Abteilung für Teilchen- & Astroteilchen-Physik
 
 

Publikationen der Abteilung seit 2006


1.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing the Origins of Neutrino Mass with Supernova Neutrino Time Delay (2024).; Retrieved from https://arxiv.org/abs/2404.17352
2.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame? (2024).; Retrieved from https://arxiv.org/abs/2403.15860
3.E. Aprile et al., The XENONnT Dark Matter Experiment (2024).; Retrieved from https://arxiv.org/abs/2402.10446
4.S. Jana, Electromagnetic Properties of Neutrinos, PoS TAUP2023 (2024) 184.; DOI:10.22323/1.441.0184
5.T. Cheng, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, PoS DISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
6.R. Deckert et al., The LEGEND-200 Liquid Argon Instrumentation: From a simple veto to a full-fledged detector, PoS TAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
7.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right symmetric model: Catalyzed nuclear fusion and collider implications, Phys. Lett. B 852 (2024) 138616.; DOI:10.1016/j.physletb.2024.138616
8.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia, Investigating the slow component of the infrared scintillation time response in gaseous xenon, JINST 19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
9.Á. Pastor-Gutiérrez and M. Yamada, Phase structure of extra-dimensional gauge theories with fermions, Phys. Rev. D 109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
10.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and Implications for LEGEND-1000, PoS TAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
11.Y. Chung, Dynamical origin of Type-I Seesaw with large mixing (2023).; Retrieved from https://arxiv.org/abs/2311.17183
12.Y. Chung and F. Goertz, Third-generation-philic Hidden Naturalness (2023).; Retrieved from https://arxiv.org/abs/2311.17169
13.M. Agostini et al., An improved limit on the neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys. J. C 84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
14.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial Compositeness, PoS EPS-HEP2023 (2024) 369.; DOI:10.22323/1.449.0369
15.D. Basilico et al., Novel techniques for alpha/beta pulse shape discrimination in Borexino (2023).; Retrieved from https://arxiv.org/abs/2310.11826
16.M. Mukhopadhyay and M. Sen, On probing turbulence in core-collapse supernovae in upcoming neutrino detectors, JCAP 03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
17.M. Shaposhnikov and A. Y. Smirnov, Sterile Neutrino Dark Matter, Matter-Antimatter Separation, and the QCD Phase Transition (2023).; Retrieved from https://arxiv.org/abs/2309.13376
18.E. Aprile et al., Design and performance of the field cage for the XENONnT experiment, Eur. Phys. J. C 84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
19.A. Ahmed, M. Lindner and P. Saake, Conformal little Higgs models, Phys. Rev. D 109 (2024) 075041.; DOI:10.1103/PhysRevD.109.075041
20.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring Naturalness via Conjugate Fermions (2023).; Retrieved from https://arxiv.org/abs/2309.05698
21.Y. Chung, A Naturalness motivated Top Yukawa Model for the Composite Higgs (2023).; Retrieved from https://arxiv.org/abs/2309.00072
22.F. Goertz and Á. Pastor-Gutiérrez, New Phases of the Standard Model Higgs Potential (2023).; Retrieved from https://arxiv.org/abs/2308.13594
23.H. Bonet et al., Pulse shape discrimination for the CONUS experiment in the keV and sub-keV regime, Eur. Phys. J. C 84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
24.M. Agostini et al., Final Results of GERDA on the Two-Neutrino Double-\(\beta\) Decay Half-Life of Ge76, Phys. Rev. Lett. 131 (2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
25.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry, Phys. Rev. D 109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
26.J. Kubo and T. Kugo, Unitarity violation in field theories of LeeWick’s complex ghost, PTEP 2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
27.S. Jana and S. Klett, Muonic Force and Neutrino Non-Standard Interactions at Muon Colliders (2023).; Retrieved from https://arxiv.org/abs/2308.07375
28.Y. F. Perez-Gonzalez and M. Sen, From Dirac to Majorana: The cosmic neutrino background capture rate in the minimally extended Standard Model, Phys. Rev. D 109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
29.A. de Gouvêa, J. Weill and M. Sen, Solar neutrinos and \(\nu\)2 visible decays to \(\nu\)1, Phys. Rev. D 109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
30.M. Agostini et al., Search for tri-nucleon decays of \(^{76}\)Ge in GERDA, Eur. Phys. J. C 83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
31.M. P. Bento, J. P. Silva and A. Trautner, The basis invariant flavor puzzle, JHEP 01 (2024) 024.; DOI:10.1007/JHEP01(2024)024
32.J. Herms, S. Jana, V. P. K. and S. Saad, Light neutrinophilic dark matter from a scotogenic model, Phys. Lett. B 845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
33.G. Huang, Discovery potential of the Glashow resonance in an air shower neutrino telescope (2023).; Retrieved from https://arxiv.org/abs/2307.12153
34.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial compositeness, Phys. Rev. D 108 (2023) 095019.; DOI:10.1103/PhysRevD.108.095019
35.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous \(\gamma\) event, JCAP 11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
36.M. D. Astros, S. Fabian and F. Goertz, Minimal Inert Doublet benchmark for dark matter and the baryon asymmetry, JCAP 02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
37.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Do pulsar timing arrays observe merging primordial black holes? (2023).; Retrieved from https://arxiv.org/abs/2306.17836
38.M. Adrover et al., Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites, Eur. Phys. J. C 84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
39.M. Sen and A. Y. Smirnov, Refractive neutrino masses, ultralight dark matter and cosmology, JCAP 01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
40.E. Aprile et al., Search for events in XENON1T associated with gravitational waves, Phys. Rev. D 108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
41.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053.; DOI:10.1088/1475-7516/2023/11/053
42.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic recoil calibration of the XENONnT detector, JINST 18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
43.L. Angel et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 055030.; DOI:10.1103/PhysRevD.108.055030
44.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari, Composite Dark Matter and Neutrino Masses from a Light Hidden Sector (2023).; Retrieved from https://arxiv.org/abs/2305.09719
45.A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa, 57th Rencontres de Moriond on QCD and High Energy Interactions.; Retrieved from https://arxiv.org/abs/2304.11891
46.E. Aprile et al., Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Phys. Rev. Lett. 130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
47.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless double beta decay, JHEP 08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
48.E. Aprile et al., Detector signal characterization with a Bayesian network in XENONnT, Phys. Rev. D 108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
49.E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
50.S. Jana and Y. Porto, Resonances of Supernova Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett. 132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
51.G. Huang, M. Lindner and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
52.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán Undagoitia, First time-resolved measurement of infrared scintillation light in gaseous xenon, Eur. Phys. J. C 83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
53.C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83 (2023) 864.; DOI:10.1140/epjc/s10052-023-11889-x
54.A. Trautner, Modular Flavor Symmetries and CP from the top down, PoS DISCRETE2022 (2024) 013.; DOI:10.22323/1.431.0013
55.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter model, PoS DISCRETE2022 (2024) 076.; DOI:10.22323/1.431.0076
56.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino mass scales, JHEP 06 (2023) 078.; DOI:10.1007/JHEP06(2023)078
57.N. Ackermann et al., Monte Carlo simulation of background components in low level Germanium spectrometry, Appl. Radiat. Isot. 194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
58.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector for the CONUS experiment, Appl. Radiat. Isot. 194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
59.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F. Meggendorfer and S. Skambraks, Operation of the Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware Perspective, J. Phys. Conf. Ser. 2438 (2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
60.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of neutrino magnetic moments from a galactic supernova burst at upcoming detectors, PoS ICHEP2022 (2022) 597.; DOI:10.22323/1.414.0597
61.E. Aprile et al., The triggerless data acquisition system of the XENONnT experiment, JINST 18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
62.S. Blasi, J. Bollig and F. Goertz, Holographic composite Higgs model building: soft breaking, maximal symmetry, and the Higgs mass, JHEP 07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
63.I. Bischer, C. Döring and A. Trautner, Telling compositeness at a distance with outer automorphisms and CP, J. Phys. A 56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
64.M. Agostini et al., Liquid argon light collection and veto modeling in GERDA Phase II, Eur. Phys. J. C 83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
65.A. Bally, Y. Chung and F. Goertz, Hierarchy problem and the top Yukawa coupling: An alternative to top partner solutions, Phys. Rev. D 108 (2023) 055008.; DOI:10.1103/PhysRevD.108.055008
66.T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, Phys. Lett. B 851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
67.E. Aprile et al., Low-energy calibration of XENON1T with an internal \(^{{\textbf {37}}}\)Ar source, Eur. Phys. J. C 83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
68.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev. Lett. 131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
69.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with Gauged \(U(1)_{L(-R)}\) (2022).; Retrieved from https://arxiv.org/abs/2210.13402
70.T. Cheng, M. Lindner and M. Sen, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, Phys. Lett. B 844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
71.H. Almazán et al., STEREO neutrino spectrum of \(^{235}\)U fission rejects sterile neutrino hypothesis, Nature 613 (2023) 257–261.; DOI:10.1038/s41586-022-05568-2
72.E. Aprile et al., Effective Field Theory and Inelastic Dark Matter Results from XENON1T (2022).; Retrieved from https://arxiv.org/abs/2210.07591
73.E. Aprile et al., An approximate likelihood for nuclear recoil searches with XENON1T data, Eur. Phys. J. C 82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
74.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment on ”Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
75.J. Herms, S. Jana, V. P. K. and S. Saad, Light thermal relics enabled by a second Higgs, SciPost Phys. Proc. 12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
76.I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106 (2022) 106007.; DOI:10.1103/PhysRevD.106.106007
77.A. de Gouvêa et al., Theory of Neutrino Physics – Snowmass TF11 (aka NF08) Topical Group Report (2022).; Retrieved from https://arxiv.org/abs/2209.07983
78.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, Moscow Univ. Phys. Bull. 77 (2022) 371–374.; DOI:10.3103/S0027134922020461
79.M. Agostini et al., Search for exotic physics in double-\(\beta\) decays with GERDA Phase II, JCAP 12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
80.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable models and flavor, JHEP 04 (2023) 012.; DOI:10.1007/JHEP04(2023)012
81.J. Kubo and J. Kuntz, Spontaneous conformal symmetry breaking and quantum quadratic gravity, Phys. Rev. D 106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
82.A. N. Khan, Extra dimensions with light and heavy neutral leptons: an application to CE\(\nu\)NS, JHEP 01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
83.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of heavy-ion collisions and their impact on particle correlations, Phys. Rev. C 108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
84.E. Akhmedov and A. Y. Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, JHEP 11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
85.A. N. Khan, Light new physics and neutrino electromagnetic interactions in XENONnT, Phys. Lett. B 837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
86.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts, JCAP 11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
87.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of sterile neutrino dark matter via neutrino self-interactions, JCAP 11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
88.A. Ahmed, B. Grzadkowski and A. Socha, Higgs boson induced reheating and ultraviolet frozen-in dark matter, JHEP 02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
89.H. Almazan et al., Improved FIFRELIN de-excitation model for neutrino applications, Eur. Phys. J. A 59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
90.E. Aprile et al., Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
91.C. Jaramillo, Reviving keV sterile neutrino dark matter, JCAP 10 (2022) 093.; DOI:10.1088/1475-7516/2022/10/093
92.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The first string-derived eclectic flavor model with realistic phenomenology, JHEP 09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
93.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking, SciPost Phys. 15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
94.B. Batell et al., Dark Sector Studies with Neutrino Beams, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.06898
95.M. Aker et al., Search for Lorentz-invariance violation with the first KATRIN data, Phys. Rev. D 107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
96.M. Aker et al., Search for keV-scale sterile neutrinos with the first KATRIN data, Eur. Phys. J. C 83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
97.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting bounds on neutrino magnetic moments and solar magnetic field, JHEP 10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
98.S. Richers and M. Sen, Fast Flavor Transformations, In I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).; DOI:10.1007/978-981-15-8818-1_125-1
99.J. Berger et al., Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.02882
100.G. Huang, Double and multiple bangs at tau neutrino telescopes, Eur. Phys. J. C 82 (2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
101.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, Search for leptophilic dark matter at the LHeC, J. Phys. G 50 (2023) 065001.; DOI:10.1088/1361-6471/accc4a
102.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model, Mod. Phys. Lett. A 38 (2023).; DOI:10.1142/S0217732323500499
103.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman and K. Schmidt-Hoberg, Minimal sterile neutrino dark matter, Phys. Rev. D 107 (2023) L071702.; DOI:10.1103/PhysRevD.107.L071702
104.G. Huang and N. Nath, Inference of neutrino nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with inverted mass ordering, Eur. Phys. J. C 82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
105.S. Jana, Horizontal Symmetry and Large Neutrino Magnetic Moments, PoS DISCRETE2020-2021 (2022) 037.; DOI:10.22323/1.405.0037
106.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S. de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian synchrotron, Eur. Phys. J. C 83 (2023) 514.; DOI:10.1140/epjc/s10052-023-11603-x
107.A. Schneider et al., Direct measurement of the \(^{3}\)He\(^{+}\) magnetic moments, Nature 606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
108.F. Jörg, G. Eurin and H. Simgen, Production and characterization of a 222Rn-emanating stainless steel source, Appl. Radiat. Isot. 194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
109.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale detectors, JINST 17 (2022) P11025.; DOI:10.1088/1748-0221/17/11/P11025
110.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark condensation, SciPost Phys. 14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
111.Á. Pastor-Gutiérrez and M. Yamada, UV completion of extradimensional Yang-Mills theory for Gauge-Higgs unification, SciPost Phys. 15 (2023) 101.; DOI:10.21468/SciPostPhys.15.3.101
112.M. Sen, Constraining pseudo-Dirac neutrinos from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
113.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Phys. Rev. D 106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
114.T. Rink, Coherent elastic neutrino-nucleus scattering – First constraints/observations and future potential, 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
115.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos, Phys. Rev. D 106 (2022) 083011.; DOI:10.1103/PhysRevD.106.083011
116.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT Experiments, Phys. Rev. C 106 (2022) 024328.; DOI:10.1103/PhysRevC.106.024328
117.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, Diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Phys. Rev. D 106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
118.S. Weber, Quantum Field Theory and Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand Unification (Master’s thesis). Heidelberg U.
