.1342 (2020) 012005.; DOI:10.1088/1742-6596/1342/1/012005
572.D. Barducci and A. J. Helmboldt, Quark
flavour-violating Higgs decays at the ILC, JHEP12 (2017) 105.; DOI:10.1007/JHEP12(2017)105
573.P. V. Dong, D. T. Huong, F. S. Queiroz, J. W. F. Valle and C. A.
Vaquera-Araujo, The Dark Side of Flipped
Trinification, JHEP04 (2018) 143.;
DOI:10.1007/JHEP04(2018)143
574.J. Haser, Light sterile neutrino
searches, 29th Rencontres de Blois on
Particle Physics and Cosmology.; Retrieved from https://arxiv.org/abs/1710.06330
575.M. Agostini et al., Search for Neutrinoless
Double Beta Decay with GERDA Phase II, (O. Civitarese, I. Stekl,
& J. Suhonen, Eds.)AIP Conf. Proc.1894
(2017) 020012.; DOI:10.1063/1.5007637
576.T. Abrahão et al., Novel event classification
based on spectral analysis of scintillation waveforms in Double
Chooz, JINST13 (2018) P01031.; DOI:10.1088/1748-0221/13/01/P01031
577.J. Haser, Search for eV Sterile Neutrinos - The
Stereo Experiment, (P. Checchia et al., Eds.)PoSEPS-HEP2017 (2017) 113.; DOI:10.22323/1.314.0113
578.J. Heeck and W. Rodejohann, Lepton flavor
violation with displaced vertices, Phys. Lett. B776 (2018) 385–390.; DOI:10.1016/j.physletb.2017.11.067
579.V. Brdar, J. Kopp, J. Liu and X.-P. Wang, X-Ray
Lines from Dark Matter Annihilation at the keV Scale, Phys.
Rev. Lett.120 (2018) 061301.; DOI:10.1103/PhysRevLett.120.061301
580.N. Fornengo, A. Masiero, F. S. Queiroz and C. E. Yaguna, On the Role of Neutrinos Telescopes in the Search for
Dark Matter Annihilations in the Sun, JCAP12 (2017) 012.; DOI:10.1088/1475-7516/2017/12/012
581.M. Lindner, W. Rodejohann and X.-J. Xu, Neutrino Parameters from Reactor and Accelerator Neutrino
Experiments, Phys. Rev. D97 (2018)
075024.; DOI:10.1103/PhysRevD.97.075024
582.T. Alanne, D. Buarque Franzosi and M. T. Frandsen, A partially composite Goldstone Higgs, Phys.
Rev. D96 (2017) 095012.; DOI:10.1103/PhysRevD.96.095012
583.A. N. Khan and D. W. McKay, Probing New Physics
in Low Energy Solar Neutrino Oscillation Data.; Retrieved from https://arxiv.org/abs/1709.09961
584.E. Aprile et al., Signal Yields of keV
Electronic Recoils and Their Discrimination from Nuclear Recoils in
Liquid Xenon, Phys. Rev. D97 (2018)
092007.; DOI:10.1103/PhysRevD.97.092007
585.B. S. Acharya et al., Science with the
Cherenkov Telescope Array. WSP.; DOI:10.1142/10986
586.M. Agostini et al., First results from GERDA
Phase II, J. Phys. Conf. Ser.888
(2017) 012030.; DOI:10.1088/1742-6596/888/1/012030
587.C. Buck, M. Lindner and C. Roca, Scintillation
light production, propagation and detection in the Stereo reactor
antineutrino experiment, J. Phys. Conf. Ser.888 (2017) 012187.; DOI:10.1088/1742-6596/888/1/012187
588.A. Vishneva et al., Test of the electron
stability with the Borexino detector, J. Phys. Conf.
Ser.888 (2017) 012193.; DOI:10.1088/1742-6596/888/1/012193
589.M. Agostini et al., Active background
suppression with the liquid argon scintillation veto of GERDA Phase
II, J. Phys. Conf. Ser.888 (2017)
012238.; DOI:10.1088/1742-6596/888/1/012238
590.M. Pallavicini et al., Solar neutrino detectors
as sterile neutrino hunters, J. Phys. Conf. Ser.888 (2017) 012018.; DOI:10.1088/1742-6596/888/1/012018
591.C. Buck, M. Lindner and C. Roca, Scintillation
light production, propagation and detection in the Stereo reactor
antineutrino experiment, J. Phys. Conf. Ser.888 (2017) 012101.; DOI:10.1088/1742-6596/888/1/012101
592.M. Agostini et al., Study of the GERDA Phase II
background spectrum, J. Phys. Conf. Ser.888 (2017) 012106.; DOI:10.1088/1742-6596/888/1/012106
593.H. Almazan and D. Navas-Nicolás, Neutrino
detection systematics in the two detector phase of the Double Chooz
experiment, J. Phys. Conf. Ser.888
(2017) 012135.; DOI:10.1088/1742-6596/888/1/012135
594.A. Caminata et al., Improvements in the
simulation code of the SOX experiment, J. Phys. Conf.
Ser.888 (2017) 012145.; DOI:10.1088/1742-6596/888/1/012145
595.A. N. Khan, \(\sin
^{2}\theta _{W}\) Estimate and Neutrino Electromagnetic
Properties from Low-Energy Solar Data, J. Phys. G46 (2019) 035005.; DOI:10.1088/1361-6471/ab0057
596.E. Aprile et al., Search for Bosonic Super-WIMP
Interactions with the XENON100 Experiment, Phys. Rev. D96 (2017) 122002.; DOI:10.1103/PhysRevD.96.122002
597.N. Abgrall et al., The Large Enriched Germanium
Experiment for Neutrinoless Double Beta Decay (LEGEND), (O.
Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc.1894 (2017) 020027.; DOI:10.1063/1.5007652
598.A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small
lepton number violation?, JCAP12
(2017) 024.; DOI:10.1088/1475-7516/2017/12/024
599.E. Aprile et al., The XENON1T Dark Matter Experiment,
Eur. Phys. J. C77 (2017) 881.; DOI:10.1140/epjc/s10052-017-5326-3
600.E. Aprile et al., Intrinsic backgrounds from Rn
and Kr in the XENON100 experiment, Eur. Phys. J. C78 (2018) 132.; DOI:10.1140/epjc/s10052-018-5565-y
601.G. Arcadi, M. D. Campos, M. Lindner, A. Masiero and F. S. Queiroz,
Dark sequential Z’ portal: Collider and direct
detection experiments, Phys. Rev. D97
(2018) 043009.; DOI:10.1103/PhysRevD.97.043009
602.A. Lubashevskiy et al., Mitigation of\(^{42}\) Ar/\(^{42}\) K background for the GERDA Phase II
experiment, Eur. Phys. J. C78 (2018)
15.; DOI:10.1140/epjc/s10052-017-5499-9
603.D. Jiménez, K. Kamada, K. Schmitz and X.-J. Xu, Baryon asymmetry and gravitational waves from
pseudoscalar inflation, JCAP12 (2017)
011.; DOI:10.1088/1475-7516/2017/12/011
604.S.-F. Ge, W. Rodejohann and K. Zuber, Half-life
Expectations for Neutrinoless Double Beta Decay in Standard and
Non-Standard Scenarios, Phys. Rev. D96
(2017) 055019.; DOI:10.1103/PhysRevD.96.055019
605.K. Harigaya and K. Schmitz, Unified Model of
Chaotic Inflation and Dynamical Supersymmetry Breaking, Phys.
Lett. B773 (2017) 320–324.; DOI:10.1016/j.physletb.2017.08.050
606.B. J. Kavanagh, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Prospects for determining the particle/antiparticle
nature of WIMP dark matter with direct detection experiments,
JHEP10 (2017) 059.; DOI:10.1007/JHEP10(2017)059
607.J. G. Ferreira, C. A. de S. Pires, P. S. Rodrigues da Silva and C.
Siqueira, On the Higgs-like boson in the Minimal
Supersymmetric 3-3-1 Model, Eur. Phys. J. C78 (2018) 225.; DOI:10.1140/epjc/s10052-018-5705-4
608.G. Arcadi, P. Ghosh, Y. Mambrini, M. Pierre and F. S. Queiroz, \(Z'\) portal to
Chern-Simons Dark Matter, JCAP11
(2017) 020.; DOI:10.1088/1475-7516/2017/11/020
609.M. Lindner, B. Radovčić and J. Welter, Revisiting Large
Neutrino Magnetic Moments, JHEP07
(2017) 139.; DOI:10.1007/JHEP07(2017)139
610.R. S. L. Hansen and S. Vogl, Thermalizing
sterile neutrino dark matter, Phys. Rev. Lett.119 (2017) 251305.; DOI:10.1103/PhysRevLett.119.251305
611.G. Arcadi, F. S. Queiroz and C. Siqueira, The
Semi-Hooperon: Gamma-ray and anti-proton excesses in the Galactic
Center, Phys. Lett. B775 (2017)
196–205.; DOI:10.1016/j.physletb.2017.10.065
612.A. Pierce, N. R. Shah and S. Vogl, Stop
Co-Annihilation in the Minimal Supersymmetric Standard Model
Revisited, Phys. Rev. D97 (2018)
023008.; DOI:10.1103/PhysRevD.97.023008
613.C. Balázs, J. Conrad, B. Farmer, T. Jacques, T. Li, M. Meyer, F. S.
Queiroz and M. A. Sánchez-Conde, Sensitivity of the
Cherenkov Telescope Array to the detection of a dark matter signal in
comparison to direct detection and collider experiments,
Phys. Rev. D96 (2017) 083002.; DOI:10.1103/PhysRevD.96.083002
614.M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium,
Phys. Rev. D96 (2017) 103521.; DOI:10.1103/PhysRevD.96.103521
615.E. Aprile et al., First Dark Matter Search
Results from the XENON1T Experiment, Phys. Rev. Lett.119 (2017) 181301.; DOI:10.1103/PhysRevLett.119.181301
616.M. D. Campos, D. Cogollo, M. Lindner, T. Melo, F. S. Queiroz and W.
Rodejohann, Neutrino Masses and Absence of Flavor
Changing Interactions in the 2HDM from Gauge Principles,
JHEP08 (2017) 092.; DOI:10.1007/JHEP08(2017)092
617.E. Aprile et al., Effective field theory search
for high-energy nuclear recoils using the XENON100 dark matter
detector, Phys. Rev. D96 (2017)
042004.; DOI:10.1103/PhysRevD.96.042004
618.E. Aprile et al., Material radioassay and
selection for the XENON1T dark matter experiment, Eur. Phys.
J. C77 (2017) 890.; DOI:10.1140/epjc/s10052-017-5329-0
620.E. Aprile et al., Search for WIMP Inelastic
Scattering off Xenon Nuclei with XENON100, Phys. Rev. D96 (2017) 022008.; DOI:10.1103/PhysRevD.96.022008
621.C. Buck, Sterile Neutrinos: Reactor Experiments,
Prospects in Neutrino Physics.;
Retrieved from https://arxiv.org/abs/1704.08885
622.S.-F. Ge, Measuring the Leptonic Dirac CP Phase
with TNT2K, Prospects in Neutrino
Physics.; Retrieved from https://arxiv.org/abs/1704.08518
623.W. Maneschg, Present status of neutrinoless
double beta decay searches, Prospects in
Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08537
624.E. Aprile et al., Search for magnetic inelastic
dark matter with XENON100, JCAP10
(2017) 039.; DOI:10.1088/1475-7516/2017/10/039
625.G. Arcadi, M. Lindner, Y. Mambrini, M. Pierre and F. S. Queiroz,
GUT Models at Current and Future Hadron Colliders
and Implications to Dark Matter Searches, Phys. Lett. B771 (2017) 508–514.; DOI:10.1016/j.physletb.2017.05.023
626.H. H. Patel and B. Radovcic, On the Decoupling
Theorem for Vacuum Metastability, Phys. Lett. B773 (2017) 527–533.; DOI:10.1016/j.physletb.2017.08.075
627.M. Lindner and S. Ohmer, Emerging Internal
Symmetries from Effective Spacetimes, Phys. Lett. B773 (2017) 231–235.; DOI:10.1016/j.physletb.2017.08.026
628.E. Akhmedov, Do non-relativistic neutrinos
oscillate?, JHEP07 (2017) 070.; DOI:10.1007/JHEP07(2017)070
629.K. Max, M. Platscher and J. Smirnov, Gravitational Wave Oscillations in Bigravity,
Phys. Rev. Lett.119 (2017) 111101.; DOI:10.1103/PhysRevLett.119.111101
630.G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre,
S. Profumo and F. S. Queiroz, The waning of the
WIMP? A review of models, searches, and constraints, Eur.
Phys. J. C78 (2018) 203.; DOI:10.1140/epjc/s10052-018-5662-y
631.M. Agostini et al., First results of GERDA
Phase II and consistency with background models, (A. Galper, A.
Petrukhin, A. Taranenko, I. Selyushenkov, M. Skorokhvatov, S. Rubin, V.
Dmitrnko, et al., Eds.)J. Phys. Conf. Ser.798
(2017) 012106.; DOI:10.1088/1742-6596/798/1/012106
632.D. Jeschke et al., Recent Results from
Borexino, (A. Galper, A. Petrukhin, A. Taranenko, I.
Selyushenkov, M. Skorokhvatov, S. Rubin, V. Dmitrnko, et al.,
Eds.)J. Phys. Conf. Ser.798 (2017) 012114.;
DOI:10.1088/1742-6596/798/1/012114
633.P. S. B. Dev, C. M. Vila and W. Rodejohann, Naturalness in testable type II seesaw scenarios,
Nucl. Phys. B921 (2017) 436–453.; DOI:10.1016/j.nuclphysb.2017.06.007
634.M. Agostini et al., Background-free search for
neutrinoless double-\(\beta\) decay of
\(^{76}\)Ge with GERDA,
Nature544 (2017) 47.; DOI:10.1038/nature21717
635.E. Akhmedov, J. Kopp and M. Lindner, Collective
neutrino oscillations and neutrino wave packets, JCAP09 (2017) 017.; DOI:10.1088/1475-7516/2017/09/017
636.E. Aprile et al., Online\(^{222}\) Rn removal by cryogenic
distillation in the XENON100 experiment, Eur. Phys. J. C77 (2017) 358.; DOI:10.1140/epjc/s10052-017-4902-x
637.V. D’Andrea et al., First Results of Gerda
Phase II, PoSNOW2016 (2017) 098.;
DOI:10.22323/1.283.0098
638.M. D. Campos, F. S. Queiroz, C. E. Yaguna and C. Weniger, Search for right-handed neutrinos from dark matter
annihilation with gamma-rays, JCAP07
(2017) 016.; DOI:10.1088/1475-7516/2017/07/016
639.W. Rodejohann, X.-J. Xu and C. E. Yaguna, Distinguishing between Dirac and Majorana neutrinos in
the presence of general interactions, JHEP05 (2017) 024.; DOI:10.1007/JHEP05(2017)024
640.P. Pasquini, S.-F. Ge, M. A. Tórtola and J. W. F. Valle, Measuring the Leptonic CP Phase in Neutrino Oscillations
with Non-Unitary Mixing, PoSNOW2016
(2017) 026.; DOI:10.22323/1.283.0026
641.S.-F. Ge, M. Lindner and W. Rodejohann, Atmospheric Trident Production for Probing New
Physics, Phys. Lett. B772 (2017)
164–168.; DOI:10.1016/j.physletb.2017.06.020
642.V. Domcke and K. Schmitz, Unified model of
D-term inflation, Phys. Rev. D95
(2017) 075020.; DOI:10.1103/PhysRevD.95.075020
643.E. Aprile et al., Search for Electronic Recoil
Event Rate Modulation with 4 Years of XENON100 Data, Phys.
Rev. Lett.118 (2017) 101101.; DOI:10.1103/PhysRevLett.118.101101
644.S. Marcocci et al., Real-time detection of
solar neutrinos with Borexino, Nuovo Cim. C40 (2017) 58.; DOI:10.1393/ncc/i2017-17058-9
645.G. Arcadi, Impact of next future Direct
Detection experiments on Dark Portals and beyond, (A. Morselli,
A. Capone, & G. Rodriguez Fernandez, Eds.)EPJ Web Conf.136 (2017) 05003.; DOI:10.1051/epjconf/201713605003
646.T. Rink, K. Schmitz and T. T. Yanagida, Minimal
Seesaw Model with a Discrete Heavy-Neutrino Exchange Symmetry
(2016).; Retrieved from https://arxiv.org/abs/1612.08878
647.P. S. B. Dev, Testing Neutrino Mass Models at
the LHC and beyond, PoSICHEP2016
(2016) 487.; DOI:10.22323/1.282.0487
648.A. Alves, G. Arcadi, Y. Mambrini, S. Profumo and F. S. Queiroz,
Augury of darkness: the low-mass dark Z\(^{′}\) portal, JHEP04 (2017) 164.; DOI:10.1007/JHEP04(2017)164
649.P. Fileviez Perez and S. Ohmer, Unification and
Local Baryon Number, Phys. Lett. B768
(2017) 86–91.; DOI:10.1016/j.physletb.2017.02.049
650.M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino
Interactions, JHEP03 (2017) 097.;
DOI:10.1007/JHEP03(2017)097
651.E. Aprile et al., Removing krypton from xenon
by cryogenic distillation to the ppq level, Eur. Phys. J.
C77 (2017) 275.; DOI:10.1140/epjc/s10052-017-4757-1
652.A. Alves, G. Arcadi, P. V. Dong, L. Duarte, F. S. Queiroz and J. W.
F. Valle, Matter-parity as a residual gauge
symmetry: Probing a theory of cosmological dark matter, Phys.
Lett. B772 (2017) 825–831.; DOI:10.1016/j.physletb.2017.07.056
653.H. H. Patel, Package-X 2.0: A Mathematica
package for the analytic calculation of one-loop integrals,
Comput. Phys. Commun.218 (2017) 66–70.;
DOI:10.1016/j.cpc.2017.04.015
654.R. S. L. Lundkvist, M. Archidiacono, S. Hannestad and T. Tram, How to make the short baseline sterile neutrino
compatible with cosmology, PoSICHEP2016 (2016) 478.; DOI:10.22323/1.282.0478
655.A. G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Probing the scotogenic FIMP at the LHC,
JHEP01 (2017) 100.; DOI:10.1007/JHEP01(2017)100
656.G. Arcadi, C. Gross, O. Lebedev, S. Pokorski and T. Toma, Evading Direct Dark Matter Detection in Higgs Portal
Models, Phys. Lett. B769 (2017)
129–133.; DOI:10.1016/j.physletb.2017.03.044
657.M. Platscher and J. Smirnov, Degravitation of
the Cosmological Constant in Bigravity, JCAP03 (2017) 051.; DOI:10.1088/1475-7516/2017/03/051
658.T. Abrahão et al., Cosmic-muon characterization
and annual modulation measurement with Double Chooz detectors,
JCAP02 (2017) 017.; DOI:10.1088/1475-7516/2017/02/017
659.A. Angelescu and G. Arcadi, Dark Matter
Phenomenology of SM and Enlarged Higgs Sectors Extended with Vector Like
Leptons, Eur. Phys. J. C77 (2017)
456.; DOI:10.1140/epjc/s10052-017-5015-2
660.M. Agostini et al., Limits on uranium and
thorium bulk content in GERDA Phase I detectors, Astropart.
Phys.91 (2017) 15–21.; DOI:10.1016/j.astropartphys.2017.03.003
661.T. Rink and K. Schmitz, Perturbed Yukawa
Textures in the Minimal Seesaw Model, JHEP03 (2017) 158.; DOI:10.1007/JHEP03(2017)158
662.M. Agostini et al., Search for Neutrinoless
Double Beta Decay with the GERDA experiment: Phase II,
PoSICHEP2016 (2016) 493.; DOI:10.22323/1.282.0493
663.C. Buck, The Double Chooz experiment,
PoSNOW2016 (2016) 007.; DOI:10.22323/1.283.0007
664.S. Bruenner, D. Cichon, S. Lindemann, T. Marrodán Undagoitia and H.
Simgen, Radon depletion in xenon boil-off
gas, Eur. Phys. J. C77 (2017) 143.;
DOI:10.1140/epjc/s10052-017-4676-1
665.G. Bambhaniya, P. S. Bhupal Dev, S. Goswami, S. Khan and W.
Rodejohann, Naturalness, Vacuum Stability and
Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D95 (2017) 095016.; DOI:10.1103/PhysRevD.95.095016
666.E. Aprile et al., Results from a Calibration of
XENON100 Using a Source of Dissolved Radon-220, Phys. Rev.
D95 (2017) 072008.; DOI:10.1103/PhysRevD.95.072008
667.G. Arcadi, C. Gross, O. Lebedev, Y. Mambrini, S. Pokorski and T.
Toma, Multicomponent Dark Matter from Gauge
Symmetry, JHEP12 (2016) 081.; DOI:10.1007/JHEP12(2016)081
668.C. E. Yaguna, Isospin-violating dark matter in
the light of recent data, Phys. Rev. D95 (2017) 055015.; DOI:10.1103/PhysRevD.95.055015
669.F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Is the dark matter particle its own antiparticle?,
Phys. Rev. D95 (2017) 095010.; DOI:10.1103/PhysRevD.95.095010
670.M. Lindner, M. Platscher and F. S. Queiroz, A
Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton
Flavor Violation, Phys. Rept.731
(2018) 1–82.; DOI:10.1016/j.physrep.2017.12.001
671.S.-F. Ge, H.-J. He and R.-Q. Xiao, Testing
Higgs coupling precision and new physics scales at lepton
colliders, (L. R. Flores Castillo & K. Prokofiev,
Eds.)Int. J. Mod. Phys. A31 (2016) 1644004.;
DOI:10.1142/S0217751X16440048
672.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in
leftright models, Mod. Phys. Lett. A32 (2017) 1740007.; DOI:10.1142/S0217732317400077
673.N. Priel, L. Rauch, H. Landsman, A. Manfredini and R. Budnik, A model independent safeguard against background
mismodeling for statistical inference, JCAP05 (2017) 013.; DOI:10.1088/1475-7516/2017/05/013
674.R. S. L. Hansen and A. Yu. Smirnov, The
Liouville equation for flavour evolution of neutrinos and neutrino wave
packets, JCAP12 (2016) 019.; DOI:10.1088/1475-7516/2016/12/019
675.A. J. Helmboldt and M. Lindner, Prospects for
three-body Higgs boson decays into extra light scalars, Phys.