119.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability from flavour symmetry, JHEP 10 (2022) 080.; DOI:10.1007/JHEP10(2022)080
120.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the cosmic neutrino background, Phys. Rev. D 106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
121.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111.; DOI:10.1007/JHEP08(2022)111
122.L. Gráf, M. Lindner and O. Scholer, Unraveling the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys. Rev. D 106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
123.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes via the dipole portal, Phys. Lett. B 840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
124.A. Trautner, Anatomy of a top-down approach to discrete and modular flavor symmetry, PoS DISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
125.K. S. Babu, S. Jana and V. P. K., Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
126.J. Hakenmüller and W. Maneschg, Identification of radiopure tungsten for low background applications, J. Phys. G 49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
127.A. de Gouvêa, M. Sen and J. Weill, Visible neutrino decays and the impact of the daughter-neutrino mass, Phys. Rev. D 106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
128.L. Althueser et al., GPU-based optical simulation of the DARWIN detector, JINST 17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
129.A. N. Khan, \(\sin^2\theta_W\) and neutrino electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
130.M. Aker et al., KATRIN: status and prospects for the neutrino mass and beyond, J. Phys. G 49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
131.N. Bartosik et al., Simulated Detector Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
132.D. Stratakis et al., A Muon Collider Facility for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
133.S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
134.C. Awe et al., High Energy Physics Opportunities Using Reactor Antineutrinos (2022).; Retrieved from https://arxiv.org/abs/2203.07214
135.C. Aime et al., Muon Collider Physics Summary (2022).; Retrieved from https://arxiv.org/abs/2203.07256
136.J. de Blas et al., The physics case of a 3 TeV muon collider stage (2022).; Retrieved from https://arxiv.org/abs/2203.07261
137.M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
138.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
139.R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
140.J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, J. Phys. G 50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
141.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\) Anomaly with Neutrino Magnetic Moments, PoS EPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
142.J. Aalbers et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G 50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
143.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino magnetic moments, JCAP 09 (2022) 079.; DOI:10.1088/1475-7516/2022/09/079
144.J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
145.G. Busoni, Capture of DM in Compact Stars, PoS PANIC2021 (2022) 046.; DOI:10.22323/1.380.0046
146.M. Agostini et al., Pulse shape analysis in Gerda Phase II, Eur. Phys. J. C 82 (2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
147.J. Kubo and J. Kuntz, Analysis of unitarity in conformal quantum gravity, Class. Quant. Grav. 39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
148.K. S. Babu, P. S. B. Dev and S. Jana, Probing neutrino mass models through resonances at neutrino telescopes, Int. J. Mod. Phys. A 37 (2022) 2230003.; DOI:10.1142/S0217751X22300034
149.M. Aker et al., New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, Phys. Rev. Lett. 129 (2022) 011806.; DOI:10.1103/PhysRevLett.129.011806
150.A. Bonhomme et al., Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the keV energy range, Eur. Phys. J. C 82 (2022) 815.; DOI:10.1140/epjc/s10052-022-10768-1
151.A. Ahmed, B. Grzadkowski and A. Socha, Higgs Boson-Induced Reheating and Dark Matter Production, Symmetry 14 (2022) 306.; DOI:10.3390/sym14020306
152.H. de Kerret et al., The Double Chooz antineutrino detectors, Eur. Phys. J. C 82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
153.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoS EPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
154.H. Bonet et al., First upper limits on neutrino electromagnetic properties from the CONUS experiment, Eur. Phys. J. C 82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
155.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles and electrons in liquid xenon, Rev. Sci. Instrum. 93 (2022) 113302.; DOI:10.1063/5.0087216
156.M. Aker et al., Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign, Phys. Rev. D 105 (2022) 072004.; DOI:10.1103/PhysRevD.105.072004
157.A. N. Khan, Neutrino millicharge and other electromagnetic interactions with COHERENT-2021 data, Nucl. Phys. B 986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
158.I. Brivio et al., Truncation, validity, uncertainties (2022).; Retrieved from https://arxiv.org/abs/2201.04974
159.A. Yu. Smirnov and X.-J. Xu, Neutrino bound states and bound systems, JHEP 08 (2022) 170.; DOI:10.1007/JHEP08(2022)170
160.L. Šerkšnytė et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105 (2022) 083021.; DOI:10.1103/PhysRevD.105.083021
161.G. Busoni, Capture of Dark Matter in Neutron Stars, Moscow Univ. Phys. Bull. 77 (2022) 301–305.; DOI:10.3103/S0027134922020205
162.A. Ahmed and S. Najjari, Ultraviolet freeze-in dark matter through the dilaton portal, Phys. Rev. D 107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
163.K. S. Babu, S. Jana and A. Thapa, Vector boson dark matter from trinification, JHEP 02 (2022) 051.; DOI:10.1007/JHEP02(2022)051
164.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang, Searching for new physics from SMEFT and leptoquarks at the P2 experiment, Phys. Rev. D 105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
165.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model with minimal Higgs sector, JCAP 05 (2022) 003.; DOI:10.1088/1475-7516/2022/05/003
166.E. Aprile et al., Emission of single and few electrons in XENON1T and limits on light dark matter, Phys. Rev. D 106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
167.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs: singlet-assisted baryogenesis w/o topological defects, JHEP 10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
168.E. Aprile et al., Application and modeling of an online distillation method to reduce krypton and argon in XENON1T, PTEP 2022 (2022) 053H01.; DOI:10.1093/ptep/ptac074
169.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino telescopes, JCAP 02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
170.S. Jana, S. Klett and M. Lindner, Flavor seesaw mechanism, Phys. Rev. D 105 (2022) 115015.; DOI:10.1103/PhysRevD.105.115015
171.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Top-down anatomy of flavor symmetry breakdown, Phys. Rev. D 105 (2022) 055018.; DOI:10.1103/PhysRevD.105.055018
172.E. Aprile et al., Material radiopurity control in the XENONnT experiment, Eur. Phys. J. C 82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
173.F. Goertz, Lepton Flavor in Composite Higgs Models, PoS PANIC2021 (2022) 149.; DOI:10.22323/1.380.0149
174.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of nonstandard neutrino self-interactions: An EFT approach, Phys. Rev. D 105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
175.G. Huang and N. Nath, Neutrino meets ultralight dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology, JCAP 05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
176.M. Sajjad Athar et al., Status and perspectives of neutrino physics, Prog. Part. Nucl. Phys. 124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
177.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on reheating and dark matter production, Phys. Lett. B 831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
178.H. Almazán et al., Searching for Hidden Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO Experiment, Phys. Rev. Lett. 128 (2022) 061801.; DOI:10.1103/PhysRevLett.128.061801
179.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar extensions, JHEP 05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
180.M. Sen, Sterile neutrino dark matter, neutrino secret self-interactions and extra radiation, J. Phys. Conf. Ser. 2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
181.G. Huang and W. Rodejohann, Tritium beta decay with modified neutrino dispersion relations: KATRIN in the dark sea, Nucl. Phys. B 993 (2023) 116262.; DOI:10.1016/j.nuclphysb.2023.116262
182.H. Bonet et al., Novel constraints on neutrino physics beyond the standard model from the CONUS experiment, JHEP 05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
183.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their breaking, PoS EPS-HEP2021 (2022) 698.; DOI:10.22323/1.398.0698
184.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and N. Rupp, Characterization of alpha and beta interactions in liquid xenon, Eur. Phys. J. C 82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
185.E. Akhmedov, Nuclear fusion catalyzed by doubly charged scalars: Implications for energy production, Phys. Rev. D 106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
186.L. A. Anchordoqui et al., The Forward Physics Facility: Sites, experiments, and physics potential, Phys. Rept. 968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
187.M. Aoki, J. Kubo and J. Yang, Inflation and dark matter after spontaneous Planck scale generation by hidden chiral symmetry breaking, JCAP 01 (2022) 005.; DOI:10.1088/1475-7516/2022/01/005
188.A. Ismail, S. Jana and R. M. Abraham, Neutrino up-scattering via the dipole portal at forward LHC detectors, Phys. Rev. D 105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
189.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M. Virgato, Improved treatment of dark matter capture in neutron stars III: nucleon and exotic targets, JCAP 11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
190.F. Goertz, Flavour observables and composite dynamics: leptons, Eur. Phys. J. ST 231 (2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
191.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M. Bartelmann, Gravitational wave induced baryon acoustic oscillations, SciPost Phys. 12 (2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
192.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei, Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background, Phys. Rev. D 105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
193.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark matter particles, PTEP 2022 (2022) 013F01.; DOI:10.1093/ptep/ptab139
194.H. Almazán et al., Joint Measurement of the \(^{235}\)U Antineutrino Spectrum by Prospect and Stereo, Phys. Rev. Lett. 128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
195.A. Y. Smirnov and V. B. Valera, Resonance refraction and neutrino oscillations, JHEP 09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
196.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of same-sign diboson+\(+{E\!\!\!\!/}_{T}\), Phys. Rev. D 105 (2022) 055014.; DOI:10.1103/PhysRevD.105.055014
197.M. Aker et al., Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys. 18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
198.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Orbifolds from Sp(4,Z) and their modular symmetries, Nucl. Phys. B 971 (2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
199.M. Aker et al., Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment, Eur. Phys. J. C 81 (2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
200.A. Trautner, Living on the Fermi edge: On baryon transport and Fermi condensation, Phys. Lett. B 833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
201.V. C. Antochi et al., Improved quality tests of R11410-21 photomultiplier tubes for the XENONnT experiment, JINST 16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
202.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M. Virgato, Improved treatment of dark matter capture in white dwarfs, JCAP 10 (2021) 083.; DOI:10.1088/1475-7516/2021/10/083
203.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M. Schmelling, Sub-TeV hadronic interaction model differences and their impact on air showers, Eur. Phys. J. C 81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
204.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification, Phys. Rev. D 105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
205.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly and neutrino magnetic moments, JHEP 10 (2021) 240.; DOI:10.1007/JHEP10(2021)240
206.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an explanation of Fermilab muon g \(-\) 2 measurement, Phys. Lett. B 820 (2021) 136529.; DOI:10.1016/j.physletb.2021.136529
207.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard interactions in CE\(\nu\)NS, Phys. Rev. D 104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
208.M. Agostini et al., Characterization of inverted coaxial \(^{76}\)Ge detectors in GERDA for future double-\(\beta\) decay experiments, Eur. Phys. J. C 81 (2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
209.M. Agostini et al., Calibration of the Gerda experiment, Eur. Phys. J. C 81 (2021) 682.; DOI:10.1140/epjc/s10052-021-09403-2
210.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O. Sumensari, Single leptoquark solutions to the B-physics anomalies, Phys. Rev. D 104 (2021) 055017.; DOI:10.1103/PhysRevD.104.055017
211.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence of oscillations in matter and supernova neutrinos, JCAP 06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
212.J. Herms and A. Ibarra, Production and signatures of multi-flavour dark matter scenarios with t-channel mediators, JCAP 10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
213.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment, JHEP 06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
214.M. Aker et al., The design, construction, and commissioning of the KATRIN experiment, JINST 16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
215.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider, Phys. Rev. D 105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
216.G. Huang and W. Rodejohann, Solving the Hubble tension without spoiling Big Bang Nucleosynthesis, Phys. Rev. D 103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
217.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon collider, Phys. Rev. D 103 (2021) 095005.; DOI:10.1103/PhysRevD.103.095005
218.K. S. Babu, D. Goncalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity between LHC and Oscillation Experiments, Beyond Standard Model: From Theory to Experiment.; DOI:10.31526/ACP.BSM-2021.28
219.S. Jana, V. P. K. and S. Saad, Light Scalar and Lepton Anomalous Magnetic Moments, Beyond Standard Model: From Theory to Experiment.; DOI:10.31526/ACP.BSM-2021.23
220.M. Schmelling, Á. Pastor-Gutiérrez, H. Schorlemmer and R. D. Parsons, Sub-TeV hadronic interaction model differences and their impact on air showers, PoS ICRC2021 (2021) 476.; DOI:10.21468/SciPostPhysProc.15.015
221.I. Bischer, C. Döring and A. Trautner, Simultaneous Block Diagonalization of Matrices of Finite Order, J. Phys. A 54 (2021) 085203.; DOI:10.1088/1751-8121/abd979
222.S. Fabian, F. Goertz and Y. Jiang, Dark matter and nature of electroweak phase transition with an inert doublet, JCAP 09 (2021) 011.; DOI:10.1088/1475-7516/2021/09/011
223.P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F. Keilbach, T. Plehn, G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost Phys. 13 (2022) 064.; DOI:10.21468/SciPostPhys.13.3.064
224.C. Bonilla, J. Herms, A. Ibarra and P. Strobl, Neutrino parameters in the Planck-scale lepton number breaking scenario with extended scalar sectors, Phys. Rev. D 103 (2021) 035010.; DOI:10.1103/PhysRevD.103.035010
225.J. Kubo, J. Kuntz, M. Lindner, J. Rezacek, P. Saake and A. Trautner, Unified emergence of energy scales and cosmic inflation, JHEP 08 (2021) 016.; DOI:10.1007/JHEP08(2021)016
226.N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M. Virgato, Nucleon Structure and Strong Interactions in Dark Matter Capture in Neutron Stars, Phys. Rev. Lett. 127 (2021) 111803.; DOI:10.1103/PhysRevLett.127.111803
227.O. Fischer, M. Reininghaus and R. Ulrich, Avenues to new-physics searches in cosmic ray air showers, PoS ICHEP2020 (2021) 602.; DOI:10.22323/1.390.0602
228.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, PoS ICHEP2020 (2021) 143.; DOI:10.22323/1.390.0143
229.E. Aprile et al., Search for Coherent Elastic Scattering of Solar \(^8\)B Neutrinos in the XENON1T Dark Matter Experiment, Phys. Rev. Lett. 126 (2021) 091301.; DOI:10.1103/PhysRevLett.126.091301
230.P. D. Bolton, F. F. Deppisch, L. Gráf and F. Šimkovic, Two-Neutrino Double Beta Decay with Sterile Neutrinos, Phys. Rev. D 103 (2021) 055019.; DOI:10.1103/PhysRevD.103.055019
231.X. Luo, W. Rodejohann and X.-J. Xu, Dirac neutrinos and N\(_{eff}\). Part II. The freeze-in case, JCAP 03 (2021) 082.; DOI:10.1088/1475-7516/2021/03/082
232.E. Aprile et al., Search for inelastic scattering of WIMP dark matter in XENON1T, Phys. Rev. D 103 (2021) 063028.; DOI:10.1103/PhysRevD.103.063028
233.H. Bonet et al., Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment, Phys. Rev. Lett. 126 (2021) 041804.; DOI:10.1103/PhysRevLett.126.041804
234.G. Huang and S. Zhou, Tentative sensitivity of future \(0\nu \beta\beta\)-decay experiments to neutrino masses and Majorana CP phases, JHEP 03 (2021) 084.; DOI:10.1007/JHEP03(2021)084
235.S. Al Kharusi et al., SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy, New J. Phys. 23 (2021) 031201.; DOI:10.1088/1367-2630/abde33
236.L. Graf, S. Jana, M. Lindner, W. Rodejohann and X.-J. Xu, Flavored neutrinoless double beta decay, Phys. Rev. D 103 (2021) 055007.; DOI:10.1103/PhysRevD.103.055007
237.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars II: Leptonic Targets, JCAP 03 (2021) 086.; DOI:10.1088/1475-7516/2021/03/086
238.H. Bonet et al., Large-size sub-keV sensitive germanium detectors for the CONUS experiment, Eur. Phys. J. C 81 (2021) 267.; DOI:10.1140/epjc/s10052-021-09038-3
239.E. Akhmedov, Neutrino oscillations in matter: from microscopic to macroscopic description, JHEP 02 (2021) 107.; DOI:10.1007/JHEP02(2021)107
240.J. L. Diaz-Cruz, U. J. Saldana-Salazar, K. M. Tame-Narvaez and V. T. Tenorth, Natural 2HDMs without FCNCs, Phys. Rev. D 104 (2021) 035018.; DOI:10.1103/PhysRevD.104.035018
241.H. Almazán et al., First antineutrino energy spectrum from \(^{235}\)U fissions with the STEREO detector at ILL, J. Phys. G 48 (2021) 075107.; DOI:10.1088/1361-6471/abd37a
242.E. Aprile et al., \(^{222}\)Rn emanation measurements for the XENON1T experiment, Eur. Phys. J. C 81 (2021) 337.; DOI:10.1140/epjc/s10052-020-08777-z
243.F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range mechanisms in \(0\nu\beta\beta\) decay, Phys. Rev. D 102 (2020) 095016.; DOI:10.1103/PhysRevD.102.095016
244.S. Bruenner, D. Cichon, G. Eurin, P. Herrero Gómez, F. Jörg, T. Marrodán Undagoitia, H. Simgen and N. Rupp, Radon daughter removal from PTFE surfaces and its application in liquid xenon detectors, Eur. Phys. J. C 81 (2021) 343.; DOI:10.1140/epjc/s10052-021-09047-2
245.K. S. Babu, P. S. B. Dev, S. Jana and A. Thapa, Unified framework for \(B\)-anomalies, muon \(g − 2\) and neutrino masses, JHEP 03 (2021) 179.; DOI:10.1007/JHEP03(2021)179
246.S. Blasi, V. Brdar and K. Schmitz, Has NANOGrav found first evidence for cosmic strings?, Phys. Rev. Lett. 126 (2021) 041305.; DOI:10.1103/PhysRevLett.126.041305
247.M. Agostini et al., Final Results of GERDA on the Search for Neutrinoless Double-\(\beta\) Decay, Phys. Rev. Lett. 125 (2020) 252502.; DOI:10.1103/PhysRevLett.125.252502
248.T. Abrahão et al., Search for signatures of sterile neutrinos with Double Chooz, Eur. Phys. J. C 81 (2021) 775.; DOI:10.1140/epjc/s10052-021-09459-0
249.L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, : a Hilbert series for the QCD chiral Lagrangian, JHEP 01 (2021) 142.; DOI:10.1007/JHEP01(2021)142
250.M. P. Bento, R. Boto, J. P. Silva and A. Trautner, A fully basis invariant Symmetry Map of the 2HDM, JHEP 21 (2020) 229.; DOI:10.1007/JHEP02(2021)220
251.A. N. Khan, Constraints on general light mediators from PandaX-II electron recoil data, Phys. Lett. B 819 (2021) 136415.; DOI:10.1016/j.physletb.2021.136415
252.T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus, N. Koivunen and K. Tuominen, Pseudo-Goldstone dark matter: gravitational waves and direct-detection blind spots, JHEP 10 (2020) 080.; DOI:10.1007/JHEP10(2020)080
253.K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, Exotic Higgs decays into displaced jets at the LHeC, JHEP 02 (2021) 161.; DOI:10.1007/JHEP02(2021)161
254.I. Bischer, T. Plehn and W. Rodejohann, Dark Matter EFT, the Third – Neutrino WIMPs, SciPost Phys. 10 (2021) 039.; DOI:10.21468/SciPostPhys.10.2.039
255.S. Jana, P. K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments and neutrino masses, Phys. Rev. D 102 (2020) 075003.; DOI:10.1103/PhysRevD.102.075003
256.V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, JCAP 01 (2021) 039.; DOI:10.1088/1475-7516/2021/01/039
257.V. Brdar, O. Fischer and A. Yu. Smirnov, Model-independent bounds on the nonoscillatory explanations of the MiniBooNE excess, Phys. Rev. D 103 (2021) 075008.; DOI:10.1103/PhysRevD.103.075008
258.P. Agostini et al., The Large HadronElectron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501.; DOI:10.1088/1361-6471/abf3ba
259.T. Abrahão et al., Reactor rate modulation oscillation analysis with two detectors in Double Chooz, JHEP 01 (2021) 190.; DOI:10.1007/JHEP01(2021)190
260.E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031.; DOI:10.1088/1475-7516/2020/11/031
261.G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S. Vogl, EFT interpretation of XENON1T electron recoil excess: Neutrinos and dark matter, Phys. Rev. D 103 (2021) 023024.; DOI:10.1103/PhysRevD.103.023024
262.K. S. Babu, S. Jana and M. Lindner, Large Neutrino Magnetic Moments in the Light of Recent Experiments, JHEP 10 (2020) 040.; DOI:10.1007/JHEP10(2020)040
263.M. Aoki, V. Brdar and J. Kubo, Heavy dark matter, neutrino masses, and Higgs naturalness from a strongly interacting hidden sector, Phys. Rev. D 102 (2020) 035026.; DOI:10.1103/PhysRevD.102.035026
264.M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, XENON1T anomaly: A light Z’ from a Two Higgs Doublet Model, Phys. Lett. B 811 (2020) 135972.; DOI:10.1016/j.physletb.2020.135972
265.M. Andriamirado et al., Note on arXiv:2005.05301, ’Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements’ (2020).; Retrieved from https://arxiv.org/abs/2006.13147
266.A. N. Khan, Can Nonstandard Neutrino Interactions explain the XENON1T spectral excess?, Phys. Lett. B 809 (2020) 135782.; DOI:10.1016/j.physletb.2020.135782
267.A. Bally, S. Jana and A. Trautner, Neutrino self-interactions and XENON1T electron recoil excess, Phys. Rev. Lett. 125 (2020) 161802.; DOI:10.1103/PhysRevLett.125.161802
268.E. Aprile et al., Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004.; DOI:10.1103/PhysRevD.102.072004
269.T. Alanne, G. Arcadi, F. Goertz, V. Tenorth and S. Vogl, Model-independent constraints with extended dark matter EFT, JHEP 10 (2020) 172.; DOI:10.1007/JHEP10(2020)172
270.T. Rink, W. Rodejohann and K. Schmitz, Leptogenesis and low-energy CP violation in a type-II-dominated left-right seesaw model, Nucl. Phys. B 972 (2021) 115552.; DOI:10.1016/j.nuclphysb.2021.115552
271.J. Aalbers et al., Solar neutrino detection sensitivity in DARWIN via electron scattering, Eur. Phys. J. C 80 (2020) 1133.; DOI:10.1140/epjc/s10052-020-08602-7
272.M. Agostini et al., First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/\(c^2\) with GERDA, Phys. Rev. Lett. 125 (2020) 011801.; DOI:10.1103/PhysRevLett.125.011801
273.S. Centelles Chuliá, C. Döring, W. Rodejohann and U. J. Saldaña-Salazar, Natural axion model from flavour, JHEP 09 (2020) 137.; DOI:10.1007/JHEP09(2020)137
274.M. J. Zurowski, E. Barberio and G. Busoni, Inelastic Dark Matter and the SABRE Experiment, JCAP 12 (2020) 014.; DOI:10.1088/1475-7516/2020/12/014
275.D. Cichon, G. Eurin, F. Jörg, T. Marrodán Undagoitia and N. Rupp, Transmission of xenon scintillation light through PTFE, JINST 15 (2020) P09010.; DOI:10.1088/1748-0221/15/09/P09010
276.X. Luo, W. Rodejohann and X.-J. Xu, Dirac neutrinos and \(N_{{\rm eff}}\), JCAP 06 (2020) 058.; DOI:10.1088/1475-7516/2020/06/058
277.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars, JCAP 09 (2020) 028.; DOI:10.1088/1475-7516/2020/09/028
278.C. Jaramillo, M. Lindner and W. Rodejohann, Seesaw neutrino dark matter by freeze-out, JCAP 04 (2021) 023.; DOI:10.1088/1475-7516/2021/04/023
279.M. Berbig, S. Jana and A. Trautner, The Hubble tension and a renormalizable model of gauged neutrino self-interactions, Phys. Rev. D 102 (2020) 115008.; DOI:10.1103/PhysRevD.102.115008
280.F. F. Deppisch, L. Graf, W. Rodejohann and X.-J. Xu, Neutrino Self-Interactions and Double Beta Decay, Phys. Rev. D 102 (2020) 051701.; DOI:10.1103/PhysRevD.102.051701
281.S. Blasi, C. Csaki and F. Goertz, A natural composite Higgs via universal boundary conditions, SciPost Phys. 10 (2021) 121.; DOI:10.21468/SciPostPhys.10.5.121
282.H. Almazán et al., Accurate Measurement of the Electron Antineutrino Yield of \(^{235}\)U Fissions from the STEREO Experiment with 119 Days of Reactor-On Data, Phys. Rev. Lett. 125 (2020) 201801.; DOI:10.1103/PhysRevLett.125.201801
283.S. Blasi, V. Brdar and K. Schmitz, Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum, Phys. Rev. Res. 2 (2020) 043321.; DOI:10.1103/PhysRevResearch.2.043321
284.S. Jana, N. Okada and D. Raut, Displaced vertex and disappearing track signatures in type-III seesaw, Eur. Phys. J. C 82 (2022) 927.; DOI:10.1140/epjc/s10052-022-10855-3
285.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and cosmological production of light sterile neutrinos, JCAP 08 (2020) 015.; DOI:10.1088/1475-7516/2020/08/015
286.F. F. Deppisch, L. Graf and F. Šimkovic, Searching for New Physics in Two-Neutrino Double Beta Decay, Phys. Rev. Lett. 125 (2020) 171801.; DOI:10.1103/PhysRevLett.125.171801
287.F. Agostini et al., Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of \(^{136}\)Xe, Eur. Phys. J. C 80 (2020) 808.; DOI:10.1140/epjc/s10052-020-8196-z
288.V. Brdar, M. Lindner, S. Vogl and X.-J. Xu, Revisiting neutrino self-interaction constraints from \(Z\) and \(\tau\) decays, Phys. Rev. D 101 (2020) 115001.; DOI:10.1103/PhysRevD.101.115001
289.E. Aprile et al., Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C 80 (2020) 785.; DOI:10.1140/epjc/s10052-020-8284-0
290.K. S. Babu, D. Gonçalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments, Phys. Lett. B 815 (2021) 136131.; DOI:10.1016/j.physletb.2021.136131
291.S. Jana, V. P. K. and S. Saad, Resolving electron and muon \(g-2\) within the 2HDM, Phys. Rev. D 101 (2020) 115037.; DOI:10.1103/PhysRevD.101.115037
292.Y. P. Porto-Silva, S. Prakash, O. L. G. Peres, H. Nunokawa and H. Minakata, Constraining visible neutrino decay at KamLAND and JUNO, Eur. Phys. J. C 80 (2020) 999.; DOI:10.1140/epjc/s10052-020-08573-9
293.A. Trautner, On the systematic construction of basis invariants, (E. Widmann, J. Marton, A. Pichler, M. Simon, & D. Murtagh, Eds.)J. Phys. Conf. Ser. 1586 (2020) 012005.; DOI:10.1088/1742-6596/1586/1/012005
294.Y. P. Porto-Silva and M. C. de Oliveira, Theory of Neutrino Detection – Flavor Oscillations and Weak Values, Eur. Phys. J. C 81 (2021) 330.; DOI:10.1140/epjc/s10052-021-09108-6
295.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, MUonE sensitivity to new physics explanations of the muon anomalous magnetic moment, JHEP 05 (2020) 053.; DOI:10.1007/JHEP05(2020)053
296.G. Arcadi, G. Busoni, T. Hugle and V. T. Tenorth, Comparing 2HDM \(+\) Scalar and Pseudoscalar Simplified Models at LHC, JHEP 06 (2020) 098.; DOI:10.1007/JHEP06(2020)098
297.P. Bakhti and A. Yu. Smirnov, Oscillation tomography of the Earth with solar neutrinos and future experiments, Phys. Rev. D 101 (2020) 123031.; DOI:10.1103/PhysRevD.101.123031
298.A. E. Cárcamo Hernández, C. O. Dib and U. J. Saldaña-Salazar, When \(\tan \beta\) meets all the mixing angles, Phys. Lett. B 809 (2020) 135750.; DOI:10.1016/j.physletb.2020.135750
299.C. Buck et al., A novel experiment for coherent elastic neutrino nucleus scattering: CONUS, (K. Clark, C. Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser. 1342 (2020) 012094.; DOI:10.1088/1742-6596/1342/1/012094
300.S. Baumholzer, V. Brdar, P. Schwaller and A. Segner, Shining Light on the Scotogenic Model: Interplay of Colliders and Cosmology, JHEP 09 (2020) 136.; DOI:10.1007/JHEP09(2020)136
301.H. Almazán et al., Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data, Phys. Rev. D 102 (2020) 052002.; DOI:10.1103/PhysRevD.102.052002
302.S. Centelles Chuliá and A. Trautner, Asymmetric tri-bi-maximal mixing and residual symmetries, Mod. Phys. Lett. A 35 (2020) 2050292.; DOI:10.1142/S0217732320502922