Rev. D95 (2017) 055008.; DOI:10.1103/PhysRevD.95.055008
676.E. Aprile et al., XENON100 Dark Matter Results
from a Combination of 477 Live Days, Phys. Rev. D94 (2016) 122001.; DOI:10.1103/PhysRevD.94.122001
677.P. S. B. Dev, M. Lindner and S. Ohmer, Gravitational waves as a new probe of
BoseEinstein condensate Dark Matter, Phys. Lett.
B773 (2017) 219–224.; DOI:10.1016/j.physletb.2017.08.043
678.W. Altmannshofer, S. Gori, S. Profumo and F. S. Queiroz, Explaining dark matter and B decay anomalies with an
\(L_\mu - L_\tau\) model,
JHEP12 (2016) 106.; DOI:10.1007/JHEP12(2016)106
679.E. Aprile et al., Search for two-neutrino
double electron capture of \(^{124}\)Xe
with XENON100, Phys. Rev. C95 (2017)
024605.; DOI:10.1103/PhysRevC.95.024605
680.P. Barrow et al., Qualification Tests of the
R11410-21 Photomultiplier Tubes for the XENON1T Detector,
JINST12 (2017) P01024.; DOI:10.1088/1748-0221/12/01/P01024
681.M. Herranen, A. Hohenegger, A. Osland and A. Tranberg, Quantum corrections to inflation: the importance of
RG-running and choosing the optimal RG-scale, Phys. Rev.
D95 (2017) 023525.; DOI:10.1103/PhysRevD.95.023525
682.F. S. Queiroz, C. Siqueira and J. W. F. Valle, Constraining Flavor Changing Interactions from LHC Run-2
Dilepton Bounds with Vector Mediators, Phys. Lett. B763 (2016) 269–274.; DOI:10.1016/j.physletb.2016.10.057
683.P. S. Bhupal Dev, R. N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark
matter, JHEP11 (2016) 077.; DOI:10.1007/JHEP11(2016)077
684.F. Björkeroth, S. F. King, K. Schmitz and T. T. Yanagida, Leptogenesis after Chaotic Sneutrino Inflation and the
Supersymmetry Breaking Scale, Nucl. Phys. B916 (2017) 688–708.; DOI:10.1016/j.nuclphysb.2017.01.017
685.S.-F. Ge and M. Lindner, Extracting Majorana
properties from strong bounds on neutrinoless double beta decay,
Phys. Rev. D95 (2017) 033003.; DOI:10.1103/PhysRevD.95.033003
686.C. Buck and M. Yeh, Metal-loaded organic
scintillators for neutrino physics, J. Phys. G43 (2016) 093001.; DOI:10.1088/0954-3899/43/9/093001
687.M. Lindner, M. Platscher, C. E. Yaguna and A. Merle, Fermionic WIMPs and vacuum stability in the scotogenic
model, Phys. Rev. D94 (2016) 115027.;
DOI:10.1103/PhysRevD.94.115027
688.S.-F. Ge and A. Yu. Smirnov, Non-standard
interactions and the CP phase measurements in neutrino oscillations at
low energies, JHEP10 (2016) 138.;
DOI:10.1007/JHEP10(2016)138
689.W. Altmannshofer, C.-Y. Chen, P. S. Bhupal Dev and A. Soni, Lepton flavor violating Z’ explanation of the muon
anomalous magnetic moment, Phys. Lett. B762 (2016) 389–398.; DOI:10.1016/j.physletb.2016.09.046
690.M. Klasen, F. Lyonnet and F. S. Queiroz, NLO+NLL collider bounds, Dirac fermion and scalar dark
matter in the BL model, Eur. Phys. J. C77 (2017) 348.; DOI:10.1140/epjc/s10052-017-4904-8
691.M. Agostini et al., Borexino’s
search for low-energy neutrino and antineutrino signals correlated with
gamma-ray bursts, Astropart. Phys.86
(2017) 11–17.; DOI:10.1016/j.astropartphys.2016.10.004
692.S. Patra, W. Rodejohann and C. E. Yaguna, A new
B \(-\) L model without
right-handed neutrinos, JHEP09 (2016)
076.; DOI:10.1007/JHEP09(2016)076
693.A. Caminata et al., Short distance neutrino
oscillations with Borexino, (P. Piattelli, A. Capone, R.
Coniglione, G. De Bonis, M. De Vincenzi, C. Distefano, A. Morselli, et
al., Eds.)EPJ Web Conf.121 (2016) 01002.;
DOI:10.1051/epjconf/201612101002
694.S. Davini et al., New results of the Borexino
experiment: pp solar neutrino detection, (M. Greco, Ed.)Nuovo
Cim. C38 (2016) 120.; DOI:10.1393/ncc/i2015-15120-4
695.P. Fileviez Perez, C. Murgui and S. Ohmer, Simple Left-Right Theory: Lepton Number Violation at the
LHC, Phys. Rev. D94 (2016) 051701.;
DOI:10.1103/PhysRevD.94.051701
696.R. Contino et al., Physics at a 100 TeV pp
collider: Higgs and EW symmetry breaking studies (2016).; DOI:10.23731/CYRM-2017-003.255
697.F. S. Queiroz, Comment on
“Polarized window for left-right symmetry and a
right-handed neutrino at the Large Hadron-Electron
Collider”, Phys. Rev. D93
(2016) 118701.; DOI:10.1103/PhysRevD.93.118701
698.R. Arnold et al., Measurement of the 2\(\nu\beta\beta\) decay half-life of \(^{150}\)Nd and a search for 0\(\nu\beta\beta\) decay processes with the
full exposure from the NEMO-3 detector, Phys. Rev. D94 (2016) 072003.; DOI:10.1103/PhysRevD.94.072003
699.M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M.
Laveder and T. Tram, Pseudoscalarsterile neutrino interactions:
reconciling the cosmos with neutrino oscillations, JCAP08 (2016) 067.; DOI:10.1088/1475-7516/2016/08/067
700.E. Akhmedov, Atmospheric neutrinos, \(\nu_{e}-\nu_{s}\) oscillations and a novel
neutrino evolution equation, JHEP08
(2016) 153.; DOI:10.1007/JHEP08(2016)153
701.J. Aalbers et al., DARWIN: towards the ultimate
dark matter detector, JCAP11 (2016)
017.; DOI:10.1088/1475-7516/2016/11/017
702.A. Alves, D. A. Camargo, A. G. Dias, R. Longas, C. C. Nishi and F.
S. Queiroz, Collider and Dark Matter Searches in
the Inert Doublet Model from Peccei-Quinn Symmetry, JHEP10 (2016) 015.; DOI:10.1007/JHEP10(2016)015
703.V. Wagner, Status of the GERDA Phase II
upgrade, (B. Szczerbinska, R. Allahverdi, K. Babu, B. Balantekin,
B. Dutta, T. Kamon, J. Kumar, et al., Eds.)AIP Conf. Proc.1743 (2016) 060005.; DOI:10.1063/1.4953322
704.P. S. B. Dev, D. Kazanas, R. N. Mohapatra, V. L. Teplitz and Y.
Zhang, Heavy right-handed neutrino dark matter and
PeV neutrinos at IceCube, JCAP08
(2016) 034.; DOI:10.1088/1475-7516/2016/08/034
705.M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Secret neutrino interactions: a pseudoscalar
model, J. Phys. Conf. Ser.718 (2016)
032002.; DOI:10.1088/1742-6596/718/3/032002
706.J. Hakenmüller, W. Maneschg and G. Heusser, Simulation and verification of the cosmogenic background
at the shallow depth GIOVE detector, J. Phys. Conf. Ser.718 (2016) 042028.; DOI:10.1088/1742-6596/718/4/042028
707.J. Haser, Search for eV sterile neutrinos at a
nuclear reactor the Stereo project, J. Phys.
Conf. Ser.718 (2016) 062023.; DOI:10.1088/1742-6596/718/6/062023
708.A. Ianni et al., High significance measurement
of the terrestrial neutrino flux with the Borexino detector,
J. Phys. Conf. Ser.718 (2016) 062025.; DOI:10.1088/1742-6596/718/6/062025
709.G. Testera et al., Recent results from
Borexino, J. Phys. Conf. Ser.718
(2016) 062059.; DOI:10.1088/1742-6596/718/6/062059
710.M. Vivier et al., SOX: search for short
baseline neutrino oscillations with Borexino, J. Phys. Conf.
Ser.718 (2016) 062066.; DOI:10.1088/1742-6596/718/6/062066
711.T. Golling et al., Physics at a 100 TeV pp
collider: beyond the Standard Model phenomena (2016).; DOI:10.23731/CYRM-2017-003.441
712.S. Zavatarelli et al., Recent results from
Borexino and the first real time measure of solar pp neutrinos,
(M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a,
Eds.)Nucl. Part. Phys. Proc.273-275 (2016)
1753–1759.; DOI:10.1016/j.nuclphysbps.2015.09.282
713.D. Bravo-Berguño et al., SOX: Short Distance
Neutrino Oscillations with Borexino, (M. Aguilar-Benı́tez, J.
Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys.
Proc.273-275 (2016) 1760–1764.; DOI:10.1016/j.nuclphysbps.2015.09.283
714.J. Haser, Current status of the Double Chooz
experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a,
& A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc.273-275 (2016) 1915–1921.; DOI:10.1016/j.nuclphysbps.2015.09.309
715.A. P. Collin, J. I. Crespo-Anadón, J. Haser and G. Yang, Measurement of the detection systematic uncertainty in
the Double Chooz experiment, (M. Aguilar-Benı́tez, J. Fuster, S.
Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc.273-275 (2016) 2645–2647.; DOI:10.1016/j.nuclphysbps.2015.10.017
716.M. Agostini et al., Search of Neutrinoless
Double Beta Decay with the GERDA Experiment, (M. Aguilar-Benı́tez,
J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part.
Phys. Proc.273-275 (2016) 1876–1882.; DOI:10.1016/j.nuclphysbps.2015.09.303
717.P. S. B. Dev, D. K. Ghosh and W. Rodejohann, R-parity Violating Supersymmetry at IceCube,
Phys. Lett. B762 (2016) 116–123.; DOI:10.1016/j.physletb.2016.08.066
718.F. S. Queiroz, Dark Matter Overview: Collider,
Direct and Indirect Detection Searches, 51st Rencontres de Moriond on EW Interactions and Unified
Theories (pp. 427–436). ARISF.; Retrieved from https://arxiv.org/abs/1605.08788
719.E. Aprile et al., Low-mass dark matter search
using ionization signals in XENON100, Phys. Rev. D94 (2016) 092001.; DOI:10.1103/PhysRevD.94.092001
720.M. D. Campos and W. Rodejohann, Testing keV
sterile neutrino dark matter in future direct detection
experiments, Phys. Rev. D94 (2016)
095010.; DOI:10.1103/PhysRevD.94.095010
721.S.-F. Ge, P. Pasquini, M. Tortola and J. W. F. Valle, Measuring the leptonic CP phase in neutrino oscillations
with nonunitary mixing, Phys. Rev. D95
(2017) 033005.; DOI:10.1103/PhysRevD.95.033005
722.M. Agostini et al., Limit on the radiative
neutrinoless double electron capture of\(^{36}\) Ar from GERDA Phase I,
Eur. Phys. J. C76 (2016) 652.; DOI:10.1140/epjc/s10052-016-4454-5
723.M. Lindner, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Left-Right Symmetry and Lepton Number Violation at the
Large Hadron Electron Collider, JHEP06
(2016) 140.; DOI:10.1007/JHEP06(2016)140
724.M. Lindner, F. S. Queiroz and W. Rodejohann, Dilepton bounds on leftright symmetry at the
LHC run II and neutrinoless double beta decay, Phys. Lett.
B762 (2016) 190–195.; DOI:10.1016/j.physletb.2016.08.068
725.Y. Abe et al., Characterization of the
Spontaneous Light Emission of the PMTs used in the Double Chooz
Experiment, JINST11 (2016) P08001.;
DOI:10.1088/1748-0221/11/08/P08001
726.M. Duerr, P. Fileviez Perez and J. Smirnov, New
Forces and the 750 GeV Resonance (2016).; Retrieved from https://arxiv.org/abs/1604.05319
727.K. Schmitz and T. T. Yanagida, Dynamical
supersymmetry breaking and late-time R symmetry breaking as the origin
of cosmic inflation, Phys. Rev. D94
(2016) 074021.; DOI:10.1103/PhysRevD.94.074021
728.X. Chu and A. Yu. Smirnov, Neutrino mixing and
masses in SO(10) GUTs with hidden sector and flavor symmetries,
JHEP05 (2016) 135.; DOI:10.1007/JHEP05(2016)135
729.P. Fileviez Perez and C. Murgui, Renormalizable SU(5)
Unification, Phys. Rev. D94 (2016)
075014.; DOI:10.1103/PhysRevD.94.075014
730.P. O. Ludl and W. Rodejohann, Direct Neutrino
Mass Experiments and Exotic Charged Current Interactions,
JHEP06 (2016) 040.; DOI:10.1007/JHEP06(2016)040
731.A. Merle, M. Platscher, N. Rojas, J. W. F. Valle and A. Vicente,
Consistency of WIMP Dark Matter as radiative
neutrino mass messenger, JHEP07 (2016)
013.; DOI:10.1007/JHEP07(2016)013
732.A. J. Helmboldt, P. Humbert, M. Lindner and J. Smirnov, Minimal conformal extensions of the Higgs sector,
JHEP07 (2017) 113.; DOI:10.1007/JHEP07(2017)113
733.S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new
physics scales from Higgs and electroweak observables at e\(^{+}\) e\(^{−}\) Higgs factory, JHEP10 (2016) 007.; DOI:10.1007/JHEP10(2016)007
734.S. Profumo, F. S. Queiroz and C. E. Yaguna, Extending Fermi-LAT and H.E.S.S. Limits on Gamma-ray
Lines from Dark Matter Annihilation, Mon. Not. Roy. Astron.
Soc.461 (2016) 3976–3981.; DOI:10.1093/mnras/stw1600
735.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right
Symmetric Model at Future Hadron Colliders, JHEP05 (2016) 174.; DOI:10.1007/JHEP05(2016)174
736.F. S. Queiroz, C. E. Yaguna and C. Weniger, Gamma-ray Limits on Neutrino Lines, JCAP05 (2016) 050.; DOI:10.1088/1475-7516/2016/05/050
737.P. S. B. Dev and A. Mazumdar, Probing the Scale
of New Physics by Advanced LIGO/VIRGO, Phys. Rev. D93 (2016) 104001.; DOI:10.1103/PhysRevD.93.104001
738.S. Chakraborty, R. Hansen, I. Izaguirre and G. Raffelt, Collective neutrino flavor conversion: Recent
developments, Nucl. Phys. B908 (2016)
366–381.; DOI:10.1016/j.nuclphysb.2016.02.012
739.A. Caminata et al., Understanding the detector
behavior through Montecarlo and calibration studies in view of the SOX
measurement, J. Phys. Conf. Ser.675
(2016) 012012.; DOI:10.1088/1742-6596/675/1/012012
740.A. Vishneva et al., Test of the electric charge
conservation law with Borexino detector, J. Phys. Conf.
Ser.675 (2016) 012025.; DOI:10.1088/1742-6596/675/1/012025
741.O. Y. Smirnov et al., Measurement of Solar
pp-neutrino flux with Borexino: results and implications, J.
Phys. Conf. Ser.675 (2016) 012027.; DOI:10.1088/1742-6596/675/1/012027
742.R. Roncin et al., Geo-neutrino results with
Borexino, J. Phys. Conf. Ser.675
(2016) 012029.; DOI:10.1088/1742-6596/675/1/012029
743.M. Durero et al., The \(^{144}\)Ce source for SOX, J.
Phys. Conf. Ser.675 (2016) 012032.; DOI:10.1088/1742-6596/675/1/012032
744.L. Di Noto et al., The high precision
measurement of the \(^{144}\)Ce
activity in the SOX experiment, J. Phys. Conf. Ser.675 (2016) 012035.; DOI:10.1088/1742-6596/675/1/012035
745.G. Ranucci et al., Overview and accomplishments
of the Borexino experiment, J. Phys. Conf. Ser.675 (2016) 012036.; DOI:10.1088/1742-6596/675/1/012036
746.S. Davini et al., CNO and pep solar neutrino
measurements and perspectives in Borexino, J. Phys. Conf.
Ser.675 (2016) 012040.; DOI:10.1088/1742-6596/675/1/012040
747.S.-F. Ge, H.-J. He, J. Ren and Z.-Z. Xianyu, Realizing Dark Matter and Higgs Inflation in Light of LHC
Diphoton Excess, Phys. Lett. B757
(2016) 480–492.; DOI:10.1016/j.physletb.2016.04.008
748.R. F. Lang, A. Brown, E. Brown, M. Cervantes, S. Macmullin, D.
Masson, J. Schreiner and H. Simgen, A \(^{220}\)Rn source for the calibration of
low-background experiments, JINST11
(2016) P04004.; DOI:10.1088/1748-0221/11/04/P04004
749.S. Chakraborty, R. S. Hansen, I. Izaguirre and G. Raffelt, Self-induced neutrino flavor conversion without flavor
mixing, JCAP03 (2016) 042.; DOI:10.1088/1475-7516/2016/03/042
750.E. Akhmedov and A. Mirizzi, Another look at
synchronized neutrino oscillations, Nucl. Phys. B908 (2016) 382–407.; DOI:10.1016/j.nuclphysb.2016.02.011
751.M. Agostini et al., Flux Modulations seen by
the Muon Veto of the GERDA Experiment, Astropart. Phys.84 (2016) 29–35.; DOI:10.1016/j.astropartphys.2016.08.002
752.P. S. B. Dev and A. Ibarra, Heavy Neutrinos at
Future Colliders, (G. Corcella, S. De Curtis, S. Moretti, &
G. Pancheri, Eds.)Frascati Phys. Ser.61
(2016) 40.; Retrieved from https://arxiv.org/abs/1601.01658
753.A. Ibarra, C. E. Yaguna and O. Zapata, Direct
Detection of Fermion Dark Matter in the Radiative Seesaw Model,
Phys. Rev. D93 (2016) 035012.; DOI:10.1103/PhysRevD.93.035012
754.A. Caminata et al., Search for sterile
neutrinos with the SOX experiment, Nuovo Cim. C39 (2016) 236.; DOI:10.1393/ncc/i2016-16236-7
755.S. Marcocci et al., Measurement of solar
neutrino fluxes with Borexino, Magellan
Workshop: Connecting Neutrino Physics and
Astronomy (pp. 95–104).; DOI:10.3204/DESY-PROC-2016-05/30
756.A. Caminata et al., Monte Carlo simulations in
neutrino physics: the example of the SOX experiment,
Magellan Workshop: Connecting
Neutrino Physics and Astronomy (pp. 105–112).; DOI:10.3204/DESY-PROC-2016-05/21
757.A. Caminata et al., The SOX experiment:
understanding the detector behavior using calibration sources,
Magellan Workshop: Connecting
Neutrino Physics and Astronomy (pp. 175–180).; DOI:10.3204/DESY-PROC-2016-05/22
758.K. Altenmüller et al., The search for sterile
neutrinos with SOX-Borexino, Phys. Atom. Nucl.79 (2016) 1481–1484.; DOI:10.1134/S106377881610001X
759.J. Kersten and A. Yu. Smirnov, Decoherence and
oscillations of supernova neutrinos, Eur. Phys. J. C76 (2016) 339.; DOI:10.1140/epjc/s10052-016-4187-5
760.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Quark Seesaw, Vectorlike Fermions and Diphoton
Excess, JHEP02 (2016) 186.; DOI:10.1007/JHEP02(2016)186
761.E. Aprile et al., Physics reach of the XENON1T
dark matter experiment, JCAP04 (2016)
027.; DOI:10.1088/1475-7516/2016/04/027
762.Y. Abe et al., Muon capture on light isotopes
measured with the Double Chooz detector, Phys. Rev. C93 (2016) 054608.; DOI:10.1103/PhysRevC.93.054608
763.B. C. Allanach, P. S. B. Dev, S. A. Renner and K. Sakurai, 750 GeV diphoton excess explained by a resonant sneutrino
in R-parity violating supersymmetry, Phys. Rev. D93 (2016) 115022.; DOI:10.1103/PhysRevD.93.115022
764.C. Buck, The Double Chooz experiment,
PoSNEUTEL2015 (2015) 015.; DOI:10.22323/1.244.0015
765.P. S. B. Dev and D. Teresi, Asymmetric dark
matter in the Sun and diphoton excess at the LHC, Phys. Rev.
D94 (2016) 025001.; DOI:10.1103/PhysRevD.94.025001
766.C. Buck, A. P. Collin, J. Haser and M. Lindner, Investigating the Spectral Anomaly with Different Reactor
Antineutrino Experiments, Phys. Lett. B765 (2017) 159–162.; DOI:10.1016/j.physletb.2016.11.062
767.A. Y. Smirnov, Neutrino properties, mass
hierarchy, and CP-violation, PoSICRC2015 (2016) 004.; DOI:10.22323/1.236.0004
768.G. Bambhaniya, P. S. B. Dev, S. Goswami and M. Mitra, The Scalar Triplet Contribution to Lepton Flavour
Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric
Model, JHEP04 (2016) 046.; DOI:10.1007/JHEP04(2016)046
769.B. Allanach, F. S. Queiroz, A. Strumia and S. Sun, \(Z′\) models for the
LHCb and \(g-2\) muon anomalies,
Phys. Rev. D93 (2016) 055045.; DOI:10.1103/PhysRevD.93.055045
770.M. Lindner, H. H. Patel and B. Radovčić, Electroweak Absolute, Meta-, and Thermal Stability in
Neutrino Mass Models, Phys. Rev. D93
(2016) 073005.; DOI:10.1103/PhysRevD.93.073005
771.F. S. Queiroz and C. E. Yaguna, The CTA aims at
the Inert Doublet Model, JCAP02 (2016)
038.; DOI:10.1088/1475-7516/2016/02/038
772.L. Miramonti et al., Geo-neutrinos from 1353
Days with the Borexino Detector, (F. Avignone & W. Haxton,
Eds.)Phys. Procedia61 (2015) 340–344.; DOI:10.1016/j.phpro.2014.12.073
773.O. Smirnov et al., Short Distance Neutrino
Oscillations with BoreXino: SOX, (F. Avignone & W. Haxton,
Eds.)Phys. Procedia61 (2015) 511–517.; DOI:10.1016/j.phpro.2014.12.115
774.Y. Abe et al., Measurement of \(\theta\)\(_{13}\) in Double Chooz using neutron
captures on hydrogen with novel background rejection techniques,
JHEP01 (2016) 163.; DOI:10.1007/JHEP01(2016)163
775.M. Duerr, P. Fileviez Pérez and J. Smirnov, Gamma-Ray Excess and the Minimal Dark Matter
Model, JHEP06 (2016) 008.; DOI:10.1007/JHEP06(2016)008
776.C. E. Yaguna, Singlet-Doublet Dirac Dark Matter,
Phys. Rev. D92 (2015) 115002.; DOI:10.1103/PhysRevD.92.115002
777.M. Lindner, W. Rodejohann and X.-J. Xu, Sterile
neutrinos in the light of IceCube, JHEP01 (2016) 124.; DOI:10.1007/JHEP01(2016)124
778.A. Esmaili and A. Yu. Smirnov, Discrete
symmetries and mixing of Dirac neutrinos, Phys. Rev. D92 (2015) 093012.; DOI:10.1103/PhysRevD.92.093012
779.M. G. Baring, T. Ghosh, F. S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf
Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D93 (2016) 103009.; DOI:10.1103/PhysRevD.93.103009
780.T. Marrodán Undagoitia and L. Rauch, Dark
matter direct-detection experiments, J. Phys. G43 (2016) 013001.; DOI:10.1088/0954-3899/43/1/013001
781.G. Boireau et al., Online Monitoring of the
Osiris Reactor with the Nucifer Neutrino Detector, Phys. Rev.