303.A. Bonhomme, Latest results of the STEREO sterile neutrino search at the ILL Grenoble, PoS LeptonPhoton2019 (2019) 087.; DOI:10.22323/1.367.0087
304.J. Kawamura, S. Raby and A. Trautner, Complete vectorlike fourth family with U(1)’ : A global analysis, Phys. Rev. D 101 (2020) 035026.; DOI:10.1103/PhysRevD.101.035026
305.S. Centelles Chuliá, W. Rodejohann and U. J. Saldaña-Salazar, Two-Higgs-doublet models with a flavored \(\mathbb{Z}_2\) symmetry, Phys. Rev. D 101 (2020) 035013.; DOI:10.1103/PhysRevD.101.035013
306.C. Schwanenberger and O. Fischer, Beyond the Standard Model physics at the LHeC and the FCC-he, PoS EPS-HEP2019 (2020) 563.; DOI:10.22323/1.364.0563
307.C. Benso, V. Brdar, M. Lindner and W. Rodejohann, Prospects for Finding Sterile Neutrino Dark Matter at KATRIN, Phys. Rev. D 100 (2019) 115035.; DOI:10.1103/PhysRevD.100.115035
308.V. Brdar, A. J. Helmboldt and M. Lindner, Strong Supercooling as a Consequence of Renormalization Group Consistency, JHEP 12 (2019) 158.; DOI:10.1007/JHEP12(2019)158
309.A. N. Khan, H. Nunokawa and S. J. Parke, Why matter effects matter for JUNO, Phys. Lett. B 803 (2020) 135354.; DOI:10.1016/j.physletb.2020.135354
310.L. Graf, Particle physics of non-standard 0\(\nu \beta \beta\) decay, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 2165 (2019) 020009.; DOI:10.1063/1.5130970
311.J. Kotila, L. Graf, F. F. Deppisch and F. Iachello, Nuclear physics of non-standard \(0 \nu \beta\beta\)-decay, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 2165 (2019) 020017.; DOI:10.1063/1.5130978
312.A. Smolnikov, GERDA searches for 0\(\nu \beta\beta\) and other \(\beta\beta\) decay modes of \(^{76}\)Ge, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 2165 (2019) 020024.; DOI:10.1063/1.5130985
313.S. Jana, P. K. Vishnu and S. Saad, Minimal realizations of Dirac neutrino mass from generic one-loop and two-loop topologies at \(d = 5\), JCAP 04 (2020) 018.; DOI:10.1088/1475-7516/2020/04/018
314.G. Huang, W. Rodejohann and S. Zhou, Effective neutrino masses in KATRIN and future tritium beta-decay experiments, Phys. Rev. D 101 (2020) 016003.; DOI:10.1103/PhysRevD.101.016003
315.D. Aristizabal Sierra et al., Proceedings of The Magnificent CE\(\nu\)NS Workshop 2018.; DOI:10.5281/zenodo.3489190
316.J. Alison et al., Higgs boson potential at colliders: Status and perspectives, (B. Di Micco, M. Gouzevitch, J. Mazzitelli, & C. Vernieri, Eds.)Rev. Phys. 5 (2020) 100045.; DOI:10.1016/j.revip.2020.100045
317.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave signal from cosmological phase transitions, JHEP 03 (2020) 004.; DOI:10.1007/JHEP03(2020)004
318.F. Goertz, E. Madge, P. Schwaller and V. T. Tenorth, Discovering the \(h\to Z \gamma\) decay in \(t \bar t\) associated production, Phys. Rev. D 102 (2020) 053004.; DOI:10.1103/PhysRevD.102.053004
319.A. Y. Smirnov and X.-J. Xu, Wolfenstein potentials for neutrinos induced by ultra-light mediators, JHEP 12 (2019) 046.; DOI:10.1007/JHEP12(2019)046
320.M. Agostini et al., Modeling of GERDA Phase II data, JHEP 03 (2020) 139.; DOI:10.1007/JHEP03(2020)139
321.V. Brdar, L. Graf, A. J. Helmboldt and X.-J. Xu, Gravitational Waves as a Probe of Left-Right Symmetry Breaking, JCAP 12 (2019) 027.; DOI:10.1088/1475-7516/2019/12/027
322.S. Schoppmann, Search for eV Sterile Neutrinos The Stereo Experiment, (K. Clark, C. Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser. 1342 (2020) 012042.; DOI:10.1088/1742-6596/1342/1/012042
323.S. Schoppmann, Search for eV Sterile Neutrinos - The STEREO Experiment [Blois 2019], 31st Rencontres de Blois on Particle Physics and Cosmology.; Retrieved from https://arxiv.org/abs/1909.01017
324.L. Graf, Effective short-range contributions to neutrinoless double beta decay, (R. Maruyama, Ed.)AIP Conf. Proc. 2150 (2019) 040003.; DOI:10.1063/1.5124604
325.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles, JCAP 12 (2019) 012.; DOI:10.1088/1475-7516/2019/12/012
326.C. Buck, B. Gramlich and S. Schoppmann, Novel Opaque Scintillator for Neutrino Detection, JINST 14 (2019) P11007.; DOI:10.1088/1748-0221/14/11/P11007
327.A. Cabrera et al., Neutrino Physics with an Opaque Detector, Commun. Phys. 4 (2021) 273.; DOI:10.1038/s42005-021-00763-5
328.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, A String Theory of Flavor and \(\mathscr {CP}\), Nucl. Phys. B 947 (2019) 114737.; DOI:10.1016/j.nuclphysb.2019.114737
329.E. Aprile et al., Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T, Phys. Rev. Lett. 123 (2019) 241803.; DOI:10.1103/PhysRevLett.123.241803
330.A. N. Khan and W. Rodejohann, New physics from COHERENT data with an improved quenching factor, Phys. Rev. D 100 (2019) 113003.; DOI:10.1103/PhysRevD.100.113003
331.W. Rodejohann and X.-J. Xu, Loop-enhanced rate of neutrinoless double beta decay, JHEP 11 (2019) 029.; DOI:10.1007/JHEP11(2019)029
332.E. Aprile et al., Light Dark Matter Search with Ionization Signals in XENON1T, Phys. Rev. Lett. 123 (2019) 251801.; DOI:10.1103/PhysRevLett.123.251801
333.P.-H. Gu, Double type II seesaw mechanism accompanied by Dirac fermionic dark matter, Phys. Rev. D 101 (2020) 015006.; DOI:10.1103/PhysRevD.101.015006
334.S. Biondini and S. Vogl, Scalar dark matter coannihilating with a coloured fermion, JHEP 11 (2019) 147.; DOI:10.1007/JHEP11(2019)147
335.C. Klein, M. Lindner and S. Vogl, Radiative neutrino masses and successful \(SU(5)\) unification, Phys. Rev. D 100 (2019) 075024.; DOI:10.1103/PhysRevD.100.075024
336.A. N. Khan, W. Rodejohann and X.-J. Xu, Borexino and general neutrino interactions, Phys. Rev. D 101 (2020) 055047.; DOI:10.1103/PhysRevD.101.055047
337.J. Kawamura, S. Raby and A. Trautner, Complete vectorlike fourth family and new U(1)’ for muon anomalies, Phys. Rev. D 100 (2019) 055030.; DOI:10.1103/PhysRevD.100.055030
338.G. Arcadi, C. Döring, C. Hasterok and S. Vogl, Inelastic dark matter nucleus scattering, JCAP 12 (2019) 053.; DOI:10.1088/1475-7516/2019/12/053
339.F. Goertz, K. Tame-Narvaez and V. T. Tenorth, Di-jet/\(e^+e^-\)+ MET to Probe \(Z_2-\)Odd Mediators to the Dark Sector, Eur. Phys. J. C 79 (2019) 860.; DOI:10.1140/epjc/s10052-019-7374-3
340.G. Arcadi, O. Lebedev, S. Pokorski and T. Toma, Real Scalar Dark Matter: Relativistic Treatment, JHEP 08 (2019) 050.; DOI:10.1007/JHEP08(2019)050
341.E. Aprile et al., XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection, Phys. Rev. D 100 (2019) 052014.; DOI:10.1103/PhysRevD.100.052014
342.G. Arcadi, M. Lindner, J. Martins and F. S. Queiroz, New physics probes: Atomic parity violation, polarized electron scattering and neutrino-nucleus coherent scattering, Nucl. Phys. B 959 (2020) 115158.; DOI:10.1016/j.nuclphysb.2020.115158
343.S. Böser, C. Buck, C. Giunti, J. Lesgourgues, L. Ludhova, S. Mertens, A. Schukraft and M. Wurm, Status of Light Sterile Neutrino Searches, Prog. Part. Nucl. Phys. 111 (2020) 103736.; DOI:10.1016/j.ppnp.2019.103736
344.E. Aprile et al., The XENON1T Data Acquisition System, JINST 14 (2019) P07016.; DOI:10.1088/1748-0221/14/07/P07016
345.R. S. L. Hansen and A. Y. Smirnov, Effect of extended \(\nu\) production region on collective oscillations in supernovae, JCAP 10 (2019) 027.; DOI:10.1088/1475-7516/2019/10/027
346.V. Brdar, A. J. Helmboldt, S. Iwamoto and K. Schmitz, Type-I Seesaw as the Common Origin of Neutrino Mass, Baryon Asymmetry, and the Electroweak Scale, Phys. Rev. D 100 (2019) 075029.; DOI:10.1103/PhysRevD.100.075029
347.H. Almazán Molina et al., Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN, Eur. Phys. J. A 55 (2019) 183.; DOI:10.1140/epja/i2019-12886-y
348.E. Akhmedov, Relic neutrino detection through angular correlations in inverse \(\beta\)-decay, JCAP 09 (2019) 031.; DOI:10.1088/1475-7516/2019/09/031
349.G. Alonso-Álvarez, T. Hugle and J. Jaeckel, Misalignment \& Co.: (Pseudo-)scalar and vector dark matter with curvature couplings, JCAP 02 (2020) 014.; DOI:10.1088/1475-7516/2020/02/014
350.I. Bischer and W. Rodejohann, General neutrino interactions from an effective field theory perspective, Nucl. Phys. B 947 (2019) 114746.; DOI:10.1016/j.nuclphysb.2019.114746
351.T. Alanne, S. Blasi and N. A. Dondi, Critical Look at \(\beta\) -Function Singularities at Large \(N\), Phys. Rev. Lett. 123 (2019) 131602.; DOI:10.1103/PhysRevLett.123.131602
352.T. Alanne, S. Blasi and F. Goertz, Axiflavon-Higgs Unification, 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 111–116).; Retrieved from https://arxiv.org/abs/1905.07285
353.C. Döring, R. S. L. Hansen and M. Lindner, Stability of three neutrino flavor conversion in supernovae, JCAP 08 (2019) 003.; DOI:10.1088/1475-7516/2019/08/003
354.A. Y. Smirnov, Neutrino Mixing via the Neutrino Portal, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1905.00838
355.R. S. L. Hansen, M. Lindner and O. Scholer, Timing the neutrino signal of a Galactic supernova, Phys. Rev. D 101 (2020) 123018.; DOI:10.1103/PhysRevD.101.123018
356.E. Aprile et al., Observation of two-neutrino double electron capture in \(^{124}\)Xe with XENON1T, Nature 568 (2019) 532–535.; DOI:10.1038/s41586-019-1124-4
357.N. F. Bell, G. Busoni and S. Robles, Capture of Leptophilic Dark Matter in Neutron Stars, JCAP 06 (2019) 054.; DOI:10.1088/1475-7516/2019/06/054
358.A. E. Cárcamo Hernández, J. Marchant González and U. J. Saldaña-Salazar, Viable low-scale model with universal and inverse seesaw mechanisms, Phys. Rev. D 100 (2019) 035024.; DOI:10.1103/PhysRevD.100.035024
359.A. J. Helmboldt, J. Kubo and S. van der Woude, Observational prospects for gravitational waves from hidden or dark chiral phase transitions, Phys. Rev. D 100 (2019) 055025.; DOI:10.1103/PhysRevD.100.055025
360.T. Alanne, S. Blasi and N. A. Dondi, Bubble-resummation and critical-point methods for \(\beta\)-functions at large \(N\), Eur. Phys. J. C 79 (2019) 689.; DOI:10.1140/epjc/s10052-019-7190-9
361.A. Acharyya et al., Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout, Astropart. Phys. 111 (2019) 35–53.; DOI:10.1016/j.astropartphys.2019.04.001
362.M. Garny, J. Heisig, M. Hufnagel, B. Lülf and S. Vogl, Conversion-driven freeze-out: Dark matter genesis beyond the WIMP paradigm, (K. Anagnostopoulos et al., Eds.)PoS CORFU2018 (2019) 092.; DOI:10.22323/1.347.0092
363.J. Hakenmüller et al., Neutron-induced background in the CONUS experiment, Eur. Phys. J. C 79 (2019) 699.; DOI:10.1140/epjc/s10052-019-7160-2
364.S. Blasi and F. Goertz, Softened Symmetry Breaking in Composite Higgs Models, Phys. Rev. Lett. 123 (2019) 221801.; DOI:10.1103/PhysRevLett.123.221801
365.I. Bischer, T. Grandou and R. Hofmann, Perturbative Peculiarities of Quantum Field Theories at High Temperatures, Universe 5 (2019) 81.; DOI:10.3390/universe5030081
366.D. Croon, T. E. Gonzalo, L. Graf, N. Košnik and G. White, GUT Physics in the era of the LHC, Front. in Phys. 7 (2019) 76.; DOI:10.3389/fphy.2019.00076
367.G. Arcadi, A. Djouadi and M. Raidal, Dark Matter through the Higgs portal, Phys. Rept. 842 (2020) 1–180.; DOI:10.1016/j.physrep.2019.11.003
368.W. Rodejohann and U. Saldaña-Salazar, Multi-Higgs-Doublet Models and Singular Alignment, JHEP 07 (2019) 036.; DOI:10.1007/JHEP07(2019)036
369.E. Aprile et al., XENON1T dark matter data analysis: Signal and background models and statistical inference, Phys. Rev. D 99 (2019) 112009.; DOI:10.1103/PhysRevD.99.112009
370.M. J. Dolinski, A. W. P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and Prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219–251.; DOI:10.1146/annurev-nucl-101918-023407
371.E. Aprile et al., Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, Phys. Rev. Lett. 122 (2019) 141301.; DOI:10.1103/PhysRevLett.122.141301
372.I. P. Ivanov, C. C. Nishi and A. Trautner, Beyond basis invariants, Eur. Phys. J. C 79 (2019) 315.; DOI:10.1140/epjc/s10052-019-6845-x
373.A. Y. Smirnov, The Mikheyev-Smirnov-Wolfenstein (MSW) Effect, International Conference on History of the Neutrino: 1930-2018.; Retrieved from https://arxiv.org/abs/1901.11473
374.R. S. L. Hansen, Extended neutrinosphere effects on SN nu oscillations, (A. Marrone, A. Mirizzi, & D. Montanino, Eds.)PoS NOW2018 (2019) 050.; DOI:10.22323/1.337.0050
375.H. de Kerret et al., Double Chooz \(\theta_{13}\) measurement via total neutron capture detection, Nature Phys. 16 (2020) 558–564.; DOI:10.1038/s41567-020-0831-y
376.M. Agostini et al., Characterization of 30\(^{76}\)Ge enriched Broad Energy Ge detectors for GERDA Phase II, Eur. Phys. J. C 79 (2019) 978.; DOI:10.1140/epjc/s10052-019-7353-8
377.E. Akhmedov, Quantum mechanics aspects and subtleties of neutrino oscillations, International Conference on History of the Neutrino: 1930-2018.; Retrieved from https://arxiv.org/abs/1901.05232
378.D. A. Camargo, M. D. Campos, T. B. de Melo and F. S. Queiroz, A Two Higgs Doublet Model for Dark Matter and Neutrino Masses, Phys. Lett. B 795 (2019) 319–326.; DOI:10.1016/j.physletb.2019.06.020
379.I. Bischer, T. Grandou and R. Hofmann, On Quantum Fields at High Temperature, Universe 5 (2019) 26.; DOI:10.3390/universe5010026
380.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Unification of Flavor, CP, and Modular Symmetries, Phys. Lett. B 795 (2019) 7–14.; DOI:10.1016/j.physletb.2019.03.066
381.C. Klein, M. Lindner and S. Ohmer, Minimal Radiative Neutrino Masses, JHEP 03 (2019) 018.; DOI:10.1007/JHEP03(2019)018
382.T. A. Kirsten, GALLEX/GNO: Context and recollections, In M. Meyer & K. Zuber (Eds.), Proceedings, 5th International Solar Neutrino Conference: Dresden, Germany, June 11-14, 2018 (pp. 47–68).; DOI:10.1142/9789811204296_0003
383.A. Y. Smirnov, The MSW effect, solar neutrinos and searches for new physics, In M. Meyer & K. Zuber (Eds.), Proceedings, 5th International Solar Neutrino Conference: Dresden, Germany, June 11-14, 2018 (pp. 143–160).; DOI:10.1142/9789811204296_0007
384.C. K. M. Klein, Minimal radiative neutrino mass -A systematic study- (Master’s thesis). Heidelberg, Max Planck Inst.
385.H. Almazán et al., Search for light sterile neutrinos with the STEREO experiment, (T. Jenke, S. Degenkolb, P. Geltenbort, M. Jentschel, V. V. Nesvizhevsky, D. Rebreyend, S. Roccia, et al., Eds.)EPJ Web Conf. 219 (2019) 08001.; DOI:10.1051/epjconf/201921908001
386.T. A. Kirsten, Solar neutrinos: the pioneering experiments, International Conference on History of the Neutrino: 1930-2018.
387.A. Smolnikov, Fifty years of searching for neutrinoless double beta decay with Ge detectors, International Conference on History of the Neutrino: 1930-2018.
388.C. Buck, Latest results of the CONUS reactor neutrino experiment, 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 163–168).