D93 (2016) 112006.; DOI:10.1103/PhysRevD.93.112006
782.W. Rodejohann and C. E. Yaguna, Scalar dark
matter in the B\(-\)L
model, JCAP12 (2015) 032.; DOI:10.1088/1475-7516/2015/12/032
783.M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar Dark Matter: Direct vs. Indirect Detection,
JHEP06 (2016) 152.; DOI:10.1007/JHEP06(2016)152
784.W. Rodejohann and X.-J. Xu, A
leftright symmetric flavor symmetry model, Eur.
Phys. J. C76 (2016) 138.; DOI:10.1140/epjc/s10052-016-3992-1
785.C. Buck, B. Gramlich and S. Wagner, Light
propagation and fluorescence quantum yields in liquid
scintillators, JINST10 (2015) P09007.;
DOI:10.1088/1748-0221/10/09/P09007
787.M. Agostini et al., A test of electric charge
conservation with Borexino, Phys. Rev. Lett.115 (2015) 231802.; DOI:10.1103/PhysRevLett.115.231802
788.S.-F. Ge, M. Lindner and S. Patra, New physics
effects on neutrinoless double beta decay from right-handed
current, JHEP10 (2015) 077.; DOI:10.1007/JHEP10(2015)077
789.Y. Mambrini, S. Profumo and F. S. Queiroz, Dark
Matter and Global Symmetries, Phys. Lett. B760 (2016) 807–815.; DOI:10.1016/j.physletb.2016.07.076
790.F. F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N.
Sahu and U. Sarkar, Reconciling the 2 TeV excesses
at the LHC in a linear seesaw left-right model, Phys. Rev.
D93 (2016) 013011.; DOI:10.1103/PhysRevD.93.013011
791.P. Mosteiro et al., Low-energy (anti)neutrino
physics with Borexino: Neutrinos from the primary proton-proton fusion
process in the Sun, (P. Bernardini, G. Fogli, & E. Lisi,
Eds.)Nucl. Part. Phys. Proc.265-266 (2015)
87–92.; DOI:10.1016/j.nuclphysbps.2015.06.023
792.W. Rodejohann and X.-J. Xu, Robustness of
neutrino mass matrix predictions, Nucl. Phys. B899 (2015) 463–475.; DOI:10.1016/j.nuclphysb.2015.08.014
793.M. Duerr, P. Fileviez Perez and J. Smirnov, Scalar Singlet Dark Matter and Gamma Lines,
Phys. Lett. B751 (2015) 119–122.; DOI:10.1016/j.physletb.2015.10.034
794.M. L. di Vacri, S. Nisi, C. Cattadori, J. Janicsko, A. Lubashevskiy,
A. Smolnikov and M. Walter, ICP MS selection of
radiopure materials for the GERDA experiment, (J. L. Orrell,
Ed.)AIP Conf. Proc.1672 (2015) 150001.;
DOI:10.1063/1.4928024
795.M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma Lines from Majorana Dark Matter, Phys.
Rev. D93 (2016) 023509.; DOI:10.1103/PhysRevD.93.023509
796.E. Aprile et al., Exclusion of Leptophilic Dark
Matter Models using XENON100 Electronic Recoil Data,
Science349 (2015) 851–854.; DOI:10.1126/science.aab2069
797.E. Aprile et al., Search for Event Rate
Modulation in XENON100 Electronic Recoil Data, Phys. Rev.
Lett.115 (2015) 091302.; DOI:10.1103/PhysRevLett.115.091302
798.S.-F. Ge and W. Rodejohann, JUNO and
Neutrinoless Double Beta Decay, Phys. Rev. D92 (2015) 093006.; DOI:10.1103/PhysRevD.92.093006
799.M. Maltoni and A. Yu. Smirnov, Solar neutrinos
and neutrino physics, Eur. Phys. J. A52 (2016) 87.; DOI:10.1140/epja/i2016-16087-0
800.G. Bellini et al., Neutrino measurements from
the Sun and Earth: Results from Borexino, (E. Kearns, Ed.)AIP
Conf. Proc.1666 (2015) 090002.; DOI:10.1063/1.4915567
801.P. O. Ludl and A. Yu. Smirnov, Lepton mixing
from the hidden sector, Phys. Rev. D92
(2015) 073010.; DOI:10.1103/PhysRevD.92.073010
802.H.-J. He, W. Rodejohann and X.-J. Xu, Origin of
Constrained Maximal CP Violation in Flavor Symmetry, Phys.
Lett. B751 (2015) 586–594.; DOI:10.1016/j.physletb.2015.10.066
803.G. Heusser, M. Weber, J. Hakenmüller, M. Laubenstein, M. Lindner, W.
Maneschg, H. Simgen, D. Stolzenburg and H. Strecker, GIOVE - A new detector setup for high sensitivity
germanium spectroscopy at shallow depth, Eur. Phys. J. C75 (2015) 531.; DOI:10.1140/epjc/s10052-015-3704-2
804.O. Yu. Smirnov et al., Measurement of neutrino
flux from the primary protonproton fusion process in the
Sun with Borexino detector, Phys. Part. Nucl.47 (2016) 995–1002.; DOI:10.1134/S106377961606023X
805.J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark
Matter, Phys. Rev. Lett.115 (2015)
121804.; DOI:10.1103/PhysRevLett.115.121804
806.A. J. Long, H. H. Patel and M. Trodden, Electroweak vacuum angle at finite temperature and
implications for baryogenesis, Phys. Rev. D92 (2015) 043513.; DOI:10.1103/PhysRevD.92.043513
807.H. Päs and W. Rodejohann, Neutrinoless Double Beta
Decay, New J. Phys.17 (2015) 115010.;
DOI:10.1088/1367-2630/17/11/115010
808.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dirac-fermionic dark matter in U(1)\(_{X}\) models, JHEP10 (2015) 076.; DOI:10.1007/JHEP10(2015)076
809.J. Evslin, S.-F. Ge and K. Hagiwara, The
leptonic CP phase from T2(H)K and \(\mu\)\(^{+}\) decay at rest, JHEP02 (2016) 137.; DOI:10.1007/JHEP02(2016)137
810.M. Duerr, P. Fileviez Perez and J. Smirnov, Simplified Dirac Dark Matter Models and Gamma-Ray
Lines, Phys. Rev. D92 (2015) 083521.;
DOI:10.1103/PhysRevD.92.083521
811.M. Agostini et al., Spectroscopy of
geoneutrinos from 2056 days of Borexino data, Phys. Rev.
D92 (2015) 031101.; DOI:10.1103/PhysRevD.92.031101
812.M. Agostini et al., Limit on Neutrinoless
Double Beta Decay of \(^{76}\)Ge by
GERDA, (F. Avignone & W. Haxton, Eds.)Phys. Procedia61 (2015) 828–837.; DOI:10.1016/j.phpro.2015.06.002
813.S. Patra, F. S. Queiroz and W. Rodejohann, Stringent Dilepton Bounds on Left-Right Models using LHC
data, Phys. Lett. B752 (2016)
186–190.; DOI:10.1016/j.physletb.2015.11.009
814.M. Agostini et al., \(2\nu\beta\beta\) decay of \(^{76}\)Ge into excited states with GERDA
Phase I, J. Phys. G42 (2015) 115201.;
DOI:10.1088/0954-3899/42/11/115201
815.J. Abdallah et al., Simplified Models for Dark
Matter Searches at the LHC, Phys. Dark Univ.9-10 (2015) 8–23.; DOI:10.1016/j.dark.2015.08.001
816.S. Ohmer and H. H. Patel, Leptobaryons as
Majorana Dark Matter, Phys. Rev. D92
(2015) 055020.; DOI:10.1103/PhysRevD.92.055020
817.P. P. Povinec et al., Reference material for
natural radionuclides in glass designed for underground
experiments, J. Radioanal. Nucl. Chem.307 (2016) 619–626.; DOI:10.1007/s10967-015-4202-6
818.P. Humbert, M. Lindner, S. Patra and J. Smirnov, Lepton Number Violation within the Conformal Inverse
Seesaw, JHEP09 (2015) 064.; DOI:10.1007/JHEP09(2015)064
819.M. Salathe and T. Kihm, Optimized digital
filtering techniques for radiation detection with HPGe detectors,
Nucl. Instrum. Meth. A808 (2016) 150–155.;
DOI:10.1016/j.nima.2015.11.051
820.E. Aprile et al., Lowering the radioactivity of
the photomultiplier tubes for the XENON1T dark matter experiment,
Eur. Phys. J. C75 (2015) 546.; DOI:10.1140/epjc/s10052-015-3657-5
821.L. Ludhova et al., Geo-neutrinos and
Borexino, Phys. Part. Nucl.46 (2015)
174–181.; DOI:10.1134/S1063779615020148
822.P. Humbert, M. Lindner and J. Smirnov, The
Inverse Seesaw in Conformal Electro-Weak Symmetry Breaking and
Phenomenological Consequences, JHEP06
(2015) 035.; DOI:10.1007/JHEP06(2015)035
823.W. Maneschg, Review of neutrinoless double beta
decay experiments: Present status and near future, (A. Stahl
& I. M. Nugent, Eds.)Nucl. Part. Phys. Proc.260 (2015) 188–193.; DOI:10.1016/j.nuclphysbps.2015.02.039
824.M. Ahmad et al., CEPC-SPPC Preliminary
Conceptual Design Report. 1. Physics and Detector (2015).
825.M. Agostini et al., Improvement of the energy
resolution via an optimized digital signal processing in GERDA Phase
I, Eur. Phys. J. C75 (2015) 255.;
DOI:10.1140/epjc/s10052-015-3409-6
826.M. Agostini et al., LArGe: active background
suppression using argon scintillation for the Gerda \(0\nu \beta \beta\) -experiment,
Eur. Phys. J. C75 (2015) 506.; DOI:10.1140/epjc/s10052-015-3681-5
827.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dark Matter Complementarity and the Z\(^\prime\) Portal, Phys. Rev.
D92 (2015) 083004.; DOI:10.1103/PhysRevD.92.083004
828.B. Allanach, A. Alves, F. S. Queiroz, K. Sinha and A. Strumia, Interpreting the CMS \(\ell^+\ell^- jj E\!\!\!\!/_{\rm T}\) Excess
with a Leptoquark Model, Phys. Rev. D92 (2015) 055023.; DOI:10.1103/PhysRevD.92.055023
829.W. Rodejohann and X.-J. Xu, Origin of Symmetric
PMNS and CKM Matrices, Phys. Rev. D91
(2015) 056004.; DOI:10.1103/PhysRevD.91.056004
830.M. Agostini et al., Results on \(\beta \beta\) decay with emission of two
neutrinos or Majorons in\(^{76}\) Ge
from GERDA Phase I, Eur. Phys. J. C75
(2015) 416.; DOI:10.1140/epjc/s10052-015-3627-y
831.P. Fileviez Perez, New Paradigm for Baryon and
Lepton Number Violation, Phys. Rept.597 (2015) 1–30.; DOI:10.1016/j.physrep.2015.09.001
832.B. Povh, K. Rith, C. Scholz, F. Zetsche and W. Rodejohann, Particles and Nuclei. An Introduction to the Physical
Concepts, Graduate texts in physics.; DOI:10.1007/978-3-662-46321-5
833.L. Di Noto et al., The SOX experiment in the
neutrino physics, Nuovo Cim. C38
(2015) 36.; DOI:10.1393/ncc/i2015-15036-y
834.S. Patra, N. Sahoo and N. Sahu, Dipolar dark
matter in light of the 3.5 keV x-ray line, neutrino mass, and LUX
data, Phys. Rev. D91 (2015) 115013.;
DOI:10.1103/PhysRevD.91.115013
835.J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs \(\mu\)\(\tau\) in Abelian and non-Abelian
flavor symmetry models, Nucl. Phys. B896 (2015) 281–310.; DOI:10.1016/j.nuclphysb.2015.04.025
836.E. Akhmedov, Majorana neutrinos and other
Majorana particles:Theory and experiment.; Retrieved from https://arxiv.org/abs/1412.3320
838.J. Smirnov, Gauge-Invariant Average of Einstein
Equations for finite Volumes (2014).; Retrieved from https://arxiv.org/abs/1410.6480
839.N. Bozorgnia and T. Schwetz, What is the
probability that direct detection experiments have observed Dark
Matter?, JCAP12 (2014) 015.; DOI:10.1088/1475-7516/2014/12/015
840.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, LHC Tests of Light Neutralino Dark Matter without Light
Sfermions, JHEP11 (2014) 106.; DOI:10.1007/JHEP11(2014)106
841.O. Smirnov et al., Solar neutrino with
Borexino: results and perspectives, Phys. Part. Nucl.46 (2015) 166–173.; DOI:10.1134/S1063779615020185
842.M. Agostini et al., Production,
characterization and operation of \(^{76}\)Ge enriched BEGe detectors in
GERDA, Eur. Phys. J. C75 (2015) 39.;
DOI:10.1140/epjc/s10052-014-3253-0
843.M. Duerr and P. Fileviez Perez, Theory for
Baryon Number and Dark Matter at the LHC, Phys. Rev. D91 (2015) 095001.; DOI:10.1103/PhysRevD.91.095001
844.S. Benic and B. Radovcic, Majorana dark matter
in a classically scale invariant model, JHEP01 (2015) 143.; DOI:10.1007/JHEP01(2015)143
846.S.-F. Ge, The Georgi Algorithms of Jet
Clustering, JHEP05 (2015) 066.; DOI:10.1007/JHEP05(2015)066
847.J. Kopp and J. Welter, The Not-So-Sterile 4th
Neutrino: Constraints on New Gauge Interactions from Neutrino
Oscillation Experiments, JHEP12 (2014)
104.; DOI:10.1007/JHEP12(2014)104
848.Y. Abe et al., Ortho-positronium observation in
the Double Chooz Experiment, JHEP10
(2014) 032.; DOI:10.1007/JHEP10(2014)032
849.T. Marrodán Undagoitia, Liquid noble gases for
direct dark matter searches, PoSTIPP2014 (2014) 011.; DOI:10.22323/1.213.0011
850.X.-J. Xu, H.-J. He and W. Rodejohann, Constraining Astrophysical Neutrino Flavor Composition
from Leptonic Unitarity, JCAP12 (2014)
039.; DOI:10.1088/1475-7516/2014/12/039
851.W. Rodejohann and H. Zhang, Signatures of Extra
Dimensional Sterile Neutrinos, Phys. Lett. B737 (2014) 81–89.; DOI:10.1016/j.physletb.2014.08.035
852.T. I. Banks et al., A compact ultra-clean
system for deploying radioactive sources inside the KamLAND
detector, Nucl. Instrum. Meth. A769
(2015) 88–96.; DOI:10.1016/j.nima.2014.09.068
853.Y. Abe et al., Improved measurements of the
neutrino mixing angle \(\theta_{13}\)
with the Double Chooz detector, JHEP10
(2014) 086.; DOI:10.1007/JHEP02(2015)074
854.J. Kopp and M. Nardecchia, Flavor and CP
violation in Higgs decays, JHEP10
(2014) 156.; DOI:10.1007/JHEP10(2014)156
855.E. Aprile et al., Conceptual design and
simulation of a water Cherenkov muon veto for the XENON1T
experiment, JINST9 (2014) P11006.;
DOI:10.1088/1748-0221/9/11/P11006
856.D. D’Angelo et al., Recent Borexino results and
prospects for the near future, (L. Bravina, Y. Foka, & S.
Kabana, Eds.)EPJ Web Conf.126 (2016) 02008.;
DOI:10.1051/epjconf/201612602008
857.E. Akhmedov, J. Kopp and M. Lindner, Decoherence by wave packet separation and collective
neutrino oscillations (2014).; Retrieved from https://arxiv.org/abs/1405.7275
858.I. Girardi, D. Meloni, T. Ohlsson, H. Zhang and S. Zhou,
Constraining Sterile Neutrinos Using Reactor Neutrino
Experiments, JHEP08 (2014) 057.;
DOI:10.1007/JHEP08(2014)057
859.Y. Abe et al., Precision Muon Reconstruction in
Double Chooz, Nucl. Instrum. Meth. A764 (2014) 330–339.; DOI:10.1016/j.nima.2014.07.058
860.M. Lindner, S. Schmidt and J. Smirnov, Neutrino
Masses and Conformal Electro-Weak Symmetry Breaking,
JHEP10 (2014) 177.; DOI:10.1007/JHEP10(2014)177
861.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, A lower bound on light neutralino dark matter from LHC
data, 49th Rencontres de Moriond on
Electroweak Interactions and Unified Theories (pp.
205–2010).; Retrieved from https://arxiv.org/abs/1405.3884
862.N. Bozorgnia and T. Schwetz, Is the effect of
the Sun’s gravitational potential on dark matter particles
observable?, JCAP08 (2014) 013.;
DOI:10.1088/1475-7516/2014/08/013
863.P. Fileviez Perez and S. Ohmer, Low Scale
Unification of Gauge Interactions, Phys. Rev. D90 (2014) 037701.; DOI:10.1103/PhysRevD.90.037701
864.J. Kubo, K. S. Lim and M. Lindner, Gamma-ray
Line from Nambu-Goldstone Dark Matter in a Scale Invariant Extension of
the Standard Model, JHEP09 (2014)
016.; DOI:10.1007/JHEP09(2014)016
865.J. Barry, J. Heeck and W. Rodejohann, Sterile
neutrinos and right-handed currents in KATRIN, JHEP07 (2014) 081.; DOI:10.1007/JHEP07(2014)081
866.E. Aprile et al., First Axion Results from the
XENON100 Experiment, Phys. Rev. D90
(2014) 062009.; DOI:10.1103/PhysRevD.90.062009
867.A. Greljo, J. F. Kamenik and J. Kopp, Disentangling Flavor Violation in the Top-Higgs Sector at
the LHC, JHEP07 (2014) 046.; DOI:10.1007/JHEP07(2014)046
868.B. Dasgupta and A. Yu. Smirnov, Leptonic CP
Violation Phases, Quark-Lepton Similarity and Seesaw Mechanism,
Nucl. Phys. B884 (2014) 357–378.; DOI:10.1016/j.nuclphysb.2014.05.001
869.P. Fileviez Perez, S. Ohmer and H. H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett.
B735 (2014) 283–287.; DOI:10.1016/j.physletb.2014.06.057
870.J. Kubo, K. S. Lim and M. Lindner, Electroweak
Symmetry Breaking via QCD, Phys. Rev. Lett.113 (2014) 091604.; DOI:10.1103/PhysRevLett.113.091604
871.A. Yu. Smirnov, Theory of neutrino masses and
mixing, Nuovo Cim. C037 (2014) 29–37.;
DOI:10.1393/ncc/i2014-11761-y
872.P. Fileviez Perez and H. H. Patel, The
electroweak vacuum angle, Phys. Lett. B732 (2014) 241–243.; DOI:10.1016/j.physletb.2014.03.064
873.D. Adey et al., Light Sterile Neutrino
Sensitivity at the nuSTORM Facility, Phys. Rev. D89 (2014) 071301.; DOI:10.1103/PhysRevD.89.071301
874.W. Rodejohann and H. Zhang, Reducing
\(\theta\)13 to
9, Phys. Lett. B732
(2014) 174–181.; DOI:10.1016/j.physletb.2014.03.040
875.D. Schmidt, T. Schwetz and H. Zhang, Status of
the ZeeBabu model for neutrino mass and possible tests at a
like-sign linear collider, Nucl. Phys. B885 (2014) 524–541.; DOI:10.1016/j.nuclphysb.2014.05.024
876.J. Smirnov, Regularization of Vacuum
Fluctuations and Frame Dependence (2014).; Retrieved from https://arxiv.org/abs/1402.1490
877.P. Fileviez Perez and S. Spinner, Higgs mass
and the Stueckelberg mechanism in supersymmetry, Phys. Rev.
D89 (2014) 095004.; DOI:10.1103/PhysRevD.89.095004
878.J. Kopp, L. Michaels and J. Smirnov, Loopy
Constraints on Leptophilic Dark Matter and Internal
Bremsstrahlung, JCAP04 (2014) 022.;
DOI:10.1088/1475-7516/2014/04/022
879.Y. Abe et al., Background-independent
measurement of \(\theta_{13}\) in
Double Chooz, Phys. Lett. B735 (2014)
51–56.; DOI:10.1016/j.physletb.2014.04.045
880.C.-Y. Seng, J. de Vries, E. Mereghetti, H. H. Patel and M.
Ramsey-Musolf, Nucleon electric dipole moments and
the isovector parity- and time-reversal-odd pionnucleon
coupling, Phys. Lett. B736 (2014)
147–153.; DOI:10.1016/j.physletb.2014.07.014
881.N. Neitz, N. Kumar, F. Mackenroth, K. Z. Hatsagortsyan, C. H. Keitel
and A. Di Piazza, Novel aspects of radiation
reaction in the classical and the quantum regime, J. Phys.
Conf. Ser.497 (2014) 012015.; DOI:10.1088/1742-6596/497/1/012015
882.H. Simgen, G. Heusser, M. Laubenstein and G. Zuzel, Analysis of radioactive trace impurities with \(\mu\)Bq-sensitivity in Borexino,
Int. J. Mod. Phys. A29 (2014) 1442009.;
DOI:10.1142/S0217751X14420093
883.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Sensitivity of oscillation experiments to the neutrino
mass hierarchy, 49th Rencontres de
Moriond on Electroweak Interactions and Unified Theories
(pp. 121–128).
884.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov,
Impact of TeV-scale sterile neutrinos on precision
low-energy observables, 49th Rencontres
de Moriond on Electroweak Interactions and Unified Theories
(pp. 389–394).
885.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov,
Improving electroweak fit with TeV-scale sterile
neutrinos, 18th International Seminar on
High Energy Physics.
886.L. F. Rauch, Detector characterization,
electronic-recoil energy scale and astrophysical independent results in
XENON100 (Master’s thesis). Heidelberg U.
887.P. Fileviez Pérez and H. H. Patel, Baryon
Asymmetry, Dark Matter and Local Baryon Number, Phys. Lett.
B731 (2014) 232–235.; DOI:10.1016/j.physletb.2014.02.047
888.K. S. Babu et al., Working Group Report: Baryon Number
Violation, Snowmass 2013: Snowmass on the Mississippi.; Retrieved from
https://arxiv.org/abs/1311.5285
889.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to
the neutrino mass ordering, JHEP03
(2014) 028.; DOI:10.1007/JHEP03(2014)028
890.E. Aprile et al., Observation and applications
of single-electron charge signals in the XENON100 experiment,
J. Phys. G41 (2014) 035201.; DOI:10.1088/0954-3899/41/3/035201
891.G. Bellini et al., New limits on heavy sterile
neutrino mixing in B8 decay obtained with the Borexino detector,
Phys. Rev. D88 (2013) 072010.; DOI:10.1103/PhysRevD.88.072010
892.J. M. Arnold, P. Fileviez Pérez, B. Fornal and S. Spinner, B and L at the supersymmetry scale, dark matter, and
R-parity violation, Phys. Rev. D88
(2013) 115009.; DOI:10.1103/PhysRevD.88.115009
893.M. Lindner, D. Schmidt and A. Watanabe, Dark
matter and U(1)’ symmetry for the right-handed neutrinos,
Phys. Rev. D89 (2014) 013007.; DOI:10.1103/PhysRevD.89.013007
894.B. Dasgupta and J. Kopp, Cosmologically Safe
eV-Scale Sterile Neutrinos and Improved Dark Matter Structure,
Phys. Rev. Lett.112 (2014) 031803.; DOI:10.1103/PhysRevLett.112.031803
895.T. Ohlsson, H. Zhang and S. Zhou, Nonstandard
interaction effects on neutrino parameters at medium-baseline reactor
antineutrino experiments, Phys. Lett. B728 (2014) 148–155.; DOI:10.1016/j.physletb.2013.11.052
896.M. Holthausen, J. Kubo, K. S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly
Coupled Hidden Sector, JHEP12 (2013)
076.; DOI:10.1007/JHEP12(2013)076
897.N. Bozorgnia, R. Catena and T. Schwetz, Anisotropic dark matter distribution functions and impact
on WIMP direct detection, JCAP12
(2013) 050.; DOI:10.1088/1475-7516/2013/12/050
898.L. Baudis, A. Ferella, A. Kish, A. Manalaysay, T. Marrodan
Undagoitia and M. Schumann, Neutrino physics with
multi-ton scale liquid xenon detectors, JCAP01 (2014) 044.; DOI:10.1088/1475-7516/2014/01/044
899.M. Duerr and P. Fileviez Perez, Baryonic dark
matter, Phys. Lett. B732 (2014)
101–104.; DOI:10.1016/j.physletb.2014.03.011
900.S. Lindemann and H. Simgen, Krypton assay in
xenon at the ppq level using a gas chromatographic system and mass
spectrometer, Eur. Phys. J. C74 (2014)
2746.; DOI:10.1140/epjc/s10052-014-2746-1
901.W. Maneschg, GERDA phase II detectors: Behind
the production and characterisation at low background conditions,
(L. Miramonti & L. Pandola, Eds.)AIP Conf. Proc.1549 (2013) 54–57.; DOI:10.1063/1.4818075
902.G. Bellini et al., Final results of Borexino
Phase-I on low energy solar neutrino spectroscopy, Phys. Rev.
D89 (2014) 112007.; DOI:10.1103/PhysRevD.89.112007
903.P. Fileviez Perez and S. Spinner, Supersymmetry
at the LHC and The Theory of R-parity, Phys. Lett. B728 (2014) 489–495.; DOI:10.1016/j.physletb.2013.12.022
904.D. Adey et al., nuSTORM - Neutrinos from STORed
Muons: Proposal to the Fermilab PAC (2013).; Retrieved from https://arxiv.org/abs/1308.6822
905.L. Lavoura, W. Rodejohann and A. Watanabe, Reproducing lepton mixing in a texture zero model,
Phys. Lett. B726 (2013) 352–355.; DOI:10.1016/j.physletb.2013.08.074
906.P. Fileviez Perez and M. B. Wise, Low Scale Quark-Lepton
Unification, Phys. Rev. D88 (2013)
057703.; DOI:10.1103/PhysRevD.88.057703
907.M. Agostini et al., Results on Neutrinoless
Double-\(\beta\) Decay of \(^{76}\)Ge from Phase I of the GERDA
Experiment, Phys. Rev. Lett.111 (2013)
122503.; DOI:10.1103/PhysRevLett.111.122503
908.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, Cornering light Neutralino Dark Matter at the LHC,
JHEP10 (2013) 132.; DOI:10.1007/JHEP10(2013)132
909.M. Agostini et al., Pulse shape discrimination
for GERDA Phase I data, Eur. Phys. J. C73 (2013) 2583.; DOI:10.1140/epjc/s10052-013-2583-7
911.S. Antusch, M. Holthausen, M. A. Schmidt and M. Spinrath, Solving the Strong CP Problem with Discrete Symmetries
and the Right Unitarity Triangle, Nucl. Phys. B877 (2013) 752–771.; DOI:10.1016/j.nuclphysb.2013.10.028
912.M. Agostini et al., The background in the \(0 \nu \beta \beta\) experiment
GERDA, Eur. Phys. J. C74 (2014) 2764.;
DOI:10.1140/epjc/s10052-014-2764-z
913.A. Dueck and W. Rodejohann, Fits to SO(10)
Grand Unified Models, JHEP09 (2013)
024.; DOI:10.1007/JHEP09(2013)024
914.M. Holthausen and K. S. Lim, Quark and Leptonic
Mixing Patterns from the Breakdown of a Common Discrete Flavor
Symmetry, Phys. Rev. D88 (2013)
033018.; DOI:10.1103/PhysRevD.88.033018
915.M. Blennow and T. Schwetz, Determination of the
neutrino mass ordering by combining PINGU and Daya Bay II,
JHEP09 (2013) 089.; DOI:10.1007/JHEP09(2013)089
916.A. Merle, V. Niro and D. Schmidt, New
Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of
Frozen-In Scalars, JCAP03 (2014) 028.;
DOI:10.1088/1475-7516/2014/03/028
917.E. Aprile et al., The neutron background of the
XENON100 dark matter search experiment, J. Phys. G40 (2013) 115201.; DOI:10.1088/0954-3899/40/11/115201
918.M. Duerr, P. Fileviez Perez and M. Lindner, Left-Right Symmetric Theory with Light Sterile
Neutrinos, Phys. Rev. D88 (2013)
051701.; DOI:10.1103/PhysRevD.88.051701
919.J. Heeck and W. Rodejohann, Neutrinoless Quadruple Beta
Decay, EPL103 (2013) 32001.; DOI:10.1209/0295-5075/103/32001
920.P. Fileviez Perez, On the Origin of R-parity
Violation in Supersymmetry, Int. J. Mod. Phys. A28 (2013) 1330024.; DOI:10.1142/S0217751X1330024X
921.N. Bozorgnia, J. Herrero-Garcia, T. Schwetz and J. Zupan, Halo-independent methods for inelastic dark matter
scattering, JCAP07 (2013) 049.; DOI:10.1088/1475-7516/2013/07/049
922.D. Adey et al., Neutrinos from Stored Muons
nuSTORM: Expression of Interest (2013).; Retrieved from https://arxiv.org/abs/1305.1419
923.P. S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, Constraining Neutrino Mass from Neutrinoless Double Beta
Decay, Phys. Rev. D88 (2013) 091301.;
DOI:10.1103/PhysRevD.88.091301
924.G. Bellini et al., SOX: Short distance neutrino
Oscillations with BoreXino, JHEP08
(2013) 038.; DOI:10.1007/JHEP08(2013)038
925.P.-H. Gu, Parity: from strong CP problem to
dark matter, neutrino masses and baryon asymmetry (2013).;
Retrieved from https://arxiv.org/abs/1304.7647
926.G. Bellini et al., Cosmogenic Backgrounds in
Borexino at 3800 m water-equivalent depth, JCAP08 (2013) 049.; DOI:10.1088/1475-7516/2013/08/049
928.T. Frossard, A. Kartavtsev and D. Mitrouskas, Systematic approach to \(\Delta\)L=1 processes in thermal
leptogenesis, Phys. Rev. D87 (2013)
125006.; DOI:10.1103/PhysRevD.87.125006
929.E. Aprile et al., Response of the XENON100 Dark
Matter Detector to Nuclear Recoils, Phys. Rev. D88 (2013) 012006.; DOI:10.1103/PhysRevD.88.012006
930.J. Kopp, Constraints on dark matter
annihilation from AMS-02 results, Phys. Rev. D88 (2013) 076013.; DOI:10.1103/PhysRevD.88.076013
931.M. Duerr, P. Fileviez Perez and M. B. Wise, Gauge Theory for Baryon and Lepton Numbers with
Leptoquarks, Phys. Rev. Lett.110
(2013) 231801.; DOI:10.1103/PhysRevLett.110.231801
932.D. Budjas et al., Isotopically modified Ge
detectors for \sc Gerda: from
production to operation, JINST8 (2013)
P04018.; DOI:10.1088/1748-0221/8/04/P04018
933.P.-H. Gu, Mirror symmetry: from active and
sterile neutrino masses to baryonic and dark matter asymmetries,
Nucl. Phys. B874 (2013) 158–176.; DOI:10.1016/j.nuclphysb.2013.05.013
934.T. Ohlsson, H. Zhang and S. Zhou, Effects of
nonstandard neutrino interactions at PINGU, Phys. Rev. D88 (2013) 013001.; DOI:10.1103/PhysRevD.88.013001
935.J. Barry and W. Rodejohann, Lepton number and
flavour violation in TeV-scale left-right symmetric theories with large
left-right mixing, JHEP09 (2013) 153.;
DOI:10.1007/JHEP09(2013)153
936.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Sterile
Neutrino Oscillations: The Global Picture, JHEP05 (2013) 050.; DOI:10.1007/JHEP05(2013)050
937.G. Bellini et al., Measurement of geo-neutrinos
from 1353 days of Borexino, Phys. Lett. B722 (2013) 295–300.; DOI:10.1016/j.physletb.2013.04.030
938.P. Fileviez Perez and M. B. Wise, Baryon
Asymmetry and Dark Matter Through the Vector-Like Portal,
JHEP05 (2013) 094.; DOI:10.1007/JHEP05(2013)094
939.L. Baudis, A. Behrens, A. Ferella, A. Kish, T. Marrodan Undagoitia,
D. Mayani and M. Schumann, Performance of the
Hamamatsu R11410 Photomultiplier Tube in cryogenic Xenon
Environments, JINST8 (2013) P04026.;
DOI:10.1088/1748-0221/8/04/P04026
940.T. R. Edgecock et al., High Intensity Neutrino
Oscillation Facilities in Europe, Phys. Rev. ST Accel.
Beams16 (2013) 021002.; DOI:10.1103/PhysRevSTAB.16.021002
941.E. Andreotti et al., HEROICA: an Underground
Facility for the Fast Screening of Germanium Detectors,
JINST8 (2013) P06012.; DOI:10.1088/1748-0221/8/06/P06012
942.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov,
Improving Electro-Weak Fits with TeV-scale Sterile
Neutrinos, JHEP05 (2013) 081.; DOI:10.1007/JHEP05(2013)081
943.J. Kopp, E. T. Neil, R. Primulando and J. Zupan, From Gamma Ray Line Signals of Dark Matter to the
LHC, Phys. Dark Univ.2 (2013) 22–34.;
DOI:10.1016/j.dark.2013.02.001
944.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, S. Lucht, S.
Roth, M. Schumann, A. Stahl, A. Stüken and C. Wiebusch, Afterpulse Measurements of R7081 Photomultipliers for the
Double Chooz Experiment, JINST8 (2013)
P04029.; DOI:10.1088/1748-0221/8/04/P04029
945.Y. Abe et al., First Measurement of \(\theta_{13}\) from Delayed Neutron Capture
on Hydrogen in the Double Chooz Experiment, Phys. Lett.
B723 (2013) 66–70.; DOI:10.1016/j.physletb.2013.04.050
946.N. Memenga, W. Rodejohann and H. Zhang, \(A_4\) flavor symmetry model for Dirac
neutrinos and sizable \(U_{e3}\), Phys. Rev. D87 (2013) 053021.; DOI:10.1103/PhysRevD.87.053021
947.T. Ohlsson, H. Zhang and S. Zhou, Probing the
leptonic Dirac CP-violating phase in neutrino oscillation
experiments, Phys. Rev. D87 (2013)
053006.; DOI:10.1103/PhysRevD.87.053006
948.P.-H. Gu, Multi-component dark matter with
magnetic moments for Fermi-LAT gamma-ray line, Phys. Dark
Univ.2 (2013) 35–40.; DOI:10.1016/j.dark.2013.03.001
949.E. Aprile et al., Limits on spin-dependent
WIMP-nucleon cross sections from 225 live days of XENON100 data,
Phys. Rev. Lett.111 (2013) 021301.; DOI:10.1103/PhysRevLett.111.021301
950.H. Zhang, Light sterile neutrinos from flavor
symmetries, (A. Blondel, I. Efthymiopoulos, & G. Prior,
Eds.)J. Phys. Conf. Ser.408 (2013) 012029.;
DOI:10.1088/1742-6596/408/1/012029
951.M. Blennow and A. Yu. Smirnov, Neutrino
propagation in matter, Adv. High Energy Phys.2013 (2013) 972485.; DOI:10.1155/2013/972485
952.S. Pascoli and T. Schwetz, Prospects for
neutrino oscillation physics, Adv. High Energy Phys.2013 (2013) 503401.; DOI:10.1155/2013/503401
953.M. Pallavicini et al., Recent results and
future development of Borexino, (T. Kobayashi, M. Nakahata, &
T. Nakaya, Eds.)Nucl. Phys. B Proc. Suppl.235-236 (2013) 55–60.; DOI:10.1016/j.nuclphysbps.2013.03.011
954.T. Schwetz, Status of sterile neutrino
oscillations, (T. Kobayashi, M. Nakahata, & T. Nakaya,
Eds.)Nucl. Phys. B Proc. Suppl.235-236 (2013)
229–235.; DOI:10.1016/j.nuclphysbps.2013.04.015
955.C. O’Shaughnessy et al., High voltage
capacitors for low background experiments, Eur. Phys. J.
C73 (2013) 2445.; DOI:10.1140/epjc/s10052-013-2445-3
956.J. Heeck, Gauged Flavor Symmetries, (P. Bernardini, G.
Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.237-238 (2013) 336–338.; DOI:10.1016/j.nuclphysbps.2013.04.121
957.M. Duerr, Lepton number violating new physics
and neutrinoless double beta decay, (P. Bernardini, G. Fogli,
& E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.237-238 (2013) 24–27.; DOI:10.1016/j.nuclphysbps.2013.04.048
958.A. Ianni et al., Neutrinos from the sun and
from radioactive sources, (P. Bernardini, G. Fogli, & E.
Lisi, Eds.)Nucl. Phys. B Proc. Suppl.237-238
(2013) 77–81.; DOI:10.1016/j.nuclphysbps.2013.04.061
959.D. Franco et al., Solar neutrino results from
Borexino, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl.
Phys. B Proc. Suppl.237-238 (2013) 104–106.;
DOI:10.1016/j.nuclphysbps.2013.04.068
960.C. Buck, The Double Chooz experiment,
PoSEPS-HEP2013 (2013) 514.; DOI:10.22323/1.180.0514
961.T. Ohlsson, H. Zhang and S. Zhou, Leptonic CP
Violation in Neutrino Oscillations, PoSEPS-HEP2013 (2013) 538.; DOI:10.22323/1.180.0538
962.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Global Status of Sterile Neutrino Scenarios,
PoSNeutel2013 (2013) 019.; DOI:10.22323/1.196.0019
963.R. Brugnera et al., Status of the GERDA
experiment, PoSNeutel2013 (2013) 039.;
DOI:10.22323/1.196.0039
965.T. Asaka, S. Eijima and A. Watanabe, Heavy
neutrino search in accelerator-based experiments, JHEP03 (2013) 125.; DOI:10.1007/JHEP03(2013)125
966.G. Bellini et al., Lifetime measurements of
214Po and 212Po with the CTF liquid scintillator detector at
LNGS, Eur. Phys. J. A49 (2013) 92.;
DOI:10.1140/epja/i2013-13092-9
967.M. Holthausen, K. S. Lim and M. Lindner, Lepton
Mixing Patterns from a Scan of Finite Discrete Groups, Phys.
Lett. B721 (2013) 61–67.; DOI:10.1016/j.physletb.2013.02.047
968.M. Agostini et al., Measurement of the
half-life of the two-neutrino double beta decay of Ge-76 with the Gerda
experiment, J. Phys. G40 (2013)
035110.; DOI:10.1088/0954-3899/40/3/035110
969.K. H. Ackermann et al., The GERDA experiment
for the search of \(0\nu\beta\beta\)
decay in \(^{76}\)Ge, Eur.
Phys. J. C73 (2013) 2330.; DOI:10.1140/epjc/s10052-013-2330-0
970.J. Heeck and H. Zhang, Exotic Charges,
Multicomponent Dark Matter and Light Sterile Neutrinos,
JHEP05 (2013) 164.; DOI:10.1007/JHEP05(2013)164
971.P. Fileviez Pérez and S. Spinner, Higgs mass
via type II seesaw mechanism, Phys. Rev. D87 (2013) 031702.; DOI:10.1103/PhysRevD.87.031702
972.T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D.
Mitrouskas, Systematic approach to thermal
leptogenesis, Phys. Rev. D87 (2013)
085009.; DOI:10.1103/PhysRevD.87.085009
973.T. Ohlsson, H. Zhang and S. Zhou, Radiative
corrections to the leptonic Dirac \(CP\)-violating phase, Phys. Rev.
D87 (2013) 013012.; DOI:10.1103/PhysRevD.87.013012
974.J. Heeck and W. Rodejohann, Sterile neutrino
anarchy, Phys. Rev. D87 (2013)
037301.; DOI:10.1103/PhysRevD.87.037301
975.M. Holthausen, M. Lindner and M. A. Schmidt, Lepton flavor at the electroweak scale: A complete \(A_{4}\) model, Phys. Rev. D87 (2013) 033006.; DOI:10.1103/PhysRevD.87.033006
976.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, B. Reinhold and
S. Schonert, PMT Test Facility at MPIK Heidelberg
and Double Chooz Super Vertical Slice, (G. S. Tzanakos,
Ed.)Nucl. Phys. Proc. Supl.229-232 (2012)
456.; DOI:10.1016/j.nuclphysbps.2012.09.093
977.M. Holthausen, M. Lindner and M. A. Schmidt, CP
and Discrete Flavour Symmetries, JHEP04 (2013) 122.; DOI:10.1007/JHEP04(2013)122
978.J. Kopp, New Signals in Dark Matter
Detectors, (M. Mondragón, A. Bashir, D. Delepine, F. Larios, O.
Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J. Phys. Conf.
Ser.485 (2014) 012032.; DOI:10.1088/1742-6596/485/1/012032
979.Y. Abe et al., Direct Measurement of
Backgrounds using Reactor-Off Data in Double Chooz, Phys.
Rev. D87 (2013) 011102.; DOI:10.1103/PhysRevD.87.011102
980.R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs
Decays, JHEP03 (2013) 026.; DOI:10.1007/JHEP03(2013)026
981.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, On the interpretation of IceCube cascade events in terms
of the Glashow resonance (2012).; Retrieved from https://arxiv.org/abs/1209.2422
983.M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at
present precision, JHEP12 (2012) 123.;
DOI:10.1007/JHEP12(2012)123
984.P.-H. Gu, From Dirac neutrino masses to
baryonic and dark matter asymmetries, Nucl. Phys. B872 (2013) 38–61.; DOI:10.1016/j.nuclphysb.2013.03.014
985.P. Fileviez Perez, Baryon and Lepton Numbers:
Life in the Desert, (M. Mondragón, A. Bashir, D. Delepine, F.
Larios, O. Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J.
Phys. Conf. Ser.485 (2014) 012009.; DOI:10.1088/1742-6596/485/1/012009
986.Y. Abe et al., First Test of Lorentz Violation
with a Reactor-based Antineutrino Experiment, Phys. Rev.
D86 (2012) 112009.; DOI:10.1103/PhysRevD.86.112009
987.P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic Uncertainties in Long-Baseline Neutrino
Oscillations for Large \(θ_{13}\), Phys. Rev. D87 (2013) 033004.; DOI:10.1103/PhysRevD.87.033004
988.P. Fileviez Perez and S. Spinner, On the Higgs
Mass and Perturbativity, Phys. Lett. B723 (2013) 371–383.; DOI:10.1016/j.physletb.2013.05.052
989.S. Clesse, L. Lopez-Honorez, C. Ringeval, H. Tashiro and M. H. G.