389.G. Arcadi, A. Abada and M. Lucente, Leptogenesis from tiny violation of Lepton Number, (A. Marrone, A. Mirizzi, & D. Montanino, Eds.)PoS NOW2018 (2018) 090.; DOI:10.22323/1.337.0090
390.A. Abada et al., HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST 228 (2019) 1109–1382.; DOI:10.1140/epjst/e2019-900088-6
391.A. Abada et al., FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3, Eur. Phys. J. ST 228 (2019) 755–1107.; DOI:10.1140/epjst/e2019-900087-0
392.A. Abada et al., FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228 (2019) 261–623.; DOI:10.1140/epjst/e2019-900045-4
393.T. Alanne, M. Heikinheimo, V. Keus, N. Koivunen and K. Tuominen, Direct and indirect probes of Goldstone dark matter, Phys. Rev. D 99 (2019) 075028.; DOI:10.1103/PhysRevD.99.075028
394.A. Abada et al., FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474.; DOI:10.1140/epjc/s10052-019-6904-3
395.V. Brdar and R. S. L. Hansen, IceCube Flavor Ratios with Identified Astrophysical Sources: Towards Improving New Physics Testability, JCAP 02 (2019) 023.; DOI:10.1088/1475-7516/2019/02/023
396.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, Low-scale leptogenesis assisted by a real scalar singlet, JCAP 03 (2019) 037.; DOI:10.1088/1475-7516/2019/03/037
397.J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-Standard Neutrino Interactions and Neutral Gauge Bosons, SciPost Phys. 6 (2019) 038.; DOI:10.21468/SciPostPhys.6.3.038
398.A. Trautner, Systematic construction of basis invariants in the 2HDM, JHEP 05 (2019) 208.; DOI:10.1007/JHEP05(2019)208
399.E. Aprile et al., First results on the scalar WIMP-pion coupling, using the XENON1T experiment, Phys. Rev. Lett. 122 (2019) 071301.; DOI:10.1103/PhysRevLett.122.071301
400.P. S. Bhupal Dev, R. N. Mohapatra, W. Rodejohann and X.-J. Xu, Vacuum structure of the left-right symmetric model, JHEP 02 (2019) 154.; DOI:10.1007/JHEP02(2019)154
401.M. Lucente, A. Abada, G. Arcadi, V. Domcke, M. Drewes and J. Klaric, Freeze-in leptogenesis with 3 right-handed neutrinos, PoS ICHEP2018 (2019) 306.; DOI:10.5281/zenodo.1289773
402.J. Kubo, M. Lindner, K. Schmitz and M. Yamada, Planck mass and inflation as consequences of dynamically broken scale invariance, Phys. Rev. D 100 (2019) 015037.; DOI:10.1103/PhysRevD.100.015037
403.G. Arcadi, J. Heeck, F. Heizmann, S. Mertens, F. S. Queiroz, W. Rodejohann, M. Slezák and K. Valerius, Tritium beta decay with additional emission of new light bosons, JHEP 01 (2019) 206.; DOI:10.1007/JHEP01(2019)206
404.R. Carr et al., Neutrino-based tools for nuclear verification and diplomacy in North Korea (2018).; DOI:10.1080/08929882.2019.1603007
405.S. Biondini and S. Vogl, Coloured coannihilations: Dark matter phenomenology meets non-relativistic EFTs, JHEP 02 (2019) 016.; DOI:10.1007/JHEP02(2019)016
406.I. P. Ivanov, C. C. Nishi, J. P. Silva and A. Trautner, Basis-invariant conditions for \(CP\) symmetry of order four, Phys. Rev. D 99 (2019) 015039.; DOI:10.1103/PhysRevD.99.015039
407.A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, Low-scale leptogenesis with three heavy neutrinos, JHEP 01 (2019) 164.; DOI:10.1007/JHEP01(2019)164
408.V. Brdar, A. J. Helmboldt and J. Kubo, Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales, JCAP 02 (2019) 021.; DOI:10.1088/1475-7516/2019/02/021
409.V. Brdar, W. Rodejohann and X.-J. Xu, Producing a new Fermion in Coherent Elastic Neutrino-Nucleus Scattering: from Neutrino Mass to Dark Matter, JHEP 12 (2018) 024.; DOI:10.1007/JHEP12(2018)024
410.I. Bischer and W. Rodejohann, General Neutrino Interactions at the DUNE Near Detector, Phys. Rev. D 99 (2019) 036006.; DOI:10.1103/PhysRevD.99.036006
411.V. Brdar and A. Y. Smirnov, Low Scale Left-Right Symmetry and Naturally Small Neutrino Mass, JHEP 02 (2019) 045.; DOI:10.1007/JHEP02(2019)045
412.A. Ibarra, E. Molinaro and S. Vogl, Potential for probing three-body decays of Long-Lived Particles with MATHUSLA, Phys. Lett. B 789 (2019) 127–131.; DOI:10.1016/j.physletb.2018.12.015
413.F. Goertz, Composite Higgs theory, PoS ALPS2018 (2018) 012.; DOI:10.22323/1.330.0012
414.T. Alanne, D. Buarque Franzosi, M. T. Frandsen and M. Rosenlyst, Dark matter in (partially) composite Higgs models, JHEP 12 (2018) 088.; DOI:10.1007/JHEP12(2018)088
415.T. Alanne and S. Blasi, Abelian gauge-Yukawa \(\beta\)-functions at large \(N_f\), Phys. Rev. D 98 (2018) 116004.; DOI:10.1103/PhysRevD.98.116004
416.J. Kubo and M. Yamada, Scale and confinement phase transitions in scale invariant \(SU(N)\) scalar gauge theory, JHEP 10 (2018) 003.; DOI:10.1007/JHEP10(2018)003
417.S. Ohmer, Spontaneous CP Violation and the Strong CP Problem in Left-Right Symmetric Theories, Phys. Rev. D 99 (2019) 115031.; DOI:10.1103/PhysRevD.99.115031
418.V. Brdar, Y. Emonds, A. J. Helmboldt and M. Lindner, Conformal Realization of the Neutrino Option, Phys. Rev. D 99 (2019) 055014.; DOI:10.1103/PhysRevD.99.055014
419.T. Alanne, S. Blasi and F. Goertz, Common source for scalars: Flavored axion-Higgs unification, Phys. Rev. D 99 (2019) 015028.; DOI:10.1103/PhysRevD.99.015028
420.I. Bischer, W. Rodejohann and X.-J. Xu, Loop-induced Neutrino Non-Standard Interactions, JHEP 10 (2018) 096.; DOI:10.1007/JHEP10(2018)096
421.E. Akhmedov, G. Arcadi, M. Lindner and S. Vogl, Coherent scattering and macroscopic coherence: Implications for neutrino, dark matter and axion detection, JHEP 10 (2018) 045.; DOI:10.1007/JHEP10(2018)045
422.S. Baumholzer, V. Brdar and P. Schwaller, The New \(\nu\)MSM (\(\nu\nu\)MSM): Radiative Neutrino Masses, keV-Scale Dark Matter and Viable Leptogenesis with sub-TeV New Physics, JHEP 08 (2018) 067.; DOI:10.1007/JHEP08(2018)067
423.T. Alanne and S. Blasi, The \(\beta\)-function for Yukawa theory at large \(N_f\), JHEP 08 (2018) 081.; DOI:10.1007/JHEP08(2018)081
424.K. Schmitz and T. T. Yanagida, Axion Isocurvature Perturbations in Low-Scale Models of Hybrid Inflation, Phys. Rev. D 98 (2018) 075003.; DOI:10.1103/PhysRevD.98.075003
425.H. Almazán et al., Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data, Phys. Rev. Lett. 121 (2018) 161801.; DOI:10.1103/PhysRevLett.121.161801
426.E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302.; DOI:10.1103/PhysRevLett.121.111302
427.F. Mackenroth, N. Kumar, N. Neitz and C. H. Keitel, Nonlinear Compton scattering of an ultraintense laser pulse in a plasma, Phys. Rev. E 99 (2019) 033205.; DOI:10.1103/PhysRevE.99.033205
428.T. Hugle, M. Platscher and K. Schmitz, Low-Scale Leptogenesis in the Scotogenic Neutrino Mass Model, Phys. Rev. D 98 (2018) 023020.; DOI:10.1103/PhysRevD.98.023020
429.N. Allemandou et al., The STEREO Experiment, JINST 13 (2018) P07009.; DOI:10.1088/1748-0221/13/07/P07009
430.G. Arcadi, 2HDM portal for Singlet-Doublet Dark Matter, Eur. Phys. J. C 78 (2018) 864.; DOI:10.1140/epjc/s10052-018-6327-6
431.M. Agostini et al., New Data Release of GERDA Phase II: Search for \(0\nu\beta\beta\) decay of \(^{76}\)Ge, KnE Energ. Phys. 3 (2018) 202–209.; DOI:10.18502/ken.v3i1.1745
432.M. Agostini et al., GERDA results and the future perspectives for the neutrinoless double beta decay search using \(^{76}\)Ge, Int. J. Mod. Phys. A 33 (2018) 1843004.; DOI:10.1142/S0217751X18430042
433.M. Lucente, A. Abada, G. Arcadi and V. Domcke, Leptogenesis, dark matter and neutrino masses, Prospects in Neutrino Physics (pp. 70–78).; Retrieved from https://arxiv.org/abs/1803.10826
434.M. Agostini et al., Improved Limit on Neutrinoless Double-\(\beta\) Decay of \(^{76}\)Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503.; DOI:10.1103/PhysRevLett.120.132503
435.J. M. Berryman, V. Brdar and P. Huber, Particle physics origin of the 5 MeV bump in the reactor antineutrino spectrum?, Phys. Rev. D 99 (2019) 055045.; DOI:10.1103/PhysRevD.99.055045
436.A. Y. Smirnov and X.-J. Xu, Neutrino mixing in SO(10) GUTs with a non-Abelian flavor symmetry in the hidden sector, Phys. Rev. D 97 (2018) 095030.; DOI:10.1103/PhysRevD.97.095030
437.G. Arcadi, T. Hugle and F. S. Queiroz, The Dark \(L_\mu - L_\tau\) Rises via Kinetic Mixing, Phys. Lett. B 784 (2018) 151–158.; DOI:10.1016/j.physletb.2018.07.028
438.M. Lindner, F. S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on Z\(^{′}\) and dark photon models, JHEP 05 (2018) 098.; DOI:10.1007/JHEP05(2018)098
439.H. de Kerret et al., Yields and production rates of cosmogenic \(^9\)Li and \(^8\)He measured with the Double Chooz near and far detectors, JHEP 11 (2018) 053.; DOI:10.1007/JHEP11(2018)053
440.Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066.; DOI:10.1007/JHEP05(2018)066
441.V. Brdar, M. Lindner and X.-J. Xu, Neutrino astronomy with supernova neutrinos, JCAP 04 (2018) 025.; DOI:10.1088/1475-7516/2018/04/025
442.R. S. L. Hansen and A. Y. Smirnov, Neutrino conversion in a neutrino flux: Towards an effective theory of collective oscillations, JCAP 04 (2018) 057.; DOI:10.1088/1475-7516/2018/04/057
443.T. Alanne, N. Bizot, G. Cacciapaglia and F. Sannino, Classification of NLO operators for composite Higgs models, Phys. Rev. D 97 (2018) 075028.; DOI:10.1103/PhysRevD.97.075028
444.M. Dutra, M. Lindner, S. Profumo, F. S. Queiroz, W. Rodejohann and C. Siqueira, MeV Dark Matter Complementarity and the Dark Photon Portal, JCAP 03 (2018) 037.; DOI:10.1088/1475-7516/2018/03/037
445.A. Y. Smirnov, Solar Neutrinos and Matter Effects, Adv. Ser. Direct. High Energy Phys. 28 (2018) 149–209.; DOI:10.1142/9789813226098_0004
446.V. Domcke, A. Abada, G. Arcadi and M. Lucente, Neutrino masses and leptogenesis from small lepton number violation, 53rd Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 285–290).
447.V. Domcke and K. Schmitz, Inflation from High-Scale Supersymmetry Breaking, Phys. Rev. D 97 (2018) 115025.; DOI:10.1103/PhysRevD.97.115025
448.N. Rupp, Radon background in liquid xenon detectors, JINST 13 (2018) C02001.; DOI:10.1088/1748-0221/13/02/C02001
449.T. Alanne and F. Goertz, Extended Dark Matter EFT, Eur. Phys. J. C 80 (2020) 446.; DOI:10.1140/epjc/s10052-020-7999-2
450.K. Max, M. Platscher and J. Smirnov, Decoherence of Gravitational Wave Oscillations in Bigravity, Phys. Rev. D 97 (2018) 064009.; DOI:10.1103/PhysRevD.97.064009
451.M. Bauer, M. Klassen and V. Tenorth, Universal properties of pseudoscalar mediators in dark matter extensions of 2HDMs, JHEP 07 (2018) 107.; DOI:10.1007/JHEP07(2018)107
452.A. Carmona and F. Goertz, Recent \(B\) physics anomalies: a first hint for compositeness?, Eur. Phys. J. C 78 (2018) 979.; DOI:10.1140/epjc/s10052-018-6437-1
453.G. Arcadi, C. P. Ferreira, F. Goertz, M. M. Guzzo, F. S. Queiroz and A. C. O. Santos, Lepton Flavor Violation Induced by Dark Matter, Phys. Rev. D 97 (2018) 075022.; DOI:10.1103/PhysRevD.97.075022
454.T. Alanne, D. Buarque Franzosi, M. T. Frandsen, M. L. A. Kristensen, A. Meroni and M. Rosenlyst, Partially composite Higgs models: Phenomenology and RG analysis, JHEP 01 (2018) 051.; DOI:10.1007/JHEP01(2018)051
455.G. Benato et al., Radon mitigation during the installation of the CUORE 0\(\nu\beta\beta\) decay detector, JINST 13 (2018) P01010.; DOI:10.1088/1748-0221/13/01/P01010
456.O. Yu. Smirnov et al., Borexino: Recent results and future plans, Phys. Part. Nucl. 48 (2017) 1026–1029.; DOI:10.1134/S1063779617060533
457.S. Profumo, F. S. Queiroz, J. Silk and C. Siqueira, Searching for Secluded Dark Matter with H.E.S.S., Fermi-LAT, and Planck, JCAP 03 (2018) 010.; DOI:10.1088/1475-7516/2018/03/010
458.F. Goertz, Indirect estimation of masses beyond collider reach in EFT, JHEP 05 (2019) 090.; DOI:10.1007/JHEP05(2019)090
459.G. Arcadi, M. Lindner, F. S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar Mediators: A WIMP model at the Neutrino Floor, JCAP 03 (2018) 042.; DOI:10.1088/1475-7516/2018/03/042
460.M. Agostini et al., Upgrade for Phase II of the Gerda experiment, Eur. Phys. J. C 78 (2018) 388.; DOI:10.1140/epjc/s10052-018-5812-2
461.M. Tavani et al., Science with e-ASTROGAM: A space mission for MeVGeV gamma-ray astrophysics, (A. De Angelis, V. Tatischeff, I. A. Grenier, J. McEnery, & M. Mallamaci, Eds.)JHEAp 19 (2018) 1–106.; DOI:10.1016/j.jheap.2018.07.001
462.A. Carvalho, F. Goertz, K. Mimasu, M. Gouzevitch and A. Aggarwal, On the reinterpretation of non-resonant searches for Higgs boson pairs, JHEP 02 (2021) 049.; DOI:10.1007/JHEP02(2021)049
463.F. S. Queiroz, WIMP Theory Review, (P. Checchia et al., Eds.)PoS EPS-HEP2017 (2017) 080.; DOI:10.22323/1.314.0080
464.M. Agostini et al., Searching for neutrinoless double beta decay with GERDA, (K. Clark, C. Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser. 1342 (2020) 012005.; DOI:10.1088/1742-6596/1342/1/012005
465.D. Barducci and A. J. Helmboldt, Quark flavour-violating Higgs decays at the ILC, JHEP 12 (2017) 105.; DOI:10.1007/JHEP12(2017)105
466.P. V. Dong, D. T. Huong, F. S. Queiroz, J. W. F. Valle and C. A. Vaquera-Araujo, The Dark Side of Flipped Trinification, JHEP 04 (2018) 143.; DOI:10.1007/JHEP04(2018)143
467.J. Haser, Light sterile neutrino searches, 29th Rencontres de Blois on Particle Physics and Cosmology.; Retrieved from https://arxiv.org/abs/1710.06330
468.M. Agostini et al., Search for Neutrinoless Double Beta Decay with GERDA Phase II, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 1894 (2017) 020012.; DOI:10.1063/1.5007637
469.T. Abrahão et al., Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz, JINST 13 (2018) P01031.; DOI:10.1088/1748-0221/13/01/P01031
470.J. Haser, Search for eV Sterile Neutrinos - The Stereo Experiment, (P. Checchia et al., Eds.)PoS EPS-HEP2017 (2017) 113.; DOI:10.22323/1.314.0113
471.J. Heeck and W. Rodejohann, Lepton flavor violation with displaced vertices, Phys. Lett. B 776 (2018) 385–390.; DOI:10.1016/j.physletb.2017.11.067
472.V. Brdar, J. Kopp, J. Liu and X.-P. Wang, X-Ray Lines from Dark Matter Annihilation at the keV Scale, Phys. Rev. Lett. 120 (2018) 061301.; DOI:10.1103/PhysRevLett.120.061301
473.N. Fornengo, A. Masiero, F. S. Queiroz and C. E. Yaguna, On the Role of Neutrinos Telescopes in the Search for Dark Matter Annihilations in the Sun, JCAP 12 (2017) 012.; DOI:10.1088/1475-7516/2017/12/012
474.M. Lindner, W. Rodejohann and X.-J. Xu, Neutrino Parameters from Reactor and Accelerator Neutrino Experiments, Phys. Rev. D 97 (2018) 075024.; DOI:10.1103/PhysRevD.97.075024
475.T. Alanne, D. Buarque Franzosi and M. T. Frandsen, A partially composite Goldstone Higgs, Phys. Rev. D 96 (2017) 095012.; DOI:10.1103/PhysRevD.96.095012
476.A. N. Khan and D. W. McKay, Probing New Physics in Low Energy Solar Neutrino Oscillation Data.; Retrieved from https://arxiv.org/abs/1709.09961
477.E. Aprile et al., Signal Yields of keV Electronic Recoils and Their Discrimination from Nuclear Recoils in Liquid Xenon, Phys. Rev. D 97 (2018) 092007.; DOI:10.1103/PhysRevD.97.092007
478.B. S. Acharya et al., Science with the Cherenkov Telescope Array. WSP.; DOI:10.1142/10986
479.M. Agostini et al., First results from GERDA Phase II, J. Phys. Conf. Ser. 888 (2017) 012030.; DOI:10.1088/1742-6596/888/1/012030
480.C. Buck, M. Lindner and C. Roca, Scintillation light production, propagation and detection in the Stereo reactor antineutrino experiment, J. Phys. Conf. Ser. 888 (2017) 012187.; DOI:10.1088/1742-6596/888/1/012187
481.A. Vishneva et al., Test of the electron stability with the Borexino detector, J. Phys. Conf. Ser. 888 (2017) 012193.; DOI:10.1088/1742-6596/888/1/012193
482.M. Agostini et al., Active background suppression with the liquid argon scintillation veto of GERDA Phase II, J. Phys. Conf. Ser. 888 (2017) 012238.; DOI:10.1088/1742-6596/888/1/012238
483.M. Pallavicini et al., Solar neutrino detectors as sterile neutrino hunters, J. Phys. Conf. Ser. 888 (2017) 012018.; DOI:10.1088/1742-6596/888/1/012018
484.C. Buck, M. Lindner and C. Roca, Scintillation light production, propagation and detection in the Stereo reactor antineutrino experiment, J. Phys. Conf. Ser. 888 (2017) 012101.; DOI:10.1088/1742-6596/888/1/012101
485.M. Agostini et al., Study of the GERDA Phase II background spectrum, J. Phys. Conf. Ser. 888 (2017) 012106.; DOI:10.1088/1742-6596/888/1/012106
486.H. Almazan and D. Navas-Nicolás, Neutrino detection systematics in the two detector phase of the Double Chooz experiment, J. Phys. Conf. Ser. 888 (2017) 012135.; DOI:10.1088/1742-6596/888/1/012135
487.A. Caminata et al., Improvements in the simulation code of the SOX experiment, J. Phys. Conf. Ser. 888 (2017) 012145.; DOI:10.1088/1742-6596/888/1/012145
488.A. N. Khan, \(\sin ^{2}\theta _{W}\) Estimate and Neutrino Electromagnetic Properties from Low-Energy Solar Data, J. Phys. G 46 (2019) 035005.; DOI:10.1088/1361-6471/ab0057
489.E. Aprile et al., Search for Bosonic Super-WIMP Interactions with the XENON100 Experiment, Phys. Rev. D 96 (2017) 122002.; DOI:10.1103/PhysRevD.96.122002
490.N. Abgrall et al., The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 1894 (2017) 020027.; DOI:10.1063/1.5007652
491.A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small lepton number violation?, JCAP 12 (2017) 024.; DOI:10.1088/1475-7516/2017/12/024
492.E. Aprile et al., The XENON1T Dark Matter Experiment, Eur. Phys. J. C 77 (2017) 881.; DOI:10.1140/epjc/s10052-017-5326-3
493.E. Aprile et al., Intrinsic backgrounds from Rn and Kr in the XENON100 experiment, Eur. Phys. J. C 78 (2018) 132.; DOI:10.1140/epjc/s10052-018-5565-y
494.G. Arcadi, M. D. Campos, M. Lindner, A. Masiero and F. S. Queiroz, Dark sequential Z’ portal: Collider and direct detection experiments, Phys. Rev. D 97 (2018) 043009.; DOI:10.1103/PhysRevD.97.043009
495.A. Lubashevskiy et al., Mitigation of\(^{42}\) Ar/\(^{42}\) K background for the GERDA Phase II experiment, Eur. Phys. J. C 78 (2018) 15.; DOI:10.1140/epjc/s10052-017-5499-9
496.D. Jiménez, K. Kamada, K. Schmitz and X.-J. Xu, Baryon asymmetry and gravitational waves from pseudoscalar inflation, JCAP 12 (2017) 011.; DOI:10.1088/1475-7516/2017/12/011
497.S.-F. Ge, W. Rodejohann and K. Zuber, Half-life Expectations for Neutrinoless Double Beta Decay in Standard and Non-Standard Scenarios, Phys. Rev. D 96 (2017) 055019.; DOI:10.1103/PhysRevD.96.055019
498.K. Harigaya and K. Schmitz, Unified Model of Chaotic Inflation and Dynamical Supersymmetry Breaking, Phys. Lett. B 773 (2017) 320–324.; DOI:10.1016/j.physletb.2017.08.050
499.B. J. Kavanagh, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Prospects for determining the particle/antiparticle nature of WIMP dark matter with direct detection experiments, JHEP 10 (2017) 059.; DOI:10.1007/JHEP10(2017)059
500.J. G. Ferreira, C. A. de S. Pires, P. S. Rodrigues da Silva and C. Siqueira, On the Higgs-like boson in the Minimal Supersymmetric 3-3-1 Model, Eur. Phys. J. C 78 (2018) 225.; DOI:10.1140/epjc/s10052-018-5705-4
501.G. Arcadi, P. Ghosh, Y. Mambrini, M. Pierre and F. S. Queiroz, \(Z'\) portal to Chern-Simons Dark Matter, JCAP 11 (2017) 020.; DOI:10.1088/1475-7516/2017/11/020
502.M. Lindner, B. Radovčić and J. Welter, Revisiting Large Neutrino Magnetic Moments, JHEP 07 (2017) 139.; DOI:10.1007/JHEP07(2017)139
503.R. S. L. Hansen and S. Vogl, Thermalizing sterile neutrino dark matter, Phys. Rev. Lett. 119 (2017) 251305.; DOI:10.1103/PhysRevLett.119.251305
504.G. Arcadi, F. S. Queiroz and C. Siqueira, The Semi-Hooperon: Gamma-ray and anti-proton excesses in the Galactic Center, Phys. Lett. B 775 (2017) 196–205.; DOI:10.1016/j.physletb.2017.10.065
505.A. Pierce, N. R. Shah and S. Vogl, Stop Co-Annihilation in the Minimal Supersymmetric Standard Model Revisited, Phys. Rev. D 97 (2018) 023008.; DOI:10.1103/PhysRevD.97.023008
506.C. Balázs, J. Conrad, B. Farmer, T. Jacques, T. Li, M. Meyer, F. S. Queiroz and M. A. Sánchez-Conde, Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments, Phys. Rev. D 96 (2017) 083002.; DOI:10.1103/PhysRevD.96.083002
507.M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium, Phys. Rev. D 96 (2017) 103521.; DOI:10.1103/PhysRevD.96.103521
508.E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301.; DOI:10.1103/PhysRevLett.119.181301
509.M. D. Campos, D. Cogollo, M. Lindner, T. Melo, F. S. Queiroz and W. Rodejohann, Neutrino Masses and Absence of Flavor Changing Interactions in the 2HDM from Gauge Principles, JHEP 08 (2017) 092.; DOI:10.1007/JHEP08(2017)092
510.E. Aprile et al., Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector, Phys. Rev. D 96 (2017) 042004.; DOI:10.1103/PhysRevD.96.042004
511.E. Aprile et al., Material radioassay and selection for the XENON1T dark matter experiment, Eur. Phys. J. C 77 (2017) 890.; DOI:10.1140/epjc/s10052-017-5329-0
512.W. Rodejohann and X.-J. Xu, Trimaximal \(\mu\)-\(\tau\) reflection symmetry, Phys. Rev. D 96 (2017) 055039.; DOI:10.1103/PhysRevD.96.055039
513.E. Aprile et al., Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100, Phys. Rev. D 96 (2017) 022008.; DOI:10.1103/PhysRevD.96.022008
514.C. Buck, Sterile Neutrinos: Reactor Experiments, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08885
515.S.-F. Ge, Measuring the Leptonic Dirac CP Phase with TNT2K, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08518
516.W. Maneschg, Present status of neutrinoless double beta decay searches, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08537
517.E. Aprile et al., Search for magnetic inelastic dark matter with XENON100, JCAP 10 (2017) 039.; DOI:10.1088/1475-7516/2017/10/039
518.G. Arcadi, M. Lindner, Y. Mambrini, M. Pierre and F. S. Queiroz, GUT Models at Current and Future Hadron Colliders and Implications to Dark Matter Searches, Phys. Lett. B 771 (2017) 508–514.; DOI:10.1016/j.physletb.2017.05.023
519.H. H. Patel and B. Radovcic, On the Decoupling Theorem for Vacuum Metastability, Phys. Lett. B 773 (2017) 527–533.; DOI:10.1016/j.physletb.2017.08.075
520.M. Lindner and S. Ohmer, Emerging Internal Symmetries from Effective Spacetimes, Phys. Lett. B 773 (2017) 231–235.; DOI:10.1016/j.physletb.2017.08.026
521.E. Akhmedov, Do non-relativistic neutrinos oscillate?, JHEP 07 (2017) 070.; DOI:10.1007/JHEP07(2017)070
522.K. Max, M. Platscher and J. Smirnov, Gravitational Wave Oscillations in Bigravity, Phys. Rev. Lett. 119 (2017) 111101.; DOI:10.1103/PhysRevLett.119.111101
523.G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and F. S. Queiroz, The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203.; DOI:10.1140/epjc/s10052-018-5662-y
524.M. Agostini et al., First results of GERDA Phase II and consistency with background models, (A. Galper, A. Petrukhin, A. Taranenko, I. Selyushenkov, M. Skorokhvatov, S. Rubin, V. Dmitrnko, et al., Eds.)J. Phys. Conf. Ser. 798 (2017) 012106.; DOI:10.1088/1742-6596/798/1/012106
525.D. Jeschke et al., Recent Results from Borexino, (A. Galper, A. Petrukhin, A. Taranenko, I. Selyushenkov, M. Skorokhvatov, S. Rubin, V. Dmitrnko, et al., Eds.)J. Phys. Conf. Ser. 798 (2017) 012114.; DOI:10.1088/1742-6596/798/1/012114
526.P. S. B. Dev, C. M. Vila and W. Rodejohann, Naturalness in testable type II seesaw scenarios, Nucl. Phys. B 921 (2017) 436–453.; DOI:10.1016/j.nuclphysb.2017.06.007
527.M. Agostini et al., Background-free search for neutrinoless double-\(\beta\) decay of \(^{76}\)Ge with GERDA, Nature 544 (2017) 47.; DOI:10.1038/nature21717
528.E. Akhmedov, J. Kopp and M. Lindner, Collective neutrino oscillations and neutrino wave packets, JCAP 09 (2017) 017.; DOI:10.1088/1475-7516/2017/09/017
529.E. Aprile et al., Online\(^{222}\) Rn removal by cryogenic distillation in the XENON100 experiment, Eur. Phys. J. C 77 (2017) 358.; DOI:10.1140/epjc/s10052-017-4902-x
530.V. D’Andrea et al., First Results of Gerda Phase II, PoS NOW2016 (2017) 098.; DOI:10.22323/1.283.0098
531.M. D. Campos, F. S. Queiroz, C. E. Yaguna and C. Weniger, Search for right-handed neutrinos from dark matter annihilation with gamma-rays, JCAP 07 (2017) 016.; DOI:10.1088/1475-7516/2017/07/016
532.W. Rodejohann, X.-J. Xu and C. E. Yaguna, Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions, JHEP 05 (2017) 024.; DOI:10.1007/JHEP05(2017)024
533.P. Pasquini, S.-F. Ge, M. A. Tórtola and J. W. F. Valle, Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing, PoS NOW2016 (2017) 026.; DOI:10.22323/1.283.0026
534.S.-F. Ge, M. Lindner and W. Rodejohann, Atmospheric Trident Production for Probing New Physics, Phys. Lett. B 772 (2017) 164–168.; DOI:10.1016/j.physletb.2017.06.020
535.V. Domcke and K. Schmitz, Unified model of D-term inflation, Phys. Rev. D 95 (2017) 075020.; DOI:10.1103/PhysRevD.95.075020
536.E. Aprile et al., Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data, Phys. Rev. Lett. 118 (2017) 101101.; DOI:10.1103/PhysRevLett.118.101101
537.S. Marcocci et al., Real-time detection of solar neutrinos with Borexino, Nuovo Cim. C 40 (2017) 58.; DOI:10.1393/ncc/i2017-17058-9
538.G. Arcadi, Impact of next future Direct Detection experiments on Dark Portals and beyond, (A. Morselli, A. Capone, & G. Rodriguez Fernandez, Eds.)EPJ Web Conf. 136 (2017) 05003.; DOI:10.1051/epjconf/201713605003
539.T. Rink, K. Schmitz and T. T. Yanagida, Minimal Seesaw Model with a Discrete Heavy-Neutrino Exchange Symmetry (2016).; Retrieved from https://arxiv.org/abs/1612.08878
540.P. S. B. Dev, Testing Neutrino Mass Models at the LHC and beyond, PoS ICHEP2016 (2016) 487.; DOI:10.22323/1.282.0487
541.A. Alves, G. Arcadi, Y. Mambrini, S. Profumo and F. S. Queiroz, Augury of darkness: the low-mass dark Z\(^{′}\) portal, JHEP 04 (2017) 164.; DOI:10.1007/JHEP04(2017)164
542.P. Fileviez Perez and S. Ohmer, Unification and Local Baryon Number, Phys. Lett. B 768 (2017) 86–91.; DOI:10.1016/j.physletb.2017.02.049
543.M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions, JHEP 03 (2017) 097.; DOI:10.1007/JHEP03(2017)097
544.E. Aprile et al., Removing krypton from xenon by cryogenic distillation to the ppq level, Eur. Phys. J. C 77 (2017) 275.; DOI:10.1140/epjc/s10052-017-4757-1
545.A. Alves, G. Arcadi, P. V. Dong, L. Duarte, F. S. Queiroz and J. W. F. Valle, Matter-parity as a residual gauge symmetry: Probing a theory of cosmological dark matter, Phys. Lett. B 772 (2017) 825–831.; DOI:10.1016/j.physletb.2017.07.056
546.H. H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66–70.; DOI:10.1016/j.cpc.2017.04.015
547.R. S. L. Lundkvist, M. Archidiacono, S. Hannestad and T. Tram, How to make the short baseline sterile neutrino compatible with cosmology, PoS ICHEP2016 (2016) 478.; DOI:10.22323/1.282.0478
548.A. G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Probing the scotogenic FIMP at the LHC, JHEP 01 (2017) 100.; DOI:10.1007/JHEP01(2017)100
549.G. Arcadi, C. Gross, O. Lebedev, S. Pokorski and T. Toma, Evading Direct Dark Matter Detection in Higgs Portal Models, Phys. Lett. B 769 (2017) 129–133.; DOI:10.1016/j.physletb.2017.03.044
550.M. Platscher and J. Smirnov, Degravitation of the Cosmological Constant in Bigravity, JCAP 03 (2017) 051.; DOI:10.1088/1475-7516/2017/03/051