Tytgat, Background reionization history from
omniscopes, Phys. Rev. D86 (2012)
123506.; DOI:10.1103/PhysRevD.86.123506
990.L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from
Right Handed Neutrinos, Phys. Rev. D87
(2013) 093006.; DOI:10.1103/PhysRevD.87.093006
991.F. Kaether and C. Langbrandtner, Transit Time
and Charge Correlations of Single Photoelectron Events in R7081
PMTs, JINST7 (2012) P09002.; DOI:10.1088/1748-0221/7/09/P09002
992.W. Rodejohann and H. Zhang, Simple two
Parameter Description of Lepton Mixing, Phys. Rev. D86 (2012) 093008.; DOI:10.1103/PhysRevD.86.093008
993.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation
Prospects, Phys. Rev. D86 (2012)
076015.; DOI:10.1103/PhysRevD.86.076015
994.E. Aprile et al., Analysis of the XENON100 Dark
Matter Search Data, Astropart. Phys.54
(2014) 11–24.; DOI:10.1016/j.astropartphys.2013.10.002
995.P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of Neutralino Dark Matter,
JHEP07 (2013) 094.; DOI:10.1007/JHEP07(2013)094
996.H. Back et al., Borexino calibrations:
Hardware, Methods, and Results, JINST7
(2012) P10018.; DOI:10.1088/1748-0221/7/10/P10018
997.J. Heeck, Seesaw parametrization for n
right-handed neutrinos, Phys. Rev. D86
(2012) 093023.; DOI:10.1103/PhysRevD.86.093023
998.E. Aprile et al., Dark Matter Results from 225
Live Days of XENON100 Data, Phys. Rev. Lett.109 (2012) 181301.; DOI:10.1103/PhysRevLett.109.181301
999.Y. Abe et al., Reactor electron antineutrino
disappearance in the Double Chooz experiment, Phys. Rev.
D86 (2012) 052008.; DOI:10.1103/PhysRevD.86.052008
1000.P. Alvarez Sanchez et al., Measurement of CNGS
muon neutrino speed with Borexino, Phys. Lett. B716 (2012) 401–405.; DOI:10.1016/j.physletb.2012.08.052
1001.M. Duerr, Neutrinoless Double Beta Decay and
Neutrino Masses, (T. Fukuyama & R. N. Mohapatra, Eds.)AIP
Conf. Proc.1467 (2012) 235–238.; DOI:10.1063/1.4742106
1002.B. Dumont, G. Belanger, S. Fichet, S. Kraml and T. Schwetz, Mixed sneutrino dark matter in light of the 2011 XENON
and LHC results, JCAP09 (2012) 013.;
DOI:10.1088/1475-7516/2012/09/013
1003.W. Rodejohann, Neutrinoless double beta decay
and neutrino physics, J. Phys. G39
(2012) 124008.; DOI:10.1088/0954-3899/39/12/124008
1004.M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of
multileptons at the LHC, Phys. Rev. D86 (2012) 075019.; DOI:10.1103/PhysRevD.86.075019
1005.M. Aoki, M. Duerr and J. Kubo, Multi-component
dark matter system with non-standard annihilation processes of dark
matter, 2nd Workshop on Flavor
Symmetries and Consequences in Accelerators and Cosmology
(pp. 169–176).
1006.M. Holthausen, Vacuum alignment from group
theory, 2nd Workshop on Flavor
Symmetries and Consequences in Accelerators and Cosmology
(pp. 115–122).
1007.J. Heeck, Local flavor symmetries,
2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology (pp. 99–106).
1008.J. Barry, Sterile neutrinos for warm dark
matter and the reactor anomaly in flavor symmetry models,
2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology (pp. 1–10).
1009.J. Herrero-Garcia, T. Schwetz and J. Zupan, Astrophysics independent bounds on the annual modulation
of dark matter signals, Phys. Rev. Lett.109 (2012) 141301.; DOI:10.1103/PhysRevLett.109.141301
1010.L. Ludhova et al., Solar neutrino physics with
Borexino I, 47th Rencontres de Moriond
on Electroweak Interactions and Unified Theories (p. 341).;
Retrieved from https://arxiv.org/abs/1205.2989
1011.A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni and T. Schwetz,
The minimal 3+2 neutrino model versus oscillation
anomalies, JHEP07 (2012) 161.; DOI:10.1007/JHEP07(2012)161
1012.E. Kh. Akhmedov and A. Wilhelm, Quantum field
theoretic approach to neutrino oscillations in matter,
JHEP01 (2013) 165.; DOI:10.1007/JHEP01(2013)165
1013.E. Kh. Akhmedov, S. Razzaque and A. Yu. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with Huge
Atmospheric Neutrino Detectors, JHEP02
(2013) 082.; DOI:10.1007/JHEP02(2013)082
1014.J. Chakrabortty, P. Ghosh and W. Rodejohann, Lower Limits on \(\mu \to e
\gamma\) from New Measurements on \(U_{e3}\), Phys. Rev. D86 (2012) 075020.; DOI:10.1103/PhysRevD.86.075020
1015.S. S. C. Law and K. L. McDonald, Inverse
seesaw and dark matter in models with exotic lepton triplets,
Phys. Lett. B713 (2012) 490–494.; DOI:10.1016/j.physletb.2012.06.044
1016.R. Abbasi et al., An absence of neutrinos
associated with cosmic-ray acceleration in \(\gamma\)-ray bursts, Nature484 (2012) 351–353.; DOI:10.1038/nature11068
1018.F. Bezrukov, A. Kartavtsev and M. Lindner, Leptogenesis in models with keV sterile neutrino dark
matter, J. Phys. G40 (2013) 095202.;
DOI:10.1088/0954-3899/40/9/095202
1019.L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter, and a Standard Model
like Higgs at 125 GeV, Phys. Lett. B716 (2012) 179–185.; DOI:10.1016/j.physletb.2012.07.017
1020.J. Heeck and W. Rodejohann, Neutrino
Hierarchies from a Gauge Symmetry, Phys. Rev. D85 (2012) 113017.; DOI:10.1103/PhysRevD.85.113017
1021.M. Blennow and T. Schwetz, Identifying the
Neutrino mass Ordering with INO and NOvA, JHEP08 (2012) 058.; DOI:10.1007/JHEP08(2012)058
1022.J. Barry, L. Dorame and W. Rodejohann, Linear
Collider Test of a Neutrinoless Double Beta Decay Mechanism in
left-right Symmetric Theories, Eur. Phys. J. C72 (2012) 2023.; DOI:10.1140/epjc/s10052-012-2023-0
1023.W. Rodejohann and H. Zhang, Impact of massive
neutrinos on the Higgs self-coupling and electroweak vacuum
stability, JHEP06 (2012) 022.; DOI:10.1007/JHEP06(2012)022
1025.T. Araki, J. Heeck and J. Kubo, Vanishing
Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries,
JHEP07 (2012) 083.; DOI:10.1007/JHEP07(2012)083
1026.M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P.
Serra, Asymmetric Dark Matter and Dark
Radiation, JCAP07 (2012) 022.; DOI:10.1088/1475-7516/2012/07/022
1027.G. Bellini et al., Search for Solar Axions
Produced in \(p(d,\rm{^3He})A\)
Reaction with Borexino Detector, Phys. Rev. D85 (2012) 092003.; DOI:10.1103/PhysRevD.85.092003
1028.K. L. McDonald, Sommerfeld Enhancement from
Multiple Mediators, JHEP07 (2012)
145.; DOI:10.1007/JHEP07(2012)145
1029.B. von Harling and K. L. McDonald, Secluded
Dark Matter Coupled to a Hidden CFT, JHEP08 (2012) 048.; DOI:10.1007/JHEP08(2012)048
1030.T. Asaka and A. Watanabe, Atmospheric Sterile
Neutrinos, JHEP07 (2012) 112.; DOI:10.1007/JHEP07(2012)112
1031.G. Bellini et al., Cosmic-muon flux and annual
modulation in Borexino at 3800 m water-equivalent depth,
JCAP05 (2012) 015.; DOI:10.1088/1475-7516/2012/05/015
1032.D. Schmidt, T. Schwetz and T. Toma, Direct
Detection of Leptophilic Dark Matter in a Model with Radiative Neutrino
Masses, Phys. Rev. D85 (2012) 073009.;
DOI:10.1103/PhysRevD.85.073009
1033.S. Choubey, M. Duerr, M. Mitra and W. Rodejohann, Lepton Number and Lepton Flavor Violation through Color
Octet States, JHEP05 (2012) 017.;
DOI:10.1007/JHEP05(2012)017
1035.E. Akhmedov, D. Hernandez and A. Smirnov, Neutrino production coherence and oscillation
experiments, JHEP04 (2012) 052.;
DOI:10.1007/JHEP04(2012)052
1036.W. Rodejohann, M. Tanimoto and A. Watanabe, Relating large \(U_{e3}\) to the ratio of neutrino
mass-squared differences, Phys. Lett. B710 (2012) 636–640.; DOI:10.1016/j.physletb.2012.03.037
1037.C. Buck et al., Measuring the (14)C isotope
concentration in a liquid organic scintillator at a small-volume
setup, Instrum. Exp. Tech.55 (2012)
34–37.; DOI:10.1134/S0020441212010022
1039.M. Agostini et al., LArGe
\& for active background suppression in
GERDA, (L. Oberauer, G. Raffelt, & R. Wagner, Eds.)J.
Phys. Conf. Ser.375 (2012) 042009.; DOI:10.1088/1742-6596/375/1/042009
1040.L. Lopez Honorez, Coupled quintessence through
dark energy density, (L. Oberauer, G. Raffelt, & R. Wagner,
Eds.)J. Phys. Conf. Ser.375 (2012) 032007.;
DOI:10.1088/1742-6596/375/1/032007
1041.G. Testera et al., High precision Be-7 solar
neutrinos measurement and day night effect obtained with
Borexino, (A. Capone, G. De Bonis, M. De Vincenzi, & A.
Morselli, Eds.)Nucl. Instrum. Meth. A692
(2012) 258–261.; DOI:10.1016/j.nima.2012.01.006
1042.T. Schwetz, Neutrino mass and mixing:
Status, (R. Godbole & N. K. Mondal, Eds.)Pramana79 (2012) 979–992.; DOI:10.1007/s12043-012-0414-2
1043.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multicomponent dark matter system with nonstandard
annihilation processes of dark matter, (B. Szczerbinska, K. Babu,
B. Balantekin, B. Dutta, & R. N. Mohapatra, Eds.)AIP Conf.
Proc.1534 (2013) 31–38.; DOI:10.1063/1.4807340
1044.M. Barnabe Heider, Semiconductor-based
experiments for neutrinoless double beta decay search, (G. S.
Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl.229-232 (2012) 141–145.; DOI:10.1016/j.nuclphysbps.2012.09.023
1045.C. Aberle, C. Buck, F. X. Hartmann, M. Lindner, S. Schönert, S.
Wagner and H. Watanabe, Large Scale Production of
the Liquid Scintillator for the Double Chooz Experiment, (G. S.
Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl.229-232 (2012) 448–448.; DOI:10.1016/j.nuclphysbps.2012.09.085
1046.M. Agostini et al., Procurement, production
and testing of BEGe detectors depleted in \(^{76}Ge\), (G. S. Tzanakos,
Ed.)Nucl. Phys. B Proc. Suppl.229-232 (2012)
489–489.; DOI:10.1016/j.nuclphysbps.2012.09.126
1047.L. Lopez-Honorez, Biases on cosmological
parameters by general relativity effects, 47th Rencontres de Moriond on Cosmology (pp.
29–32).
1048.J. Herrero-Garcia, T. Schwetz and J. Zupan, On
the annual modulation signal in dark matter direct detection,
JCAP03 (2012) 005.; DOI:10.1088/1475-7516/2012/03/005
1049.R. Abbasi et al., Multi-year search for dark
matter annihilations in the Sun with the AMANDA-II and IceCube
detectors, Phys. Rev. D85 (2012)
042002.; DOI:10.1103/PhysRevD.85.042002
1050.M. Holthausen, K. S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs
Mass, JHEP02 (2012) 037.; DOI:10.1007/JHEP02(2012)037
1051.Z. Xing, H. Zhang and S. Zhou, Impacts of the
Higgs mass on vacuum stability, running fermion masses and two-body
Higgs decays, Phys. Rev. D86 (2012)
013013.; DOI:10.1103/PhysRevD.86.013013
1052.J. Heeck and W. Rodejohann, Hidden O(2) and
SO(2) Symmetry in Lepton Mixing, JHEP02 (2012) 094.; DOI:10.1007/JHEP02(2012)094
1053.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, RG running in a minimal UED model in light of recent LHC
Higgs mass bounds, Phys. Lett. B712
(2012) 419–424.; DOI:10.1016/j.physletb.2012.05.029
1054.T. Asaka, S. Eijima and H. Ishida, Kinetic
Equations for Baryogenesis via Sterile Neutrino Oscillation,
JCAP02 (2012) 021.; DOI:10.1088/1475-7516/2012/02/021
1055.Y. Abe et al., Indication of Reactor \(\bar{\nu}_e\) Disappearance in the Double
Chooz Experiment, Phys. Rev. Lett.108
(2012) 131801.; DOI:10.1103/PhysRevLett.108.131801
1056.M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant
regime, Annals Phys.328 (2013) 26–63.;
DOI:10.1016/j.aop.2012.10.007
1057.C. Aberle, C. Buck, B. Gramlich, F. X. Hartmann, M. Lindner, S.
Schonert, U. Schwan, S. Wagner and H. Watanabe, Large scale Gd-beta-diketonate based organic liquid
scintillator production for antineutrino detection,
JINST7 (2012) P06008.; DOI:10.1088/1748-0221/7/06/P06008
1059.M. Holthausen and M. A. Schmidt, Natural
Vacuum Alignment from Group Theory: The Minimal Case,
JHEP01 (2012) 126.; DOI:10.1007/JHEP01(2012)126
1060.R. Abbasi et al., The IceCube Neutrino Observatory V: Future
Developments, 32nd International Cosmic Ray
Conference.; Retrieved from https://arxiv.org/abs/1111.2742
1061.R. Abbasi et al., The IceCube Neutrino
Observatory IV: Searches for Dark Matter and Exotic Particles,
32nd International Cosmic Ray Conference.;
Retrieved from https://arxiv.org/abs/1111.2738
1062.R. Abbasi et al., IceCube - Astrophysics and
Astroparticle Physics at the South Pole (2011).; Retrieved from
https://arxiv.org/abs/1111.5188
1063.R. Abbasi et al., Searching for soft
relativistic jets in Core-collapse Supernovae with the IceCube Optical
Follow-up Program, Astron. Astrophys.539 (2012) A60.; DOI:10.1051/0004-6361/201118071
1064.C. Aberle, C. Buck, F. X. Hartmann and S. Schonert, Light yield and energy transfer in a new Gd-loaded liquid
scintillator, Chem. Phys. Lett.516
(2011) 257–262.; DOI:10.1016/j.cplett.2011.09.067
1065.E. Akhmedov and T. Schwetz, LSND and MiniBooNE
within (3+1) plus NSI, (B. S. Acharya, M. Goodman, & N. K.
Mondal, Eds.)AIP Conf. Proc.1382 (2011)
94–96.; DOI:10.1063/1.3644278
1066.S. Choubey, T. Schwetz and P. Vahle, Summary
of the Oscillation Physics Working Group, (B. S. Acharya, M.
Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc.1382 (2011) 77–81.; DOI:10.1063/1.3644274
1067.W. Maneschg et al., Production and
characterization of a custom-made \(^{228}Th\) source with reduced neutron
source strength for the Borexino experiment, Nucl. Instrum.
Meth. A680 (2012) 161–167.; DOI:10.1016/j.nima.2012.04.019
1068.J. Kopp, T. Schwetz and J. Zupan, Light Dark
Matter in the light of CRESST-II, JCAP03 (2012) 001.; DOI:10.1088/1475-7516/2012/03/001
1069.P.-H. Gu and U. Sarkar, Inflationary
Baryogenesis with Low Reheating Temperature and Testable
Neutron-Antineutron Oscillation (2011).; Retrieved from https://arxiv.org/abs/1110.2926
1070.G. Bellini et al., First evidence of pep solar
neutrinos by direct detection in Borexino, Phys. Rev.
Lett.108 (2012) 051302.; DOI:10.1103/PhysRevLett.108.051302
1071.C. H. Kom and W. Rodejohann, Four-jet final
state in same-sign lepton colliders and neutrinoless double beta decay
mechanisms, Phys. Rev. D85 (2012)
015013.; DOI:10.1103/PhysRevD.85.015013
1072.P.-H. Gu and U. Sarkar, Common Origin of
Baryon Asymmetry and Proton Decay, Mod. Phys. Lett. A28 (2013) 1350159.; DOI:10.1142/S0217732313501599
1073.P.-H. Gu, A left-right symmetric model with
SU(2)-triplet fermions, Phys. Rev. D84
(2011) 097301.; DOI:10.1103/PhysRevD.84.097301
1074.J. Barry, W. Rodejohann and H. Zhang, Sterile
Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor
Symmetry Models, JCAP01 (2012) 052.;
DOI:10.1088/1475-7516/2012/01/052
1075.H. Zhang, Light Sterile Neutrino in the
Minimal Extended Seesaw, Phys. Lett. B714 (2012) 262–266.; DOI:10.1016/j.physletb.2012.06.074
1076.R. Abbasi et al., Observation of an Anisotropy
in the Galactic Cosmic Ray arrival direction at 400 TeV with
IceCube, Astrophys. J.746 (2012) 33.;
DOI:10.1088/0004-637X/746/1/33
1077.J. Heeck and W. Rodejohann, Kinetic and mass
mixing with three abelian groups, Phys. Lett. B705 (2011) 369–374.; DOI:10.1016/j.physletb.2011.10.050
1078.R. Abbasi et al., The Design and Performance
of IceCube DeepCore, Astropart. Phys.35 (2012) 615–624.; DOI:10.1016/j.astropartphys.2012.01.004
1079.R. Abbasi et al., IceCube Sensitivity for
Low-Energy Neutrinos from Nearby Supernovae, Astron.
Astrophys.535 (2011) A109.; DOI:10.1051/0004-6361/201117810e
1080.T. Schwetz, M. Tortola and J. W. F. Valle, Where we are on \(\theta_{13}\): addendum to “Global
neutrino data and recent reactor fluxes: status of three-flavour
oscillation parameters”, New J. Phys.13 (2011) 109401.; DOI:10.1088/1367-2630/13/10/109401
1081.R. Abbasi et al., Searches for periodic
neutrino emission from binary systems with 22 and 40 strings of
IceCube, Astrophys. J.748 (2012) 118.;
DOI:10.1088/0004-637X/748/2/118
1082.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, The Glashow resonance at IceCube: signatures, event rates
and \(pp\) vs. \(p\gamma\) interactions,
JCAP10 (2011) 017.; DOI:10.1088/1475-7516/2011/10/017
1083.W. Rodejohann and J. W. F. Valle, Symmetrical
Parametrizations of the Lepton Mixing Matrix, Phys. Rev.
D84 (2011) 073011.; DOI:10.1103/PhysRevD.84.073011
1084.R. Abbasi et al., The IceCube Neutrino Observatory I: Point
Source Searches, 32nd International Cosmic Ray
Conference.; Retrieved from https://arxiv.org/abs/1111.2741
1085.R. Abbasi et al., The IceCube Neutrino
Observatory II: All Sky Searches: Atmospheric, Diffuse and EHE,
32nd International Cosmic Ray Conference.;
Retrieved from https://arxiv.org/abs/1111.2736
1086.P.-H. Gu and U. Sarkar, Baryogenesis and
neutron-antineutron oscillation at TeV, Phys. Lett. B705 (2011) 170–173.; DOI:10.1016/j.physletb.2011.10.017
1087.D. P. George and K. L. McDonald, Gravity on a
Little Warped Space, Phys. Rev. D84
(2011) 064007.; DOI:10.1103/PhysRevD.84.064007
1088.H. Zhang and S. Zhou, Radiative corrections
and explicit perturbations to the tetra-maximal neutrino mixing with
large \(\theta_{13}\), Phys.
Lett. B704 (2011) 296–302.; DOI:10.1016/j.physletb.2011.09.033
1089.A. Adulpravitchai and R. Takahashi, A4 Flavor
Models in Split Seesaw Mechanism, JHEP09 (2011) 127.; DOI:10.1007/JHEP09(2011)127
1090.W. Rodejohann, H. Zhang and S. Zhou, Systematic search for successful lepton mixing patterns
with nonzero \(\theta_{13}\),
Nucl. Phys. B855 (2012) 592–607.; DOI:10.1016/j.nuclphysb.2011.10.017
1091.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) Symmetry at the
Electroweak Scale, Phys. Rev. D84
(2011) 075007.; DOI:10.1103/PhysRevD.84.075007
1092.W. Rodejohann, Neutrino-less Double Beta Decay
and Particle Physics, Int. J. Mod. Phys. E20 (2011) 1833–1930.; DOI:10.1142/S0218301311020186
1093.R. Abbasi et al., Neutrino analysis of the
September 2010 Crab Nebula flare and time-integrated constraints on
neutrino emission from the Crab using IceCube, Astrophys.