551.T. Abrahão et al., Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors, JCAP 02 (2017) 017.; DOI:10.1088/1475-7516/2017/02/017
552.A. Angelescu and G. Arcadi, Dark Matter Phenomenology of SM and Enlarged Higgs Sectors Extended with Vector Like Leptons, Eur. Phys. J. C 77 (2017) 456.; DOI:10.1140/epjc/s10052-017-5015-2
553.M. Agostini et al., Limits on uranium and thorium bulk content in GERDA Phase I detectors, Astropart. Phys. 91 (2017) 15–21.; DOI:10.1016/j.astropartphys.2017.03.003
554.T. Rink and K. Schmitz, Perturbed Yukawa Textures in the Minimal Seesaw Model, JHEP 03 (2017) 158.; DOI:10.1007/JHEP03(2017)158
555.M. Agostini et al., Search for Neutrinoless Double Beta Decay with the GERDA experiment: Phase II, PoS ICHEP2016 (2016) 493.; DOI:10.22323/1.282.0493
556.C. Buck, The Double Chooz experiment, PoS NOW2016 (2016) 007.; DOI:10.22323/1.283.0007
557.S. Bruenner, D. Cichon, S. Lindemann, T. Marrodán Undagoitia and H. Simgen, Radon depletion in xenon boil-off gas, Eur. Phys. J. C 77 (2017) 143.; DOI:10.1140/epjc/s10052-017-4676-1
558.G. Bambhaniya, P. S. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness, Vacuum Stability and Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D 95 (2017) 095016.; DOI:10.1103/PhysRevD.95.095016
559.E. Aprile et al., Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220, Phys. Rev. D 95 (2017) 072008.; DOI:10.1103/PhysRevD.95.072008
560.G. Arcadi, C. Gross, O. Lebedev, Y. Mambrini, S. Pokorski and T. Toma, Multicomponent Dark Matter from Gauge Symmetry, JHEP 12 (2016) 081.; DOI:10.1007/JHEP12(2016)081
561.C. E. Yaguna, Isospin-violating dark matter in the light of recent data, Phys. Rev. D 95 (2017) 055015.; DOI:10.1103/PhysRevD.95.055015
562.F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Is the dark matter particle its own antiparticle?, Phys. Rev. D 95 (2017) 095010.; DOI:10.1103/PhysRevD.95.095010
563.M. Lindner, M. Platscher and F. S. Queiroz, A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1–82.; DOI:10.1016/j.physrep.2017.12.001
564.S.-F. Ge, H.-J. He and R.-Q. Xiao, Testing Higgs coupling precision and new physics scales at lepton colliders, (L. R. Flores Castillo & K. Prokofiev, Eds.)Int. J. Mod. Phys. A 31 (2016) 1644004.; DOI:10.1142/S0217751X16440048
565.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in leftright models, Mod. Phys. Lett. A 32 (2017) 1740007.; DOI:10.1142/S0217732317400077
566.N. Priel, L. Rauch, H. Landsman, A. Manfredini and R. Budnik, A model independent safeguard against background mismodeling for statistical inference, JCAP 05 (2017) 013.; DOI:10.1088/1475-7516/2017/05/013
567.R. S. L. Hansen and A. Yu. Smirnov, The Liouville equation for flavour evolution of neutrinos and neutrino wave packets, JCAP 12 (2016) 019.; DOI:10.1088/1475-7516/2016/12/019
568.A. J. Helmboldt and M. Lindner, Prospects for three-body Higgs boson decays into extra light scalars, Phys. Rev. D 95 (2017) 055008.; DOI:10.1103/PhysRevD.95.055008
569.E. Aprile et al., XENON100 Dark Matter Results from a Combination of 477 Live Days, Phys. Rev. D 94 (2016) 122001.; DOI:10.1103/PhysRevD.94.122001
570.P. S. B. Dev, M. Lindner and S. Ohmer, Gravitational waves as a new probe of BoseEinstein condensate Dark Matter, Phys. Lett. B 773 (2017) 219–224.; DOI:10.1016/j.physletb.2017.08.043
571.W. Altmannshofer, S. Gori, S. Profumo and F. S. Queiroz, Explaining dark matter and B decay anomalies with an \(L_\mu - L_\tau\) model, JHEP 12 (2016) 106.; DOI:10.1007/JHEP12(2016)106
572.E. Aprile et al., Search for two-neutrino double electron capture of \(^{124}\)Xe with XENON100, Phys. Rev. C 95 (2017) 024605.; DOI:10.1103/PhysRevC.95.024605
573.P. Barrow et al., Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector, JINST 12 (2017) P01024.; DOI:10.1088/1748-0221/12/01/P01024
574.M. Herranen, A. Hohenegger, A. Osland and A. Tranberg, Quantum corrections to inflation: the importance of RG-running and choosing the optimal RG-scale, Phys. Rev. D 95 (2017) 023525.; DOI:10.1103/PhysRevD.95.023525
575.F. S. Queiroz, C. Siqueira and J. W. F. Valle, Constraining Flavor Changing Interactions from LHC Run-2 Dilepton Bounds with Vector Mediators, Phys. Lett. B 763 (2016) 269–274.; DOI:10.1016/j.physletb.2016.10.057
576.P. S. Bhupal Dev, R. N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark matter, JHEP 11 (2016) 077.; DOI:10.1007/JHEP11(2016)077
577.F. Björkeroth, S. F. King, K. Schmitz and T. T. Yanagida, Leptogenesis after Chaotic Sneutrino Inflation and the Supersymmetry Breaking Scale, Nucl. Phys. B 916 (2017) 688–708.; DOI:10.1016/j.nuclphysb.2017.01.017
578.S.-F. Ge and M. Lindner, Extracting Majorana properties from strong bounds on neutrinoless double beta decay, Phys. Rev. D 95 (2017) 033003.; DOI:10.1103/PhysRevD.95.033003
579.C. Buck and M. Yeh, Metal-loaded organic scintillators for neutrino physics, J. Phys. G 43 (2016) 093001.; DOI:10.1088/0954-3899/43/9/093001
580.M. Lindner, M. Platscher, C. E. Yaguna and A. Merle, Fermionic WIMPs and vacuum stability in the scotogenic model, Phys. Rev. D 94 (2016) 115027.; DOI:10.1103/PhysRevD.94.115027
581.S.-F. Ge and A. Yu. Smirnov, Non-standard interactions and the CP phase measurements in neutrino oscillations at low energies, JHEP 10 (2016) 138.; DOI:10.1007/JHEP10(2016)138
582.W. Altmannshofer, C.-Y. Chen, P. S. Bhupal Dev and A. Soni, Lepton flavor violating Z’ explanation of the muon anomalous magnetic moment, Phys. Lett. B 762 (2016) 389–398.; DOI:10.1016/j.physletb.2016.09.046
583.M. Klasen, F. Lyonnet and F. S. Queiroz, NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the BL model, Eur. Phys. J. C 77 (2017) 348.; DOI:10.1140/epjc/s10052-017-4904-8
584.M. Agostini et al., Borexino’s search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts, Astropart. Phys. 86 (2017) 11–17.; DOI:10.1016/j.astropartphys.2016.10.004
585.S. Patra, W. Rodejohann and C. E. Yaguna, A new B \(-\) L model without right-handed neutrinos, JHEP 09 (2016) 076.; DOI:10.1007/JHEP09(2016)076
586.A. Caminata et al., Short distance neutrino oscillations with Borexino, (P. Piattelli, A. Capone, R. Coniglione, G. De Bonis, M. De Vincenzi, C. Distefano, A. Morselli, et al., Eds.)EPJ Web Conf. 121 (2016) 01002.; DOI:10.1051/epjconf/201612101002
587.S. Davini et al., New results of the Borexino experiment: pp solar neutrino detection, (M. Greco, Ed.)Nuovo Cim. C 38 (2016) 120.; DOI:10.1393/ncc/i2015-15120-4
588.P. Fileviez Perez, C. Murgui and S. Ohmer, Simple Left-Right Theory: Lepton Number Violation at the LHC, Phys. Rev. D 94 (2016) 051701.; DOI:10.1103/PhysRevD.94.051701
589.R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies (2016).; DOI:10.23731/CYRM-2017-003.255
590.F. S. Queiroz, Comment on “Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider”, Phys. Rev. D 93 (2016) 118701.; DOI:10.1103/PhysRevD.93.118701
591.R. Arnold et al., Measurement of the 2\(\nu\beta\beta\) decay half-life of \(^{150}\)Nd and a search for 0\(\nu\beta\beta\) decay processes with the full exposure from the NEMO-3 detector, Phys. Rev. D 94 (2016) 072003.; DOI:10.1103/PhysRevD.94.072003
592.M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M. Laveder and T. Tram, Pseudoscalarsterile neutrino interactions: reconciling the cosmos with neutrino oscillations, JCAP 08 (2016) 067.; DOI:10.1088/1475-7516/2016/08/067
593.E. Akhmedov, Atmospheric neutrinos, \(\nu_{e}-\nu_{s}\) oscillations and a novel neutrino evolution equation, JHEP 08 (2016) 153.; DOI:10.1007/JHEP08(2016)153
594.J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017.; DOI:10.1088/1475-7516/2016/11/017
595.A. Alves, D. A. Camargo, A. G. Dias, R. Longas, C. C. Nishi and F. S. Queiroz, Collider and Dark Matter Searches in the Inert Doublet Model from Peccei-Quinn Symmetry, JHEP 10 (2016) 015.; DOI:10.1007/JHEP10(2016)015
596.V. Wagner, Status of the GERDA Phase II upgrade, (B. Szczerbinska, R. Allahverdi, K. Babu, B. Balantekin, B. Dutta, T. Kamon, J. Kumar, et al., Eds.)AIP Conf. Proc. 1743 (2016) 060005.; DOI:10.1063/1.4953322
597.P. S. B. Dev, D. Kazanas, R. N. Mohapatra, V. L. Teplitz and Y. Zhang, Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube, JCAP 08 (2016) 034.; DOI:10.1088/1475-7516/2016/08/034
598.M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Secret neutrino interactions: a pseudoscalar model, J. Phys. Conf. Ser. 718 (2016) 032002.; DOI:10.1088/1742-6596/718/3/032002
599.J. Hakenmüller, W. Maneschg and G. Heusser, Simulation and verification of the cosmogenic background at the shallow depth GIOVE detector, J. Phys. Conf. Ser. 718 (2016) 042028.; DOI:10.1088/1742-6596/718/4/042028
600.J. Haser, Search for eV sterile neutrinos at a nuclear reactor the Stereo project, J. Phys. Conf. Ser. 718 (2016) 062023.; DOI:10.1088/1742-6596/718/6/062023
601.A. Ianni et al., High significance measurement of the terrestrial neutrino flux with the Borexino detector, J. Phys. Conf. Ser. 718 (2016) 062025.; DOI:10.1088/1742-6596/718/6/062025
602.G. Testera et al., Recent results from Borexino, J. Phys. Conf. Ser. 718 (2016) 062059.; DOI:10.1088/1742-6596/718/6/062059
603.M. Vivier et al., SOX: search for short baseline neutrino oscillations with Borexino, J. Phys. Conf. Ser. 718 (2016) 062066.; DOI:10.1088/1742-6596/718/6/062066
604.T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena (2016).; DOI:10.23731/CYRM-2017-003.441
605.S. Zavatarelli et al., Recent results from Borexino and the first real time measure of solar pp neutrinos, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1753–1759.; DOI:10.1016/j.nuclphysbps.2015.09.282
606.D. Bravo-Berguño et al., SOX: Short Distance Neutrino Oscillations with Borexino, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1760–1764.; DOI:10.1016/j.nuclphysbps.2015.09.283
607.J. Haser, Current status of the Double Chooz experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1915–1921.; DOI:10.1016/j.nuclphysbps.2015.09.309
608.A. P. Collin, J. I. Crespo-Anadón, J. Haser and G. Yang, Measurement of the detection systematic uncertainty in the Double Chooz experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 2645–2647.; DOI:10.1016/j.nuclphysbps.2015.10.017
609.M. Agostini et al., Search of Neutrinoless Double Beta Decay with the GERDA Experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1876–1882.; DOI:10.1016/j.nuclphysbps.2015.09.303
610.P. S. B. Dev, D. K. Ghosh and W. Rodejohann, R-parity Violating Supersymmetry at IceCube, Phys. Lett. B 762 (2016) 116–123.; DOI:10.1016/j.physletb.2016.08.066
611.F. S. Queiroz, Dark Matter Overview: Collider, Direct and Indirect Detection Searches, 51st Rencontres de Moriond on EW Interactions and Unified Theories (pp. 427–436). ARISF.; Retrieved from https://arxiv.org/abs/1605.08788
612.E. Aprile et al., Low-mass dark matter search using ionization signals in XENON100, Phys. Rev. D 94 (2016) 092001.; DOI:10.1103/PhysRevD.94.092001
613.M. D. Campos and W. Rodejohann, Testing keV sterile neutrino dark matter in future direct detection experiments, Phys. Rev. D 94 (2016) 095010.; DOI:10.1103/PhysRevD.94.095010
614.S.-F. Ge, P. Pasquini, M. Tortola and J. W. F. Valle, Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing, Phys. Rev. D 95 (2017) 033005.; DOI:10.1103/PhysRevD.95.033005
615.M. Agostini et al., Limit on the radiative neutrinoless double electron capture of\(^{36}\) Ar from GERDA Phase I, Eur. Phys. J. C 76 (2016) 652.; DOI:10.1140/epjc/s10052-016-4454-5
616.M. Lindner, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider, JHEP 06 (2016) 140.; DOI:10.1007/JHEP06(2016)140
617.M. Lindner, F. S. Queiroz and W. Rodejohann, Dilepton bounds on leftright symmetry at the LHC run II and neutrinoless double beta decay, Phys. Lett. B 762 (2016) 190–195.; DOI:10.1016/j.physletb.2016.08.068
618.Y. Abe et al., Characterization of the Spontaneous Light Emission of the PMTs used in the Double Chooz Experiment, JINST 11 (2016) P08001.; DOI:10.1088/1748-0221/11/08/P08001
619.M. Duerr, P. Fileviez Perez and J. Smirnov, New Forces and the 750 GeV Resonance (2016).; Retrieved from https://arxiv.org/abs/1604.05319
620.K. Schmitz and T. T. Yanagida, Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation, Phys. Rev. D 94 (2016) 074021.; DOI:10.1103/PhysRevD.94.074021
621.X. Chu and A. Yu. Smirnov, Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries, JHEP 05 (2016) 135.; DOI:10.1007/JHEP05(2016)135
622.P. Fileviez Perez and C. Murgui, Renormalizable SU(5) Unification, Phys. Rev. D 94 (2016) 075014.; DOI:10.1103/PhysRevD.94.075014
623.P. O. Ludl and W. Rodejohann, Direct Neutrino Mass Experiments and Exotic Charged Current Interactions, JHEP 06 (2016) 040.; DOI:10.1007/JHEP06(2016)040
624.A. Merle, M. Platscher, N. Rojas, J. W. F. Valle and A. Vicente, Consistency of WIMP Dark Matter as radiative neutrino mass messenger, JHEP 07 (2016) 013.; DOI:10.1007/JHEP07(2016)013
625.A. J. Helmboldt, P. Humbert, M. Lindner and J. Smirnov, Minimal conformal extensions of the Higgs sector, JHEP 07 (2017) 113.; DOI:10.1007/JHEP07(2017)113
626.S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e\(^{+}\) e\(^{−}\) Higgs factory, JHEP 10 (2016) 007.; DOI:10.1007/JHEP10(2016)007
627.S. Profumo, F. S. Queiroz and C. E. Yaguna, Extending Fermi-LAT and H.E.S.S. Limits on Gamma-ray Lines from Dark Matter Annihilation, Mon. Not. Roy. Astron. Soc. 461 (2016) 3976–3981.; DOI:10.1093/mnras/stw1600