J.745 (2012) 45.; DOI:10.1088/0004-637X/745/1/45
1094.N. Haba and R. Takahashi, Predictions via
large \(\theta_{13}\) from
cascades, Phys. Lett. B702 (2011)
388–393.; DOI:10.1016/j.physletb.2011.07.029
1095.T. Schwetz and J. Zupan, Dark Matter attempts
for CoGeNT and DAMA, JCAP08 (2011)
008.; DOI:10.1088/1475-7516/2011/08/008
1096.M. Duerr, M. Lindner and A. Merle, On the
Quantitative Impact of the Schechter-Valle Theorem, JHEP06 (2011) 091.; DOI:10.1007/JHEP06(2011)091
1097.M. Duerr, D. P. George and K. L. McDonald, Neutrino Mass and \(\mu
\rightarrow e + \gamma\) from a Mini-Seesaw, JHEP07 (2011) 103.; DOI:10.1007/JHEP07(2011)103
1098.R. Abbasi et al., Observation of Anisotropy in
the Arrival Directions of Galactic Cosmic Rays at Multiple Angular
Scales with IceCube, Astrophys. J.740
(2011) 16.; DOI:10.1088/0004-637X/740/1/16
1099.J. Barry, W. Rodejohann and H. Zhang, Light
Sterile Neutrinos: Models and Phenomenology, JHEP07 (2011) 091.; DOI:10.1007/JHEP07(2011)091
1100.M. Lindner, D. Schmidt and T. Schwetz, Dark
Matter and neutrino masses from global U(1)\(_{B−L}\) symmetry breaking,
Phys. Lett. B705 (2011) 324–330.; DOI:10.1016/j.physletb.2011.10.022
1101.A. Merle and V. Niro, Deriving Models for keV
sterile Neutrino Dark Matter with the Froggatt-Nielsen mechanism,
JCAP07 (2011) 023.; DOI:10.1088/1475-7516/2011/07/023
1102.R. Leitner, M. Malinsky, B. Roskovec and H. Zhang, Non-standard antineutrino interactions at Daya
Bay, JHEP12 (2011) 001.; DOI:10.1007/JHEP12(2011)001
1103.R. Abbasi et al., Time-Dependent Searches for
Point Sources of Neutrinos with the 40-String and 22-String
Configurations of IceCube, Astrophys. J.744 (2012) 1.; DOI:10.1088/0004-637X/744/1/1
1104.R.-Z. Yang and H. Zhang, Minimal seesaw model
with \(S_4\) flavor symmetry,
Phys. Lett. B700 (2011) 316–321.; DOI:10.1016/j.physletb.2011.05.014
1105.C. Bauer et al., Qualification Tests of 474
Photomultiplier Tubes for the Inner Detector of the Double Chooz
Experiment, JINST6 (2011) P06008.;
DOI:10.1088/1748-0221/6/06/P06008
1106.G. Bellini et al., Precision measurement of
the 7Be solar neutrino interaction rate in Borexino, Phys.
Rev. Lett.107 (2011) 141302.; DOI:10.1103/PhysRevLett.107.141302
1107.G. Bellini et al., Absence of day–night
asymmetry of 862 keV \(^7\)Be solar
neutrino rate in Borexino and MSW oscillation parameters,
Phys. Lett. B707 (2012) 22–26.; DOI:10.1016/j.physletb.2011.11.025
1108.E. Aprile et al., Dark Matter Results from 100
Live Days of XENON100 Data, Phys. Rev. Lett.107 (2011) 131302.; DOI:10.1103/PhysRevLett.107.131302
1109.E. Aprile et al., Implications on Inelastic
Dark Matter from 100 Live Days of XENON100 Data, Phys. Rev.
D84 (2011) 061101.; DOI:10.1103/PhysRevD.84.061101
1110.R. Abbasi et al., A Search for a Diffuse Flux
of Astrophysical Muon Neutrinos with the IceCube 40-String
Detector, Phys. Rev. D84 (2011)
082001.; DOI:10.1103/PhysRevD.84.082001
1111.E. Aprile et al., Likelihood Approach to the
First Dark Matter Results from XENON100, Phys. Rev. D84 (2011) 052003.; DOI:10.1103/PhysRevD.84.052003
1112.T. Schwetz, M. Tortola and J. W. F. Valle, Global neutrino data and recent reactor fluxes: status of
three-flavour oscillation parameters, New J. Phys.13 (2011) 063004.; DOI:10.1088/1367-2630/13/6/063004
1113.R. Abbasi et al., Background studies for
acoustic neutrino detection at the South Pole, Astropart.
Phys.35 (2012) 312–324.; DOI:10.1016/j.astropartphys.2011.09.004
1114.A. Adulpravitchai, B. Batell and J. Pradler, Non-Abelian
Discrete Dark Matter, Phys. Lett. B700
(2011) 207–216.; DOI:10.1016/j.physletb.2011.04.015
1115.R. Abbasi et al., Constraints on the
Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009
Data, Phys. Rev. D83 (2011) 092003.;
DOI:10.1103/PhysRevD.84.079902
1116.A. Dueck, W. Rodejohann and K. Zuber, Neutrinoless Double Beta Decay, the Inverted Hierarchy
and Precision Determination of theta(12), Phys. Rev. D83 (2011) 113010.; DOI:10.1103/PhysRevD.83.113010
1117.J. Kopp, M. Maltoni and T. Schwetz, Are There
Sterile Neutrinos at the eV Scale?, Phys. Rev. Lett.107 (2011) 091801.; DOI:10.1103/PhysRevLett.107.091801
1118.M. Duerr, M. Lindner and K. Zuber, Consistency
Test of Neutrinoless Double Beta Decay with one Isotope,
Phys. Rev. D84 (2011) 093004.; DOI:10.1103/PhysRevD.84.093004
1119.R. J. Abrams et al., Interim Design Report (2011).;
DOI:10.2172/1029650
1120.T. Schwetz, Reactor anomaly, Theta(13), and
sterile neutrinos, 14th International
Workshop on Neutrino Telescopes: Un altro
modo di guardare il cielo (pp. 183–192).
1121.N. Haba, K. Oda and R. Takahashi, Dirichlet
Higgs as radion stabilizer in warped compactification,
JHEP05 (2011) 125.; DOI:10.1007/JHEP05(2011)125
1122.H. Hettmansperger, M. Lindner and W. Rodejohann, Phenomenological Consequences of sub-leading Terms in
See-Saw Formulas, JHEP04 (2011) 123.;
DOI:10.1007/JHEP04(2011)123
1123.R. Abbasi et al., Limits on Neutrino Emission
from Gamma-Ray Bursts with the 40 String IceCube Detector,
Phys. Rev. Lett.106 (2011) 141101.; DOI:10.1103/PhysRevLett.106.141101
1124.T. Asaka, S. Eijima and H. Ishida, Mixing of
Active and Sterile Neutrinos, JHEP04
(2011) 011.; DOI:10.1007/JHEP04(2011)011
1125.R. Abbasi et al., First search for atmospheric
and extraterrestrial neutrino-induced cascades with the IceCube
detector, Phys. Rev. D84 (2011)
072001.; DOI:10.1103/PhysRevD.84.072001
1126.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, Renormalization Group Running of the Neutrino Mass
Operator in Extra Dimensions, JHEP04
(2011) 052.; DOI:10.1007/JHEP04(2011)052
1127.G. Bellini et al., Muon and Cosmogenic Neutron
Detection in Borexino, JINST6 (2011)
P05005.; DOI:10.1088/1748-0221/6/05/P05005
1128.R. Abbasi et al., Search for dark matter from
the Galactic halo with the IceCube Neutrino Telescope, Phys.
Rev. D84 (2011) 022004.; DOI:10.1103/PhysRevD.84.022004
1129.R. Abbasi et al., Search for neutrino-induced
cascades with five years of AMANDA data, Astropart.
Phys.34 (2011) 420–430.; DOI:10.1016/j.astropartphys.2010.10.007
1130.R. Abbasi et al., Constraints on high-energy
neutrino emission from SN 2008D, Astron. Astrophys.527 (2011) A28.; DOI:10.1051/0004-6361/201015770
1131.E. Aprile et al., Study of the electromagnetic
background in the XENON100 experiment, Phys. Rev. D83 (2011) 082001.; DOI:10.1103/PhysRevD.83.082001
1133.W. Rodejohann and H. Zhang, Extension of an
empirical charged lepton mass relation to the neutrino sector,
Phys. Lett. B698 (2011) 152–156.; DOI:10.1016/j.physletb.2011.03.007
1134.Y. Sestayo, Search strategies for discovering
extraterrestrial neutrinos with IceCube, (E. G. Anassontzis, P.
A. Rapidis, & L. K. Resvanis, Eds.)Nucl. Instrum. Meth. A626-627 (2011) S196–S199.; DOI:10.1016/j.nima.2010.06.264
1135.M. Weber, A study of radon background in the
XENON100 experiment, (R. Ford, Ed.)AIP Conf. Proc.1338 (2011) 208–213.; DOI:10.1063/1.3579583
1137.L. Perasso et al., Neutrino interactions at
few MeV: Results from Borexino at Gran Sasso, (R. Caruso, A.
Insolia, M. C. Maccarone, & V. Pirronello, Eds.)Nucl. Phys. B
Proc. Suppl.212-213 (2011) 121–127.; DOI:10.1016/j.nuclphysbps.2011.03.017
1138.M. Lindner and C. Weinheimer, Den
Geisterteilchen auf der Spur, Physik J.10N7 (2011) 31–37.
1139.E. Kh. Akhmedov and T. Schwetz, New MiniBooNE
results and non-standard neutrino interactions, (P. Bernardini,
G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.217 (2011) 217–219.; DOI:10.1016/j.nuclphysbps.2011.04.106
1140.W. Rodejohann and M. Shiozawa, Messengers of
new physics, (P. Bernardini, G. Fogli, & E. Lisi,
Eds.)Nucl. Phys. B Proc. Suppl.217 (2011)
383–387.; DOI:10.1016/j.nuclphysbps.2011.04.143
1141.C. Aberle, C. Buck, F. X. Hartmann, S. Schonert and S. Wagner,
Light output of Double Chooz scintillators for low
energy electrons, JINST6 (2011)
P11006.; DOI:10.1088/1748-0221/6/11/P11006
1142.S. Schonert, New techniques in 0nu beta beta
germanium experiments, (G. Mills, S. Elliott, T. Goldman, &
T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl.221
(2011) 244–247.; DOI:10.1016/j.nuclphysbps.2011.09.011
1143.C. Buck, A. Di Vacri, G. Mention and D. Motta, Scintillator \& and
construction of a prototype for the Double Chooz experiment, (G.
Mills, S. Elliott, T. Goldman, & T. Bowles, Eds.)Nucl. Phys. B
Proc. Suppl.221 (2011) 372.; DOI:10.1016/j.nuclphysbps.2011.10.020
1144.P. Huber, J. Kopp, M. Lindner, A. Merle, W. Rodejohann, M. Rolinec,
T. Schwetz and W. Winter, Physics potential of
future reactor neutrino experiments, (G. Mills, S. Elliott, T.
Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl.221 (2011) 360.; DOI:10.1016/j.nuclphysbps.2011.10.010
1145.S. Odrowski, E. Resconi and Y. Sestayo, Search
for Galactic Cosmic Ray Accelerators with the combined IceCube
40-strings and AMANDA detector, 32nd International
Cosmic Ray Conference (Vol. 4, p. 157).; DOI:10.7529/ICRC2011/V04/0320
1146.E. Resconi, High Energy Neutrino Astronomy:
IceCube 22 and 40 Strings, (G. S. Tzanakos, Ed.)Nucl. Phys. B
Proc. Suppl.229-232 (2012) 267–273.; DOI:10.1016/j.nuclphysbps.2012.09.042
1147.G. Aad et al., Measurement of underlying event
characteristics using charged particles in pp collisions at \(\sqrt{s} = 900 GeV\) and 7 TeV with the
ATLAS detector, Phys. Rev. D83 (2011)
112001.; DOI:10.1103/PhysRevD.83.112001
1148.J. Barry, R. N. Mohapatra and W. Rodejohann, Testing the Bimodal/Schizophrenic Neutrino Hypothesis in
Neutrino-less Double Beta Decay and Neutrino Telescopes,
Phys. Rev. D83 (2011) 113012.; DOI:10.1103/PhysRevD.83.113012
1149.A. Adulpravitchai, K. Kojima and R. Takahashi, Cascade Textures and SUSY SO(10) GUT,
JHEP02 (2011) 086.; DOI:10.1007/JHEP02(2011)086
1150.J. Heeck and W. Rodejohann, Neutrino
Phenomenology of gauged \(L_\mu -
L_\tau\): MINOS and beyond, (B. S. Acharya, M. Goodman,
& N. K. Mondal, Eds.)AIP Conf. Proc.1382
(2011) 144–146.; DOI:10.1063/1.3644295
1151.R. Abbasi et al., Time-Integrated Searches for
Point-like Sources of Neutrinos with the 40-String IceCube
Detector, Astrophys. J.732 (2011) 18.;
DOI:10.1088/0004-637X/732/1/18
1152.M. Agostini, C. A. Ur, D. Budjas, E. Bellotti, R. Brugnera, C. M.
Cattadori, A. di Vacri, A. Garfagnini, L. Pandola and S. Schonert, Signal modeling of high-purity Ge detectors with a small
read-out electrode and application to neutrinoless double beta decay
search in Ge-76, JINST6 (2011)
P03005.; DOI:10.1088/1748-0221/6/03/P03005
1153.J. Kopp, V. Niro, T. Schwetz and J. Zupan, Leptophilic Dark Matter in Direct Detection Experiments
and in the Sun, PoSIDM2010 (2011)
118.; DOI:10.22323/1.110.0118
1154.P.-H. Gu, Double and Linear Seesaw from
Left-Right and Peccei-Quinn Symmetry Breaking (2010).; Retrieved
from https://arxiv.org/abs/1011.2380
1155.E. Kh. Akhmedov, Beta decay and other
processes in strong electromagnetic fields, Phys. Atom.
Nucl.74 (2011) 1299–1315.; DOI:10.1134/S1063778811080035
1156.W. Rodejohann and H. Zhang, Higgs triplets at
like-sign linear colliders and neutrino mixing, Phys. Rev.
D83 (2011) 073005.; DOI:10.1103/PhysRevD.83.073005
1157.F. Bezrukov, F. Kahlhoefer, M. Lindner, F. Kahlhoefer and M.
Lindner, Interplay between scintillation and
ionization in liquid xenon Dark Matter searches, Astropart.
Phys.35 (2011) 119–127.; DOI:10.1016/j.astropartphys.2011.06.008
1158.P.-H. Gu and M. Lindner, Natural Inflation and
Flavor Mixing from Peccei-Quinn Symmetry Breaking, Phys.
Lett. B697 (2011) 229–232.; DOI:10.1016/j.physletb.2011.02.005
1159.K. Kojima, H. Sawanaka and R. Takahashi, Cascade Hierarchy in SUSY SU(5) GUT (2010).;
Retrieved from https://arxiv.org/abs/1011.5678
1160.T. Schwetz, Direct detection data and possible
hints for low-mass WIMPs, PoSIDM2010
(2011) 070.; DOI:10.22323/1.110.0070
1161.M. Lindner, A. Merle and V. Niro, Soft \(L_e - L_\mu - L_\tau\) flavour symmetry
breaking and sterile neutrino keV Dark Matter, JCAP01 (2011) 034.; DOI:10.1088/1475-7516/2011/01/034
1162.W. Rodejohann, Neutrinoless Double Beta Decay
in Particle Physics, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc.
Suppl.229-232 (2012) 113–117.; DOI:10.1016/j.nuclphysbps.2012.09.018
1163.G. Bellini et al., Study of solar and other
unknown anti-neutrino fluxes with Borexino at LNGS, Phys.
Lett. B696 (2011) 191–196.; DOI:10.1016/j.physletb.2010.12.030
1164.S. Ray, W. Rodejohann and M. A. Schmidt, Lower
bounds on the smallest lepton mixing angle, Phys. Rev. D83 (2011) 033002.; DOI:10.1103/PhysRevD.83.033002
1165.K. L. McDonald, Light Neutrinos from a
Mini-Seesaw Mechanism in Warped Space, Phys. Lett. B696 (2011) 266–272.; DOI:10.1016/j.physletb.2010.12.059
1166.R. Abbasi et al., Measurement of the
atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with
IceCube, Phys. Rev. D83 (2011)
012001.; DOI:10.1103/PhysRevD.83.012001
1167.R. Abbasi et al., Search for a
Lorentz-violating sidereal signal with atmospheric neutrinos in
IceCube, Phys. Rev. D82 (2010)
112003.; DOI:10.1103/PhysRevD.82.112003
1168.P.-H. Gu and M. Lindner, Universal Seesaw from
Left-Right and Peccei-Quinn Symmetry Breaking, Phys. Lett.
B698 (2011) 40–43.; DOI:10.1016/j.physletb.2011.02.042
1169.P. Di Bari, S. F. King, C. Luhn, A. Merle and A. Schmidt-May, Radiative Inflation and Dark Energy, Phys.
Rev. D84 (2011) 083524.; DOI:10.1103/PhysRevD.84.083524
1170.K. L. McDonald and D. E. Morrissey, Low-Energy
Signals from Kinetic Mixing with a Warped Abelian Hidden Sector,
JHEP02 (2011) 087.; DOI:10.1007/JHEP02(2011)087
1171.R. Alonso et al., Summary Report of MINSIS
Workshop in Madrid, Madrid Neutrino NSI Workshop
(MINSIS).; Retrieved from https://arxiv.org/abs/1009.0476
1172.P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev.
D83 (2011) 055008.; DOI:10.1103/PhysRevD.83.055008
1173.R. Abbasi et al., The first search for
extremely-high energy cosmogenic neutrinos with the IceCube Neutrino
Observatory, Phys. Rev. D82 (2010)
072003.; DOI:10.1103/PhysRevD.82.072003
1174.Y. Shimizu and R. Takahashi, Deviations from
Tri-Bimaximality and Quark-Lepton Complementarity, EPL93 (2011) 61001.; DOI:10.1209/0295-5075/93/61001
1175.R. Abbasi et al., Search for relativistic
magnetic monopoles with the AMANDA-II neutrino telescope,
Eur. Phys. J. C69 (2010) 361–378.; DOI:10.1140/epjc/s10052-010-1411-6
1176.E. Kh. Akhmedov and A. Yu. Smirnov, Neutrino
oscillations: Entanglement, energy-momentum conservation and QFT,
Found. Phys.41 (2011) 1279–1306.; DOI:10.1007/s10701-011-9545-4
1177.S. S. C. Law and K. L. McDonald, Broken
Symmetry as a Stabilizing Remnant, Phys. Rev. D82 (2010) 104032.; DOI:10.1103/PhysRevD.82.104032
1178.F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations,
JHEP01 (2011) 016.; DOI:10.1007/JHEP01(2011)016
1179.A. Adulpravitchai, P.-H. Gu and M. Lindner, Connections between the Seesaw and Dark Matter
Searches, Phys. Rev. D82 (2010)
073013.; DOI:10.1103/PhysRevD.82.073013
1180.P.-H. Gu and U. Sarkar, Leptogenesis with
Linear, Inverse or Double Seesaw, Phys. Lett. B694 (2011) 226–232.; DOI:10.1016/j.physletb.2010.09.062
1181.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) and different Muon
Neutrino and Anti-Neutrino Oscillations: MINOS and beyond, J.
Phys. G38 (2011) 085005.; DOI:10.1088/0954-3899/38/8/085005
1182.E. Akhmedov and T. Schwetz, MiniBooNE and LSND
data: Non-standard neutrino interactions in a (3+1) scheme versus (3+2)
oscillations, JHEP10 (2010) 115.;
DOI:10.1007/JHEP10(2010)115
1183.J. Barry and W. Rodejohann, Neutrino Mass
Sum-rules in Flavor Symmetry Models, Nucl. Phys. B842 (2011) 33–50.; DOI:10.1016/j.nuclphysb.2010.08.015
1184.F. Bezrukov, Inflation in the standard model
and \(\nu\)MSM with non-minimal
coupling to gravity, (J.-M. Alimi & A. Fuzfa, Eds.)AIP
Conf. Proc.1241 (2010) 511–520.; DOI:10.1063/1.3462679
1185.R. Mehrem and A. Hohenegger, A Generalisation For The
Infinite Integral Over Three Spherical Bessel Functions, J.
Phys. A43 (2010) 9.; DOI:10.1088/1751-8113/43/45/455204
1186.A. Dueck, S. Petcov and W. Rodejohann, On
Leptonic Unitary Triangles and Boomerangs, Phys. Rev. D82 (2010) 013005.; DOI:10.1103/PhysRevD.82.013005
1187.T. Kobayashi, Y. Nakai and R. Takahashi, Revisiting superparticle spectra in superconformal flavor
models, JHEP09 (2010) 093.; DOI:10.1007/JHEP09(2010)093
1188.P.-H. Gu, Relations between Neutrino and
Charged Fermion Masses, Phys. Rev. Lett.105 (2010) 131802.; DOI:10.1103/PhysRevLett.105.131802
1189.P.-H. Gu, Large Lepton Asymmetry for Small
Baryon Asymmetry and Warm Dark Matter, Phys. Rev. D82 (2010) 093009.; DOI:10.1103/PhysRevD.82.093009
1190.J. Bernabeu et al., EURONU WP6 2009 Yearly
Report: Update of the Physics Potential of Nufact, Superbeams and
Betabeams (2010).; Retrieved from https://arxiv.org/abs/1005.3146
1191.M. Lindner, A. Merle and V. Niro, Enhancing
Dark Matter Annihilation into Neutrinos, Phys. Rev. D82 (2010) 123529.; DOI:10.1103/PhysRevD.82.123529
1192.R. Abbasi et al., Measurement of the
Anisotropy of Cosmic Ray Arrival Directions with IceCube,
Astrophys. J. Lett.718 (2010) L194.; DOI:10.1088/2041-8205/718/2/L194
1194.N. Haba, K. Oda and R. Takahashi, Phenomenological Aspects of Dirichlet Higgs Model from
Extra-Dimension, JHEP07 (2010) 079.;
DOI:10.1007/JHEP07(2010)079
1195.M. Garny, A. Hohenegger and A. Kartavtsev, Quantum corrections to leptogenesis from the gradient
expansion (2010).; Retrieved from https://arxiv.org/abs/1005.5385
1196.E. Akhmedov, Neutrino oscillations in quantum
mechanics and quantum field theory, Gribov-80 Memorial Workshop on Quantum Chromodynamics and
Beyond (pp. 377–391).; DOI:10.1142/9789814350198_0036
1197.P.-H. Gu, E. Ma and U. Sarkar, Pseudo-Majoron
as Dark Matter, Phys. Lett. B690
(2010) 145–148.; DOI:10.1016/j.physletb.2010.05.012
1198.R. Abbasi et al., Measurement of Acoustic
Attenuation in South Pole Ice, Astropart. Phys.34 (2011) 382–393.; DOI:10.1016/j.astropartphys.2010.10.003
1199.R. Abbasi et al., The Energy Spectrum of
Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II
Detector, Astropart. Phys.34 (2010)
48–58.; DOI:10.1016/j.astropartphys.2010.05.001
1200.A. Merle, The GSI oscillation mystery,
(A. Faessler & V. Rodin, Eds.)Prog. Part. Nucl. Phys.64 (2010) 445–447.; DOI:10.1016/j.ppnp.2009.12.071
1201.S. Choubey et al., International Design Study
for the Neutrino Factory: First Progress Report (2010).
1202.G. Bellini et al., Observation of
Geo-Neutrinos, Phys. Lett. B687 (2010)
299–304.; DOI:10.1016/j.physletb.2010.03.051
1203.K.-I. Izawa, Y. Nakai and R. Takahashi, Nonlinearly Realized
Extended Supergravity, Phys. Rev. D82
(2010) 075008.; DOI:10.1103/PhysRevD.82.075008
1204.J. Barry and W. Rodejohann, Deviations from
tribimaximal mixing due to the vacuum expectation value misalignment in
\(A_4\) models, Phys. Rev.
D81 (2010) 093002.; DOI:10.1103/PhysRevD.81.119901
1205.M. Mezzetto and T. Schwetz, \(\theta_{13}\): Phenomenology, present
status and prospect, J. Phys. G37
(2010) 103001.; DOI:10.1088/0954-3899/37/10/103001
1206.W. Rodejohann, Non-Unitary PMNS Matrix,
Leptogenesis and Low Energy CP Violation, (D. M. Kaplan, Z.
Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc.1222 (2010) 93–97.; DOI:10.1063/1.3399406
1207.M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in
leptogenesis, Phys. Rev. D81 (2010)
085028.; DOI:10.1103/PhysRevD.81.085028
1208.R. Abbasi et al., Calibration and
Characterization of the IceCube Photomultiplier Tube, Nucl.
Instrum. Meth. A618 (2010) 139–152.; DOI:10.1016/j.nima.2010.03.102
1209.P.-H. Gu, Resonant Leptogenesis and Verifiable
Seesaw from Large Extra Dimensions, Phys. Rev. D81 (2010) 073002.; DOI:10.1103/PhysRevD.81.073002
1210.P.-H. Gu, A Left-Right Symmetric Model for
Neutrino Masses, Baryon Asymmetry and Dark Matter, Phys. Rev.
D81 (2010) 095002.; DOI:10.1103/PhysRevD.81.095002
1211.F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source
experiments, Phys. Lett. B685 (2010)
47–54.; DOI:10.1016/j.physletb.2010.01.030
1212.A. Adulpravitchai and M. A. Schmidt, Flavored
Orbifold GUT - an SO(10) x S4 model, JHEP01 (2011) 106.; DOI:10.1007/JHEP01(2011)106
1213.E. Kh. Akhmedov and J. Kopp, Neutrino
Oscillations: Quantum Mechanics vs. Quantum Field Theory,
JHEP04 (2010) 008.; DOI:10.1007/JHEP04(2010)008
1214.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a
storage ring, (E. Coccia, L. Pandola, N. Fornengo, & R.
Aloisio, Eds.)J. Phys. Conf. Ser.203 (2010)
012098.; DOI:10.1088/1742-6596/203/1/012098
1215.A. Smolnikov, Development and installation of
the GERDA experiment, (E. Coccia, L. Pandola, N. Fornengo, &
R. Aloisio, Eds.)J. Phys. Conf. Ser.203
(2010) 012059.; DOI:10.1088/1742-6596/203/1/012059
1216.S. Schonert, Neutrinoless double beta
decay, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio,
Eds.)J. Phys. Conf. Ser.203 (2010) 012014.;
DOI:10.1088/1742-6596/203/1/012014
1217.W. Rodejohann, Scaling in the neutrino mass
matrix and the see-saw mechanism, (A. Faessler & V. Rodin,
Eds.)Prog. Part. Nucl. Phys.64 (2010)
321–323.; DOI:10.1016/j.ppnp.2009.12.041
1218.C. H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing,
Eur. Phys. J. C70 (2010) 1099–1110.; DOI:10.1140/epjc/s10052-010-1492-2
1219.M. Misiaszek et al., Results from the Borexino
experiment, (A. Zalewska, Ed.)Acta Phys. Polon. B41 (2010) 1603–1610.
1220.M. Barnabe-Heider, D. Budjas, K. Gusev and S. Schonert, Operation and performance of a bare broad-energy
germanium detector in liquid argon, JINST5 (2010) P10007.; DOI:10.1088/1748-0221/5/10/P10007
1221.A. Hohenegger, Finite density aspects of
leptogenesis, (S. Cabrera, M. Hirsch, V. Mitsou, C. Munoz, S.
Pastor, M. A. Tortola, J. W. F. Valle, et al., Eds.)J. Phys. Conf.
Ser.259 (2010) 012074.; DOI:10.1088/1742-6596/259/1/012074
1222.T. Schwetz, Neutrino physics: A theoretical
review, (F. Bianchi, Ed.)PoSFPCP2010
(2010) 051.; DOI:10.22323/1.116.0051
1223.H. Simgen, Observation of neutrinos from sun
and earth with the BOREXINO detector, (F. M. Rieger, C. van
Eldik, & W. Hofmann, Eds.)PoSTEXAS2010
(2010) 215.; DOI:10.22323/1.123.0215
1224.S. Riboldi, C. Cattadori, A. D’Andragora, A. Pullia, F. Zocca, M.
Barnabe-Heider and D. Budjas, A low-noise charge
sensitive preamplifier for Ge spectroscopy operating at cryogenic
temperature in the GERDA experiment, 2010 IEEE Nuclear Science Symposium, Medical Imaging
Conference, and 17th Room Temperature Semiconductor Detectors
Workshop (pp. 1386–1388).; DOI:10.1109/NSSMIC.2010.5873998
1225.D. Budjas, O. Chkvorets and S. Schonert, Background suppression using pulse shape analysis with a
BEGe detector for neutrinoless double beta decay search with
GERDA, (M. L. Marshak, Ed.)AIP Conf. Proc.1182 (2009) 96–99.; DOI:10.1063/1.3293966
1226.F. Bezrukov and D. Gorbunov, Light inflaton
Hunter’s Guide, JHEP05 (2010) 010.;
DOI:10.1007/JHEP05(2010)010
1227.M. Holthausen and R. Takahashi, GIMPs from
Extra Dimensions, Phys. Lett. B691
(2010) 56–59.; DOI:10.1016/j.physletb.2010.06.012
1228.W. Rodejohann, On Non-Unitary Lepton Mixing
and Neutrino Mass Observables, Phys. Lett. B684 (2010) 40–47.; DOI:10.1016/j.physletb.2009.12.031
1229.J. Kopp, T. Schwetz and J. Zupan, Global
interpretation of direct Dark Matter searches after CDMS-II
results, JCAP02 (2010) 014.; DOI:10.1088/1475-7516/2010/02/014
1230.F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of
the Standard Model, Phys. Rev. D81
(2010) 085032.; DOI:10.1103/PhysRevD.81.085032
1231.G. Bellini et al., New experimental limits on
the Pauli forbidden transitions in C-12 nuclei obtained with 485 days
Borexino data, Phys. Rev. C81 (2010)
034317.; DOI:10.1103/PhysRevC.81.034317
1232.M. Holthausen, M. Lindner and M. A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right
Symmetric Model, Phys. Rev. D82 (2010)
055002.; DOI:10.1103/PhysRevD.82.055002
1233.R. Abbasi et al., Extending the search for
neutrino point sources with IceCube above the horizon, Phys.
Rev. Lett.103 (2009) 221102.; DOI:10.1103/PhysRevLett.103.221102
1234.J. Kopp and A. Merle, Ultra-low Q values for
neutrino mass measurements, Phys. Rev. C81 (2010) 045501.; DOI:10.1103/PhysRevC.81.045501
1235.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium
QFT: Self-energy contribution to the CP-violating parameter,
Phys. Rev. D81 (2010) 085027.; DOI:10.1103/PhysRevD.81.085027
1236.N. Haba, K. Oda and R. Takahashi, Dirichlet
Higgs in extra-dimension, consistent with electroweak data,
Acta Phys. Polon. B42 (2011) 33–44.; DOI:10.5506/APhysPolB.42.33
1237.M. Pallavicini et al., Solar neutrino results
from Borexino and main future perspectives, (A. Capone, M. De
Vincenzi, F. Lucarelli, A. Morselli, & V. Vitale, Eds.)Nucl.
Instrum. Meth. A630 (2011) 210–213.; DOI:10.1016/j.nima.2010.06.067
1238.T. Kobayashi, Y. Nakai and R. Takahashi, Fine
Tuning in General Gauge Mediation, JHEP01 (2010) 003.; DOI:10.1007/JHEP01(2010)003
1239.R. Abbasi et al., Limits on a muon flux from
Kaluza-Klein dark matter annihilations in the Sun from the IceCube
22-string detector, Phys. Rev. D81
(2010) 057101.; DOI:10.1103/PhysRevD.81.057101
1240.N. Haba, K. Oda and R. Takahashi, Diagonal
Kaluza-Klein expansion under brane localized potential, Acta
Phys. Polon. B41 (2010) 1291–1316.; Retrieved
from https://arxiv.org/abs/0910.4528
1241.T. Schwetz, Phenomenology of future neutrino
oscillation experiments, European
Strategy for Future Neutrino Physics (pp. 75–84).
1242.T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu
model, Phys. Lett. B681 (2009)
269–275.; DOI:10.1016/j.physletb.2009.10.025
1243.S. Choubey and W. Rodejohann, Flavor
Composition of UHE Neutrinos at Source and at Neutrino
Telescopes, Phys. Rev. D80 (2009)
113006.; DOI:10.1103/PhysRevD.80.113006
1244.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium
QFT: Vertex contribution to the CP-violating parameter, Phys.
Rev. D80 (2009) 125027.; DOI:10.1103/PhysRevD.80.125027
1245.V. Niro, A. Bottino, N. Fornengo and S. Scopel, Investigating light neutralinos at neutrino
telescopes, Phys. Rev. D80 (2009)
095019.; DOI:10.1103/PhysRevD.80.095019
1246.R. Abbasi et al., Measurement of sound speed
vs. depth in South Pole ice for neutrino astronomy,
Astropart. Phys.33 (2010) 277–286.; DOI:10.1016/j.astropartphys.2010.01.012
1247.J. Kopp, M. Lindner, V. Niro and T. E. J. Underwood, On the Consistency of Perturbativity and Gauge Coupling
Unification, Phys. Rev. D81 (2010)
025008.; DOI:10.1103/PhysRevD.81.025008
1248.D. Budjas, M. Barnabe Heider, O. Chkvorets, N. Khanbekov and S.
Schonert, Pulse shape discrimination studies with a
Broad-Energy Germanium detector for signal identification and background
suppression in the GERDA double beta decay experiment,
JINST4 (2009) P10007.; DOI:10.1088/1748-0221/4/10/P10007
1249.A. Adulpravitchai, M. Lindner, A. Merle and R. N. Mohapatra, Radiative Transmission of Lepton Flavor
Hierarchies, Phys. Lett. B680 (2009)
476–479.; DOI:10.1016/j.physletb.2009.09.042
1250.P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP violation in neutrino oscillations from
upcoming superbeam and reactor experiments, JHEP11 (2009) 044.; DOI:10.1088/1126-6708/2009/11/044
1251.A. Adulpravitchai, M. Lindner and A. Merle, Confronting Flavour Symmetries and extended Scalar
Sectors with Lepton Flavour Violation Bounds, Phys. Rev.
D80 (2009) 055031.; DOI:10.1103/PhysRevD.80.055031
1252.R. Abbasi et al., Search for muon neutrinos
from Gamma-Ray Bursts with the IceCube neutrino telescope,
Astrophys. J.710 (2010) 346–359.; DOI:10.1088/0004-637X/710/1/346
1253.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of
Continuous Flavor Symmetries, JHEP09
(2009) 018.; DOI:10.1088/1126-6708/2009/09/018
1254.S. Goswami, S. T. Petcov, S. Ray and W. Rodejohann, Large |U(e3)| and Tri-bimaximal Mixing, Phys.
Rev. D80 (2009) 053013.; DOI:10.1103/PhysRevD.80.053013
1255.J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark
Matter, Phys. Rev. D80 (2009) 083502.;
DOI:10.1103/PhysRevD.80.083502
1256.A. Merle, Why a splitting in the final state
cannot explain the GSI-Oscillations, Phys. Rev. C80 (2009) 054616.; DOI:10.1103/PhysRevC.80.054616
1257.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring Neutrino Mass with Radioactive Ions in a
Storage Ring, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman,
Eds.)AIP Conf. Proc.1222 (2010) 165–168.;
DOI:10.1063/1.3399282
1258.J. Kopp, T. Ota and W. Winter, Optimization
study for non-standard interaction search in a neutrino factory,
(D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf.
Proc.1222 (2010) 135–139.; DOI:10.1063/1.3399275
1259.S. Choubey, T. Schwetz and C. Walter, Working Group 1 Report
(Theory), (D. M. Kaplan, Z. Sullivan, & M. C. Goodman,
Eds.)AIP Conf. Proc.1222 (2010) 65–74.;
DOI:10.1063/1.3399397
1260.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Flavor Symmetries from T**2/Z(N)
Orbifolds, JHEP07 (2009) 053.; DOI:10.1088/1126-6708/2009/07/053
1261.D. Franco et al., The First year of
Borexino, Heavy Quarks and Leptons 2008
(HQ&L08).; Retrieved from https://arxiv.org/abs/0905.1044
1262.E. Kh. Akhmedov and A. Yu. Smirnov, Paradoxes
of neutrino oscillations, Phys. Atom. Nucl.72 (2009) 1363–1381.; DOI:10.1134/S1063778809080122
1263.A. S. Joshipura and W. Rodejohann, Scaling in
the Neutrino Mass Matrix, mu-tau Symmetry and the See-Saw
Mechanism, Phys. Lett. B678 (2009)
276–282.; DOI:10.1016/j.physletb.2009.06.035
1264.R. Abbasi et al., First Neutrino Point-Source
Results From the 22-String IceCube Detector, Astrophys. J.
Lett.701 (2009) L47–L51.; DOI:10.1088/0004-637X/701/1/L47
1265.S. Goswami, S. Khan and W. Rodejohann, Minimal
Textures in Seesaw Mass Matrices and their low and high Energy
Phenomenology, Phys. Lett. B680 (2009)
255–262.; DOI:10.1016/j.physletb.2009.08.056
1266.F. Bezrukov and M. Shaposhnikov, Standard
Model Higgs boson mass from inflation: Two loop analysis,
JHEP07 (2009) 089.; DOI:10.1088/1126-6708/2009/07/089
1267.M. Garny and M. M. Muller, Kadanoff-Baym
Equations with Non-Gaussian Initial Conditions: The Equilibrium
Limit, Phys. Rev. D80 (2009) 085011.;
DOI:10.1103/PhysRevD.80.085011
1268.J. Kopp, Mossbauer neutrinos in quantum
mechanics and quantum field theory, JHEP06 (2009) 049.; DOI:10.1088/1126-6708/2009/06/049
1269.A. Adulpravitchai, A. Blum and W. Rodejohann, Golden Ratio Prediction for Solar Neutrino Mixing,
New J. Phys.11 (2009) 063026.; DOI:10.1088/1367-2630/11/6/063026
1270.W. Rodejohann, Non-Unitary Lepton Mixing
Matrix, Leptogenesis and Low Energy CP Violation, EPL88 (2009) 51001.; DOI:10.1209/0295-5075/88/51001
1271.G. Bellini et al., Low energy solar neutrino
signals in Borexino, 13th International
Workshop on Neutrino Telescopes: Un altro modo di guardare il cielo:
Tribute to Galileo (pp. 111–123).
1272.R. Abbasi et al., Search for high-energy muon
neutrinos from the ’naked-eye’ GRB 080319B with the IceCube neutrino
telescope, Astrophys. J.701 (2009)
1721–1731.; DOI:10.1088/0004-637X/701/2/1721
1273.R. Abbasi et al., Determination of the
Atmospheric Neutrino Flux and Searches for New Physics with
AMANDA-II, Phys. Rev. D79 (2009)
102005.; DOI:10.1103/PhysRevD.79.102005
1274.R. Abbasi et al., Limits on a muon flux from
neutralino annihilations in the Sun with the IceCube 22-string
detector, Phys. Rev. Lett.102 (2009)
201302.; DOI:10.1103/PhysRevLett.102.201302
1275.A. Blum and C. Hagedorn, The Cabibbo Angle in
a Supersymmetric D(14) Model, Nucl. Phys. B821 (2009) 327–353.; DOI:10.1016/j.nuclphysb.2009.06.028
1276.A. Gross and J. L. Bazo Alba, Search for
sources of astrophysical neutrinos with IceCube, (F. A.
Aharonian, W. Hofmann, & F. Rieger, Eds.)AIP Conf. Proc.1085 (2009) 779–782.; DOI:10.1063/1.3076795
1277.O. Schulz, The IceCube DeepCore, (F. A. Aharonian, W.
Hofmann, & F. Rieger, Eds.)AIP Conf. Proc.1085 (2009) 783–786.; DOI:10.1063/1.3076796
1278.W. Rodejohann, Deviations from tri-bimaximal
mixing, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl.
Phys. B Proc. Suppl.188 (2009) 336–338.; DOI:10.1016/j.nuclphysbps.2009.02.078
1279.E. Akhmedov, Neutrino oscillograms of the
Earth and CP violation in neutrino oscillations, (P. Bernardini,
G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.188 (2009) 204–206.; DOI:10.1016/j.nuclphysbps.2009.02.048
1280.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a
storage ring, Eur. Phys. J. C64 (2009)
549–560.; DOI:10.1140/epjc/s10052-009-1168-y
1281.S. Choubey et al., Working group report:
Neutrino physics, (R. Basu, Ed.)Pramana72 (2009) 269–275.; DOI:10.1007/s12043-009-0023-x
1282.L. Ludhova et al., 200 days of Borexino
data, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl.
Phys. B Proc. Suppl.188 (2009) 90–95.; DOI:10.1016/j.nuclphysbps.2009.02.021
1283.S. Pastor and S. Schonert, Session I: Probing
low energy and mass scales, (P. Bernardini, G. Fogli, & E.
Lisi, Eds.)Nucl. Phys. B Proc. Suppl.188
(2009) 371–376.; DOI:10.1016/j.nuclphysbps.2009.02.087
1284.G. Alimonti et al., The liquid handling
systems for the Borexino solar neutrino detector, Nucl.
Instrum. Meth. A609 (2009) 58–78.; DOI:10.1016/j.nima.2009.07.028
1285.J. Kisiel et al., The LAGUNA project: Towards
the giant liquid based detectors for proton decay searches and for low
energy neutrino astrophysics, PoSEPS-HEP2009 (2009) 283.; DOI:10.22323/1.084.0283
1286.E. Resconi and F. Aharonian (Eds.), High-energy gamma-rays and neutrinos from extra-galactic
sources. Proceedings, International Workshop, Heidelberg, Germany,
January 13-16, 2009 (Vol. 18, pp. pp.1483–1664).
1287.A. D’Andragora et al., Spectroscopic
performances of the GERDA cryogenic Charge Sensitive Amplifier based on
JFET-CMOS ASIC, coupled to germanium detectors, 2009 IEEE Nuclear Science Symposium and Medical Imaging
Conference (pp. 396–400).; DOI:10.1109/NSSMIC.2009.5401678
1288.P. Grabmayr, L. Baudis, A. Caldwell, C. Cattadori, M. Hult, J.
Jochum, V. Kornoukhov, S. Schönert and K. Zuber, Production chain of isotopically modified ge-diodes for
the \(2\beta 0\nu\)-search with
GERDA, 2009 IEEE Nuclear Science
Symposium and Medical Imaging Conference (pp. 1758–1760).;
DOI:10.1109/NSSMIC.2009.5402216
1289.C. H. Albright and W. Rodejohann, Comparing
Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal
Mixing, Eur. Phys. J. C62 (2009)
599–608.; DOI:10.1140/epjc/s10052-009-1074-3
1290.W. Maneschg, A. Merle and W. Rodejohann, Statistical Analysis of future Neutrino Mass Experiments
including Neutrino-less Double Beta Decay, EPL85 (2009) 51002.; DOI:10.1209/0295-5075/85/51002
1291.T. Schwetz, Physics Potential of Future
Atmospheric Neutrino Searches, (P. Bernardini, G. Fogli, & E.
Lisi, Eds.)Nucl. Phys. B Proc. Suppl.188
(2009) 158–163.; DOI:10.1016/j.nuclphysbps.2009.02.037
1292.M. Maltoni and T. Schwetz, Three-flavour
neutrino oscillation update and comments on possible hints for a
non-zero \(\theta_{13}\),
PoSIDM2008 (2008) 072.; DOI:10.22323/1.064.0072
1293.F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang,
JCAP06 (2009) 029.; DOI:10.1088/1475-7516/2009/06/029
1294.A. Adulpravitchai, A. Blum and C. Hagedorn, A
Supersymmetric D4 Model for mu-tau Symmetry, JHEP03 (2009) 046.; DOI:10.1088/1126-6708/2009/03/046
1295.S. Schonert, T. K. Gaisser, E. Resconi and O. Schulz, Vetoing atmospheric neutrinos in a high energy neutrino
telescope, Phys. Rev. D79 (2009)
043009.; DOI:10.1103/PhysRevD.79.043009
1296.F. L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation,
Phys. Lett. B675 (2009) 88–92.; DOI:10.1016/j.physletb.2009.03.035
1297.F. L. Bezrukov and Y. Burnier, Towards a
solution of the strong CP problem by compact extra dimensions,
Phys. Rev. D80 (2009) 125004.; DOI:10.1103/PhysRevD.80.125004
1298.C. Hagedorn, M. A. Schmidt and A. Yu. Smirnov, Lepton Mixing and Cancellation of the Dirac Mass
Hierarchy in SO(10) GUTs with Flavor Symmetries T(7) and
Sigma(81), Phys. Rev. D79 (2009)
036002.; DOI:10.1103/PhysRevD.79.036002
1299.O. Smirnov et al., The first year of
Borexino, 18th International Conference
on Particles and Nuclei (pp. 788–790).
1300.G. Ranucci et al., Results and perspectives of
the solar neutrino experiment Borexino, 34th International Conference on High Energy
Physics.; Retrieved from https://arxiv.org/abs/0810.0176
1301.R. Abbasi et al., Solar Energetic Particle
Spectrum on 13 December 2006 Determined by IceTop, Astrophys.
J. Lett.689 (2008) L65–L68.; DOI:10.1086/595679
1302.E. Kh. Akhmedov and V. Niro, An Accurate
analytic description of neutrino oscillations in matter,
JHEP12 (2008) 106.; DOI:10.1088/1126-6708/2008/12/106
1303.F. L. Bezrukov, Non-minimal coupling in
inflation and inflating with the Higgs boson, 15th International Seminar on High Energy
Physics.; Retrieved from https://arxiv.org/abs/0810.3165
1304.R. Abbasi et al., The IceCube Data Acquisition
System: Signal Capture, Digitization, and Timestamping, Nucl.
Instrum. Meth. A601 (2009) 294–316.; DOI:10.1016/j.nima.2009.01.001
1305.W. Rodejohann, Unified Parametrization for
Quark and Lepton Mixing Angles, Phys. Lett. B671 (2009) 267–271.; DOI:10.1016/j.physletb.2008.12.010
1306.D. Budjas et al., Highly sensitive
gamma-spectrometers of GERDA for material screening. Part I.,
14th International School on Particles and
Cosmology.; Retrieved from https://arxiv.org/abs/0812.0723
1307.D. Budjas, M. Barnabe Heider, O. Chkvorets, S. Schonert and N.
Khanbekov, Pulse Shape Analysis with a Broad-Energy
Germanium Detector for the GERDA experiment, 2008 IEEE Nuclear Science Symposium and Medical Imaging
Conference and 16th International Workshop on Room-Temperature
Semiconductor X-Ray and Gamma-Ray Detectors (pp.
2513–2515).; DOI:10.1109/NSSMIC.2008.4774866
1308.M. Barnabe Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K.
Gusev, S. Schönert and M. Shirchenko, Performance
of bare high-purity germanium detectors in liquid argon for the GERDA
experiment, 2008 IEEE Nuclear Science
Symposium and Medical Imaging Conference and 16th International Workshop
on Room-Temperature Semiconductor X-Ray and Gamma-Ray
Detectors (pp. 3513–3516).; DOI:10.1109/NSSMIC.2008.4775094
1309.M. Garny, Particle Physics and Dark
Energy: Beyond Classical Dynamics (Other thesis).
1310.A. Pullia, F. Zocca, S. Riboldi, D. Budjáš, A. D’Andragora and C.
Cattadori, A cryogenic low-noise JFET-CMOS
preamplifier for the HPGe detectors of GERDA, 2008 IEEE Nuclear Science Symposium and Medical Imaging
Conference and 16th International Workshop on Room-Temperature
Semiconductor X-Ray and Gamma-Ray Detectors (pp.
2056–2060).; DOI:10.1109/NSSMIC.2008.4774881
1311.A. Anisimov, Y. Bartocci and F. L. Bezrukov, Inflaton mass in the nuMSM inflation, Phys.
Lett. B671 (2009) 211–215.; DOI:10.1016/j.physletb.2008.12.028
1312.R. Abbasi et al., Search for Point Sources of
High Energy Neutrinos with Final Data from AMANDA-II, Phys.
Rev. D79 (2009) 062001.; DOI:10.1103/PhysRevD.79.062001
1313.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Theory of the Neutrino Mass, Melbourne
Neutrino Theory Workshop (Neutrino 08).; Retrieved from https://arxiv.org/abs/0808.0812
1314.H. Kienert, J. Kopp, M. Lindner and A. Merle, The GSI anomaly, (J. Adams, F. Halzen, & S.
Parke, Eds.)J. Phys. Conf. Ser.136 (2008)
022049.; DOI:10.1088/1742-6596/136/2/022049
1315.G. Bellini et al., Measurement of the solar 8B
neutrino rate with a liquid scintillator target and 3 MeV energy
threshold in the Borexino detector, Phys. Rev. D82 (2010) 033006.; DOI:10.1103/PhysRevD.82.033006
1316.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A(4) Flavour
Symmetry, Nucl. Phys. B809 (2009)
218–243.; DOI:10.1016/j.nuclphysb.2008.10.002
1317.S. Choubey, W. Rodejohann and P. Roy, Phenomenological consequences of four zero neutrino
Yukawa textures, Nucl. Phys. B808
(2009) 272–291.; DOI:10.1016/j.nuclphysb.2009.04.021
1318.A. Hohenegger, A. Kartavtsev and M. Lindner, Deriving Boltzmann Equations from Kadanoff-Baym Equations
in Curved Space-Time, Phys. Rev. D78
(2008) 085027.; DOI:10.1103/PhysRevD.78.085027
1319.G. Alimonti et al., The Borexino detector at
the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth.
A600 (2009) 568–593.; DOI:10.1016/j.nima.2008.11.076
1320.C. Arpesella et al., Direct Measurement of the
Be-7 Solar Neutrino Flux with 192 Days of Borexino Data,
Phys. Rev. Lett.101 (2008) 091302.; DOI:10.1103/PhysRevLett.101.091302
1321.E. Kh. Akhmedov, M. Maltoni and A. Yu. Smirnov, Neutrino oscillograms of the Earth: Effects of 1-2 mixing
and CP-violation, JHEP06 (2008) 072.;
DOI:10.1088/1126-6708/2008/06/072
1322.J. Kopp, T. Ota and W. Winter, Neutrino
factory optimization for non-standard interactions, Phys.
Rev. D78 (2008) 053007.; DOI:10.1103/PhysRevD.78.053007
1323.W. Rodejohann, The See-saw mechanism: Neutrino
mixing, leptogenesis and lepton flavor violation, (R. Basu,
Ed.)Pramana72 (2009) 217–227.; DOI:10.1007/s12043-009-0018-7
1324.C. H. Albright and W. Rodejohann, Model-Independent Analysis of Tri-bimaximal Mixing: A
Softly-Broken Hidden or an Accidental Symmetry?, Phys. Lett.
B665 (2008) 378–383.; DOI:10.1016/j.physletb.2008.06.044
1325.E. Meroni et al., Borexino and solar
neutrinos, 4th International Workshop on
Neutrino Oscillations in Venice: Ten Years after the Neutrino
Oscillations (pp. 431–436).
1326.S. Choubey, V. Niro and W. Rodejohann, On
Probing \(\theta_{23}\) in Neutrino
Telescopes, Phys. Rev. D77 (2008)
113006.; DOI:10.1103/PhysRevD.77.113006
1327.E. Kh. Akhmedov, J. Kopp and M. Lindner, On
application of the time-energy uncertainty relation to Mossbauer
neutrino experiments, J. Phys. G36
(2009) 078001.; DOI:10.1088/0954-3899/36/7/078001
1328.E. Kh. Akhmedov and W. Rodejohann, A Yukawa
coupling parameterization for type I + II seesaw formula and
applications to lepton flavor violation and leptogenesis,
JHEP06 (2008) 106.; DOI:10.1088/1126-6708/2008/06/106
1329.A. Kartavtsev and D. Besak, Baryogenesis via
Leptogenesis in an inhomogeneous Universe, Phys. Rev. D78 (2008) 083001.; DOI:10.1103/PhysRevD.78.083001
1330.T. Ota, Non-standard neutrino interactions in
reactor and superbeam experiments, (O. Yasuda, N. Mondal, &
Chihiro. Ohmori, Eds.)AIP Conf. Proc.981
(2008) 231–233.; DOI:10.1063/1.2898943
1331.G. Altarelli, F. Feruglio and C. Hagedorn, A
SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A\(_4\), JHEP03 (2008) 052.; DOI:10.1088/1126-6708/2008/03/052
1332.E. Kh. Akhmedov, J. Kopp and M. Lindner, Oscillations of Mossbauer neutrinos, JHEP05 (2008) 005.; DOI:10.1088/1126-6708/2008/05/005
1333.H. O. Back et al., Study of phenylxylylethane
(PXE) as scintillator for low energy neutrino experiments,
Nucl. Instrum. Meth. A585 (2008) 48–60.;
DOI:10.1016/j.nima.2007.10.045
1334.G. Bellini et al., Search for solar axions
emitted in the M1-transition of Li-7* with Borexino CTF, Eur.
Phys. J. C54 (2008) 61–72.; DOI:10.1140/epjc/s10052-008-0530-9
1335.W. Maneschg, M. Laubenstein, D. Budjas, W. Hampel, G. Heusser, K.
T. Knopfle, B. Schwingenheuer and H. Simgen, Measurements of extremely low radioactivity levels in
stainless steel for GERDA, Nucl. Instrum. Meth. A593 (2008) 448–453.; DOI:10.1016/j.nima.2008.05.036
1336.P. Peiffer, T. Pollmann, S. Schonert, A. Smolnikov and S. Vasiliev,
Pulse shape analysis of scintillation signals from
pure and xenon-doped liquid argon for radioactive background
identification, JINST3 (2008) P08007.;
DOI:10.1088/1748-0221/3/08/P08007
1337.G. Bellini et al., First results on Be-7 solar
neutrinos from the Borexino real time detector, (K. Inoue, A.
Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser.120 (2008) 052006.; DOI:10.1088/1742-6596/120/5/052006
1338.T. Kirsten, Retrospect of GALLEX/GNO,
(K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser.120 (2008) 052013.; DOI:10.1088/1742-6596/120/5/052013
1339.G. Zuzel, Low-level techniques applied in
experiments looking for rare events, (K. Inoue, A. Suzuki, &
T. Mitsui, Eds.)J. Phys. Conf. Ser.120 (2008)
052015.; DOI:10.1088/1742-6596/120/5/052015
1340.H. Simgen, Status of the GERDA
experiment, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J.
Phys. Conf. Ser.120 (2008) 052052.; DOI:10.1088/1742-6596/120/5/052052
1341.C. Galbiati et al., New results on solar
neutrino fluxes from 192 days of Borexino data, (J. Adams, F.
Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser.136 (2008) 022001.; DOI:10.1088/1742-6596/136/2/022001
1342.P. Huber, J. Kopp, M. Lindner and W. Winter, GLoBES: General long baseline experiment
simulator, (A. Breskin, M. Henneaux, V. Mukhanov, & H.
Rubinstein, Eds.)PoSNUFACT08 (2008) 145.;
DOI:10.22323/1.074.0145
1343.J. Kopp, T. Ota and W. Winter, Neutrino
factory optimization for non-standard interactions, (A. Breskin,
M. Henneaux, V. Mukhanov, & H. Rubinstein, Eds.)PoSNUFACT08 (2008) 134.; DOI:10.22323/1.074.0134
1344.M. Barnabe-Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K.
Gusev, S. Schonert and M. Shirchenko, Operation of
bare HPGe detectors in LAr/LN(2) for the GERDA experiment, (J.
Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser.136 (2008) 042046.; DOI:10.1088/1742-6596/136/4/042046
1345.W. Rodejohann and K. A. Hochmuth, Lepton
flavor violation, leptogenesis and neutrino mixing in quark-lepton
complementarity scenarios, (S. Khalil, Ed.)Int. J. Mod. Phys.
A22 (2007) 5875–5888.; DOI:10.1142/S0217751X07039092
1346.S. Pakvasa, W. Rodejohann and T. J. Weiler, Unitary parametrization of perturbations to tribimaximal
neutrino mixing, Phys. Rev. Lett.100
(2008) 111801.; DOI:10.1103/PhysRevLett.100.111801
1347.M. Ackermann et al., Search for Ultra
High-Energy Neutrinos with AMANDA-II, Astrophys. J.675 (2008) 1014–1024.; DOI:10.1086/527046
1348.S. Pakvasa, W. Rodejohann and T. J. Weiler, Flavor Ratios of Astrophysical Neutrinos: Implications
for Precision Measurements, JHEP02
(2008) 005.; DOI:10.1088/1126-6708/2008/02/005
1349.J. Kopp, M. Lindner, T. Ota and J. Sato, Impact of non-standard neutrino interactions on future
oscillation experiments, 15th
International Conference on Supersymmetry and the Unification of
Fundamental Interactions (SUSY07) (pp. 756–759).; Retrieved
from https://arxiv.org/abs/0710.1867
1350.M. Lindner and M. M. Muller, Comparison of
Boltzmann kinetics with quantum dynamics for a chiral Yukawa model far
from equilibrium, Phys. Rev. D77
(2008) 025027.; DOI:10.1103/PhysRevD.77.025027
1351.A. Bandyopadhyay, Physics at a future Neutrino
Factory and super-beam facility, (S. Choubey et al.,
Eds.)Rept. Prog. Phys.72 (2009) 106201.;
DOI:10.1088/0034-4885/72/10/106201
1352.A. Blum, C. Hagedorn and A. Hohenegger, theta(C) from the Dihedral flavor symmetries D(7) and
D(14), JHEP03 (2008) 070.; DOI:10.1088/1126-6708/2008/03/070
1353.A. Blum and A. Merle, General Conditions for
Lepton Flavour Violation at Tree- and 1-Loop Level, Phys.
Rev. D77 (2008) 076005.; DOI:10.1103/PhysRevD.77.076005
1354.A. Blum, C. Hagedorn and M. Lindner, Fermion
Masses and Mixings from Dihedral Flavor Symmetries with Preserved
Subgroups, Phys. Rev. D77 (2008)
076004.; DOI:10.1103/PhysRevD.77.076004
1355.D. Budjas et al., Highly Sensitive
Gamma-Spectrometers of GERDA for Material Screening: Part 2
(2007).; Retrieved from https://arxiv.org/abs/0812.0768
1356.J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and
superbeam experiments, Phys. Rev. D77
(2008) 013007.; DOI:10.1103/PhysRevD.77.013007
1357.C. Arpesella et al., First real time detection
of Be-7 solar neutrinos by Borexino, Phys. Lett. B658 (2008) 101–108.; DOI:10.1016/j.physletb.2007.09.054
1358.A. Gross, C. H. Ha, C. Rott, M. Tluczykont, E. Resconi, T. DeYoung
and G. Wikstrom, The combined AMANDA and IceCube
Neutrino Telescope, 30th International Cosmic Ray
Conference (Vol. 3, pp. 1253–1256).
1359.J. K. Becker, W. Rhode, P. L. Biermann, A. Gross, K. Münich and J.
Dreyer, On the interpretation of high-energy
neutrino limits, 30th International Cosmic Ray
Conference (Vol. 3, pp. 1209–1212).
1361.S. Goswami and W. Rodejohann, MiniBooNE
results and neutrino schemes with 2 sterile neutrinos: Possible mass
orderings and observables related to neutrino masses,
JHEP10 (2007) 073.; DOI:10.1088/1126-6708/2007/10/073
1362.K. A. Hochmuth, S. T. Petcov and W. Rodejohann, U(PMNS) = U**dagger (l) U(nu), Phys. Lett.
B654 (2007) 177–188.; DOI:10.1016/j.physletb.2007.08.072
1363.A. Blum, R. N. Mohapatra and W. Rodejohann, Inverted mass hierarchy from scaling in the neutrino mass
matrix: Low and high energy phenomenology, Phys. Rev. D76 (2007) 053003.; DOI:10.1103/PhysRevD.76.053003
1364.D. Autiero et al., Large underground, liquid
based detectors for astro-particle physics in Europe: Scientific case
and prospects, JCAP11 (2007) 011.;
DOI:10.1088/1475-7516/2007/11/011
1365.A. Achterberg et al., The Search for Muon
Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA,
Astrophys. J.674 (2008) 357–370.; DOI:10.1086/524920
1366.A. Achterberg et al., Detection of Atmospheric
Muon Neutrinos with the IceCube 9-String Detector, Phys. Rev.
D76 (2007) 027101.; DOI:10.1103/PhysRevD.76.027101
1367.J. Kopp and M. Lindner, Detecting atmospheric
neutrino oscillations in the ATLAS detector at CERN, Phys.
Rev. D76 (2007) 093003.; DOI:10.1103/PhysRevD.76.093003
1368.M. A. Schmidt, Renormalization group evolution
in the type I+ II seesaw model, Phys. Rev. D76 (2007) 073010.; DOI:10.1103/PhysRevD.76.073010
1369.M. Wojcik and G. Zuzel, Behavior of the Rn-222
daughters on copper surfaces during cleaning, (P. Loaiza,
Ed.)AIP Conf. Proc.897 (2007) 53–58.; DOI:10.1063/1.2722068
1370.H. Simgen and G. Zuzel, Ultrapure gases: From
the production plant to the laboratory, (P. Loaiza, Ed.)AIP
Conf. Proc.897 (2007) 45–50.; DOI:10.1063/1.2722067
1371.M. Wojcik and G. Zuzel, A novel low background
cryogenic detector for radon in gas, (P. Loaiza, Ed.)AIP
Conf. Proc.897 (2007) 39–44.; DOI:10.1063/1.2722066
1372.S. Kanemura, K. Matsuda, T. Ota, S. Petcov, T. Shindou, E. Takasugi
and K. Tsumura, CP violation due to multi
Froggatt-Nielsen fields, Eur. Phys. J. C51 (2007) 927–931.; DOI:10.1140/epjc/s10052-007-0343-2
1373.K. A. Hochmuth, M. Lindner and G. G. Raffelt, Exploiting the directional sensitivity of the Double
Chooz near detector, Phys. Rev. D76
(2007) 073001.; DOI:10.1103/PhysRevD.76.073001
1374.M. Barnabe Heider et al., Operation of a GERDA
Phase I prototype detector in liquid argon and nitrogen,
14th International School on Particles and
Cosmology.; Retrieved from https://arxiv.org/abs/0812.3976
1375.J. Kopp, M. Lindner and A. Merle, Self-Calibration of Neutrino Detectors using
characteristic Backgrounds, Nucl. Instrum. Meth. A582 (2007) 456–461.; DOI:10.1016/j.nima.2007.08.239
1376.A. Merle and W. Rodejohann, Getting
Information on |U(e3)|**2 from Neutrino-less Double Beta Decay,
Adv. High Energy Phys.2007 (2007) 82674.;
DOI:10.1155/2007/82674
1377.M. Lindner and W. Rodejohann, Large and almost
maximal neutrino mixing within the type II see-saw mechanism,
JHEP05 (2007) 089.; DOI:10.1088/1126-6708/2007/05/089
1378.W. Rodejohann, Broken mu - tau symmetry and
leptonic CP violation, 12th
International Workshop on Neutrinos Telescopes: Twenty Years after the
Supernova 1987A Neutrino Bursts Discovery (pp. 313–328).
1379.M. I. Adamovich et al., Observation of a
resonance in the K(s)p decay channel at a mass of 1765 MeV/c**2,
Eur. Phys. J. C50 (2007) 535–538.; DOI:10.1140/epjc/s10052-007-0284-9
1380.J. Kopp, M. Lindner and T. Ota, Discovery
reach for non-standard interactions in a neutrino factory,
Phys. Rev. D76 (2007) 013001.; DOI:10.1103/PhysRevD.76.013001
1381.M. Di Marco, P. Peiffer and S. Schonert, LArGe: Background suppression using liquid argon (LAr)
scintillation for 0 nu beta beta decay search with enriched germanium
(Ge) detectors, (P. S. Marrocchesi, F. L. Navarria, M. Paganoni,
& P. G. Pelfer, Eds.)Nucl. Phys. B Proc. Suppl.172 (2007) 45–48.; DOI:10.1016/j.nuclphysbps.2007.07.019
1382.S. Funk et al., XMM-Newton observations reveal
the X-ray counterpart of the very-high-energy gamma-ray source
HESSJ1640-465, Astrophys. J.662 (2007)
517–524.; DOI:10.1086/516567
1383.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation
experiments with GLoBES 3.0: General Long Baseline Experiment
Simulator, Comput. Phys. Commun.177
(2007) 432–438.; DOI:10.1016/j.cpc.2007.05.004
1384.E. Resconi, IceCube: Multiwavelength search
for neutrinos from transient point sources, (F. Halzen, A. Karle,
& T. Montaruli, Eds.)J. Phys. Conf. Ser.60 (2007) 223–226.; DOI:10.1088/1742-6596/60/1/047
1385.A. Kappes, J. Hinton, C. Stegmann and F. A. Aharonian, Potential neutrino signals from galactic gamma-ray
sources, (F. Halzen, A. Karle, & T. Montaruli, Eds.)J.
Phys. Conf. Ser.60 (2007) 243–246.; DOI:10.1088/1742-6596/60/1/052
1386.C. Cattadori, O. Chkvorets, C. Tomei, M. Junker, L. Pandola, K.
Kroninger, A. Pullia, F. Zocca, V. Re and C. Ur, The GERmanium Detector Array read-out: Status and
developments, (F. Cervelli, F. Forti, R. Paoletti, & A.
Scribano, Eds.)Nucl. Instrum. Meth. A572
(2007) 479–480.; DOI:10.1016/j.nima.2006.10.226
1387.M. I. Adamovich et al., Production of V0 pairs
in the hyperon experiment WA89, Eur. Phys. J. C52 (2007) 857–874.; DOI:10.1140/epjc/s10052-007-0436-y
1388.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter,
GLoBES: General Long Baseline Experiment Simulator,
Comput. Phys. Commun.177 (2007) 439–440.;
DOI:10.1016/j.cpc.2007.05.007
1391.A. Dighe, S. Goswami and W. Rodejohann, Corrections to Tri-bimaximal Neutrino Mixing:
Renormalization and Planck Scale Effects, Phys. Rev. D75 (2007) 073023.; DOI:10.1103/PhysRevD.75.073023
1392.A. Achterberg et al., Five years of searches
for point sources of astrophysical neutrinos with the AMANDA-II neutrino
telescope, Phys. Rev. D75 (2007)
102001.; DOI:10.1103/PhysRevD.75.102001
1393.K. A. Hochmuth and W. Rodejohann, On Symmetric Lepton Mixing
Matrices, Phys. Lett. B644 (2007)
147–152.; DOI:10.1016/j.physletb.2006.11.042
1394.J. Kopp, Efficient numerical diagonalization
of hermitian 3 x 3 matrices, Int. J. Mod. Phys. C19 (2008) 523–548.; DOI:10.1142/S0129183108012303
1395.P. Huber, M. Lindner, M. Rolinec and W. Winter, Optimization of a neutrino factory oscillation
experiment, Phys. Rev. D74 (2006)
073003.; DOI:10.1103/PhysRevD.74.073003
1396.J. Kopp, M. Lindner, A. Merle and M. Rolinec, Reactor Neutrino Experiments with a Large Liquid
Scintillator Detector, JHEP01 (2007)
053.; DOI:10.1088/1126-6708/2007/01/053
1397.A. Achterberg et al., First Year Performance
of The IceCube Neutrino Telescope, Astropart. Phys.26 (2006) 155–173.; DOI:10.1016/j.astropartphys.2006.06.007
1398.C. Hagedorn, M. Lindner and F. Plentinger, The
Discrete flavor symmetry D(5), Phys. Rev. D74 (2006) 025007.; DOI:10.1103/PhysRevD.74.025007