628.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders, JHEP 05 (2016) 174.; DOI:10.1007/JHEP05(2016)174
629.F. S. Queiroz, C. E. Yaguna and C. Weniger, Gamma-ray Limits on Neutrino Lines, JCAP 05 (2016) 050.; DOI:10.1088/1475-7516/2016/05/050
630.P. S. B. Dev and A. Mazumdar, Probing the Scale of New Physics by Advanced LIGO/VIRGO, Phys. Rev. D 93 (2016) 104001.; DOI:10.1103/PhysRevD.93.104001
631.S. Chakraborty, R. Hansen, I. Izaguirre and G. Raffelt, Collective neutrino flavor conversion: Recent developments, Nucl. Phys. B 908 (2016) 366–381.; DOI:10.1016/j.nuclphysb.2016.02.012
632.A. Caminata et al., Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement, J. Phys. Conf. Ser. 675 (2016) 012012.; DOI:10.1088/1742-6596/675/1/012012
633.A. Vishneva et al., Test of the electric charge conservation law with Borexino detector, J. Phys. Conf. Ser. 675 (2016) 012025.; DOI:10.1088/1742-6596/675/1/012025
634.O. Y. Smirnov et al., Measurement of Solar pp-neutrino flux with Borexino: results and implications, J. Phys. Conf. Ser. 675 (2016) 012027.; DOI:10.1088/1742-6596/675/1/012027
635.R. Roncin et al., Geo-neutrino results with Borexino, J. Phys. Conf. Ser. 675 (2016) 012029.; DOI:10.1088/1742-6596/675/1/012029
636.M. Durero et al., The \(^{144}\)Ce source for SOX, J. Phys. Conf. Ser. 675 (2016) 012032.; DOI:10.1088/1742-6596/675/1/012032
637.L. Di Noto et al., The high precision measurement of the \(^{144}\)Ce activity in the SOX experiment, J. Phys. Conf. Ser. 675 (2016) 012035.; DOI:10.1088/1742-6596/675/1/012035
638.G. Ranucci et al., Overview and accomplishments of the Borexino experiment, J. Phys. Conf. Ser. 675 (2016) 012036.; DOI:10.1088/1742-6596/675/1/012036
639.S. Davini et al., CNO and pep solar neutrino measurements and perspectives in Borexino, J. Phys. Conf. Ser. 675 (2016) 012040.; DOI:10.1088/1742-6596/675/1/012040
640.S.-F. Ge, H.-J. He, J. Ren and Z.-Z. Xianyu, Realizing Dark Matter and Higgs Inflation in Light of LHC Diphoton Excess, Phys. Lett. B 757 (2016) 480–492.; DOI:10.1016/j.physletb.2016.04.008
641.R. F. Lang, A. Brown, E. Brown, M. Cervantes, S. Macmullin, D. Masson, J. Schreiner and H. Simgen, A \(^{220}\)Rn source for the calibration of low-background experiments, JINST 11 (2016) P04004.; DOI:10.1088/1748-0221/11/04/P04004
642.S. Chakraborty, R. S. Hansen, I. Izaguirre and G. Raffelt, Self-induced neutrino flavor conversion without flavor mixing, JCAP 03 (2016) 042.; DOI:10.1088/1475-7516/2016/03/042
643.E. Akhmedov and A. Mirizzi, Another look at synchronized neutrino oscillations, Nucl. Phys. B 908 (2016) 382–407.; DOI:10.1016/j.nuclphysb.2016.02.011
644.M. Agostini et al., Flux Modulations seen by the Muon Veto of the GERDA Experiment, Astropart. Phys. 84 (2016) 29–35.; DOI:10.1016/j.astropartphys.2016.08.002
645.P. S. B. Dev and A. Ibarra, Heavy Neutrinos at Future Colliders, (G. Corcella, S. De Curtis, S. Moretti, & G. Pancheri, Eds.)Frascati Phys. Ser. 61 (2016) 40.; Retrieved from https://arxiv.org/abs/1601.01658
646.A. Ibarra, C. E. Yaguna and O. Zapata, Direct Detection of Fermion Dark Matter in the Radiative Seesaw Model, Phys. Rev. D 93 (2016) 035012.; DOI:10.1103/PhysRevD.93.035012
647.A. Caminata et al., Search for sterile neutrinos with the SOX experiment, Nuovo Cim. C 39 (2016) 236.; DOI:10.1393/ncc/i2016-16236-7
648.S. Marcocci et al., Measurement of solar neutrino fluxes with Borexino, Magellan Workshop: Connecting Neutrino Physics and Astronomy (pp. 95–104).; DOI:10.3204/DESY-PROC-2016-05/30
649.A. Caminata et al., Monte Carlo simulations in neutrino physics: the example of the SOX experiment, Magellan Workshop: Connecting Neutrino Physics and Astronomy (pp. 105–112).; DOI:10.3204/DESY-PROC-2016-05/21
650.A. Caminata et al., The SOX experiment: understanding the detector behavior using calibration sources, Magellan Workshop: Connecting Neutrino Physics and Astronomy (pp. 175–180).; DOI:10.3204/DESY-PROC-2016-05/22
651.K. Altenmüller et al., The search for sterile neutrinos with SOX-Borexino, Phys. Atom. Nucl. 79 (2016) 1481–1484.; DOI:10.1134/S106377881610001X
652.J. Kersten and A. Yu. Smirnov, Decoherence and oscillations of supernova neutrinos, Eur. Phys. J. C 76 (2016) 339.; DOI:10.1140/epjc/s10052-016-4187-5
653.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Quark Seesaw, Vectorlike Fermions and Diphoton Excess, JHEP 02 (2016) 186.; DOI:10.1007/JHEP02(2016)186
654.E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027.; DOI:10.1088/1475-7516/2016/04/027
655.Y. Abe et al., Muon capture on light isotopes measured with the Double Chooz detector, Phys. Rev. C 93 (2016) 054608.; DOI:10.1103/PhysRevC.93.054608
656.B. C. Allanach, P. S. B. Dev, S. A. Renner and K. Sakurai, 750 GeV diphoton excess explained by a resonant sneutrino in R-parity violating supersymmetry, Phys. Rev. D 93 (2016) 115022.; DOI:10.1103/PhysRevD.93.115022
657.C. Buck, The Double Chooz experiment, PoS NEUTEL2015 (2015) 015.; DOI:10.22323/1.244.0015
658.P. S. B. Dev and D. Teresi, Asymmetric dark matter in the Sun and diphoton excess at the LHC, Phys. Rev. D 94 (2016) 025001.; DOI:10.1103/PhysRevD.94.025001
659.C. Buck, A. P. Collin, J. Haser and M. Lindner, Investigating the Spectral Anomaly with Different Reactor Antineutrino Experiments, Phys. Lett. B 765 (2017) 159–162.; DOI:10.1016/j.physletb.2016.11.062
660.A. Y. Smirnov, Neutrino properties, mass hierarchy, and CP-violation, PoS ICRC2015 (2016) 004.; DOI:10.22323/1.236.0004
661.G. Bambhaniya, P. S. B. Dev, S. Goswami and M. Mitra, The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric Model, JHEP 04 (2016) 046.; DOI:10.1007/JHEP04(2016)046
662.B. Allanach, F. S. Queiroz, A. Strumia and S. Sun, \(Z′\) models for the LHCb and \(g-2\) muon anomalies, Phys. Rev. D 93 (2016) 055045.; DOI:10.1103/PhysRevD.93.055045
663.M. Lindner, H. H. Patel and B. Radovčić, Electroweak Absolute, Meta-, and Thermal Stability in Neutrino Mass Models, Phys. Rev. D 93 (2016) 073005.; DOI:10.1103/PhysRevD.93.073005
664.F. S. Queiroz and C. E. Yaguna, The CTA aims at the Inert Doublet Model, JCAP 02 (2016) 038.; DOI:10.1088/1475-7516/2016/02/038
665.L. Miramonti et al., Geo-neutrinos from 1353 Days with the Borexino Detector, (F. Avignone & W. Haxton, Eds.)Phys. Procedia 61 (2015) 340–344.; DOI:10.1016/j.phpro.2014.12.073
666.O. Smirnov et al., Short Distance Neutrino Oscillations with BoreXino: SOX, (F. Avignone & W. Haxton, Eds.)Phys. Procedia 61 (2015) 511–517.; DOI:10.1016/j.phpro.2014.12.115
667.Y. Abe et al., Measurement of \(\theta\)\(_{13}\) in Double Chooz using neutron captures on hydrogen with novel background rejection techniques, JHEP 01 (2016) 163.; DOI:10.1007/JHEP01(2016)163
668.M. Duerr, P. Fileviez Pérez and J. Smirnov, Gamma-Ray Excess and the Minimal Dark Matter Model, JHEP 06 (2016) 008.; DOI:10.1007/JHEP06(2016)008
669.C. E. Yaguna, Singlet-Doublet Dirac Dark Matter, Phys. Rev. D 92 (2015) 115002.; DOI:10.1103/PhysRevD.92.115002
670.M. Lindner, W. Rodejohann and X.-J. Xu, Sterile neutrinos in the light of IceCube, JHEP 01 (2016) 124.; DOI:10.1007/JHEP01(2016)124
671.A. Esmaili and A. Yu. Smirnov, Discrete symmetries and mixing of Dirac neutrinos, Phys. Rev. D 92 (2015) 093012.; DOI:10.1103/PhysRevD.92.093012
672.M. G. Baring, T. Ghosh, F. S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D 93 (2016) 103009.; DOI:10.1103/PhysRevD.93.103009
673.T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G 43 (2016) 013001.; DOI:10.1088/0954-3899/43/1/013001
674.G. Boireau et al., Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector, Phys. Rev. D 93 (2016) 112006.; DOI:10.1103/PhysRevD.93.112006
675.W. Rodejohann and C. E. Yaguna, Scalar dark matter in the B\(-\)L model, JCAP 12 (2015) 032.; DOI:10.1088/1475-7516/2015/12/032
676.M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar Dark Matter: Direct vs. Indirect Detection, JHEP 06 (2016) 152.; DOI:10.1007/JHEP06(2016)152
677.W. Rodejohann and X.-J. Xu, A leftright symmetric flavor symmetry model, Eur. Phys. J. C 76 (2016) 138.; DOI:10.1140/epjc/s10052-016-3992-1
678.C. Buck, B. Gramlich and S. Wagner, Light propagation and fluorescence quantum yields in liquid scintillators, JINST 10 (2015) P09007.; DOI:10.1088/1748-0221/10/09/P09007
679.A. Yu. Smirnov, Neutrinos: Projecting onto the Future, PoS NEUTEL2015 (2015) 004.; DOI:10.22323/1.244.0004
680.M. Agostini et al., A test of electric charge conservation with Borexino, Phys. Rev. Lett. 115 (2015) 231802.; DOI:10.1103/PhysRevLett.115.231802
681.S.-F. Ge, M. Lindner and S. Patra, New physics effects on neutrinoless double beta decay from right-handed current, JHEP 10 (2015) 077.; DOI:10.1007/JHEP10(2015)077
682.Y. Mambrini, S. Profumo and F. S. Queiroz, Dark Matter and Global Symmetries, Phys. Lett. B 760 (2016) 807–815.; DOI:10.1016/j.physletb.2016.07.076
683.F. F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu and U. Sarkar, Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model, Phys. Rev. D 93 (2016) 013011.; DOI:10.1103/PhysRevD.93.013011
684.P. Mosteiro et al., Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Part. Phys. Proc. 265-266 (2015) 87–92.; DOI:10.1016/j.nuclphysbps.2015.06.023
685.W. Rodejohann and X.-J. Xu, Robustness of neutrino mass matrix predictions, Nucl. Phys. B 899 (2015) 463–475.; DOI:10.1016/j.nuclphysb.2015.08.014
686.M. Duerr, P. Fileviez Perez and J. Smirnov, Scalar Singlet Dark Matter and Gamma Lines, Phys. Lett. B 751 (2015) 119–122.; DOI:10.1016/j.physletb.2015.10.034
687.M. L. di Vacri, S. Nisi, C. Cattadori, J. Janicsko, A. Lubashevskiy, A. Smolnikov and M. Walter, ICP MS selection of radiopure materials for the GERDA experiment, (J. L. Orrell, Ed.)AIP Conf. Proc. 1672 (2015) 150001.; DOI:10.1063/1.4928024
688.M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma Lines from Majorana Dark Matter, Phys. Rev. D 93 (2016) 023509.; DOI:10.1103/PhysRevD.93.023509
689.E. Aprile et al., Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data, Science 349 (2015) 851–854.; DOI:10.1126/science.aab2069
690.E. Aprile et al., Search for Event Rate Modulation in XENON100 Electronic Recoil Data, Phys. Rev. Lett. 115 (2015) 091302.; DOI:10.1103/PhysRevLett.115.091302
691.S.-F. Ge and W. Rodejohann, JUNO and Neutrinoless Double Beta Decay, Phys. Rev. D 92 (2015) 093006.; DOI:10.1103/PhysRevD.92.093006
692.M. Maltoni and A. Yu. Smirnov, Solar neutrinos and neutrino physics, Eur. Phys. J. A 52 (2016) 87.; DOI:10.1140/epja/i2016-16087-0
693.G. Bellini et al., Neutrino measurements from the Sun and Earth: Results from Borexino, (E. Kearns, Ed.)AIP Conf. Proc. 1666 (2015) 090002.; DOI:10.1063/1.4915567
694.P. O. Ludl and A. Yu. Smirnov, Lepton mixing from the hidden sector, Phys. Rev. D 92 (2015) 073010.; DOI:10.1103/PhysRevD.92.073010
695.H.-J. He, W. Rodejohann and X.-J. Xu, Origin of Constrained Maximal CP Violation in Flavor Symmetry, Phys. Lett. B 751 (2015) 586–594.; DOI:10.1016/j.physletb.2015.10.066
696.G. Heusser, M. Weber, J. Hakenmüller, M. Laubenstein, M. Lindner, W. Maneschg, H. Simgen, D. Stolzenburg and H. Strecker, GIOVE - A new detector setup for high sensitivity germanium spectroscopy at shallow depth, Eur. Phys. J. C 75 (2015) 531.; DOI:10.1140/epjc/s10052-015-3704-2
697.O. Yu. Smirnov et al., Measurement of neutrino flux from the primary protonproton fusion process in the Sun with Borexino detector, Phys. Part. Nucl. 47 (2016) 995–1002.; DOI:10.1134/S106377961606023X
698.J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark Matter, Phys. Rev. Lett. 115 (2015) 121804.; DOI:10.1103/PhysRevLett.115.121804
699.A. J. Long, H. H. Patel and M. Trodden, Electroweak vacuum angle at finite temperature and implications for baryogenesis, Phys. Rev. D 92 (2015) 043513.; DOI:10.1103/PhysRevD.92.043513
700.H. Päs and W. Rodejohann, Neutrinoless Double Beta Decay, New J. Phys. 17 (2015) 115010.; DOI:10.1088/1367-2630/17/11/115010
701.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dirac-fermionic dark matter in U(1)\(_{X}\) models, JHEP 10 (2015) 076.; DOI:10.1007/JHEP10(2015)076
702.J. Evslin, S.-F. Ge and K. Hagiwara, The leptonic CP phase from T2(H)K and \(\mu\)\(^{+}\) decay at rest, JHEP 02 (2016) 137.; DOI:10.1007/JHEP02(2016)137
703.M. Duerr, P. Fileviez Perez and J. Smirnov, Simplified Dirac Dark Matter Models and Gamma-Ray Lines, Phys. Rev. D 92 (2015) 083521.; DOI:10.1103/PhysRevD.92.083521
704.M. Agostini et al., Spectroscopy of geoneutrinos from 2056 days of Borexino data, Phys. Rev. D 92 (2015) 031101.; DOI:10.1103/PhysRevD.92.031101
705.M. Agostini et al., Limit on Neutrinoless Double Beta Decay of \(^{76}\)Ge by GERDA, (F. Avignone & W. Haxton, Eds.)Phys. Procedia 61 (2015) 828–837.; DOI:10.1016/j.phpro.2015.06.002
706.S. Patra, F. S. Queiroz and W. Rodejohann, Stringent Dilepton Bounds on Left-Right Models using LHC data, Phys. Lett. B 752 (2016) 186–190.; DOI:10.1016/j.physletb.2015.11.009
707.M. Agostini et al., \(2\nu\beta\beta\) decay of \(^{76}\)Ge into excited states with GERDA Phase I, J. Phys. G 42 (2015) 115201.; DOI:10.1088/0954-3899/42/11/115201
708.J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8–23.; DOI:10.1016/j.dark.2015.08.001
709.S. Ohmer and H. H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020.; DOI:10.1103/PhysRevD.92.055020
710.P. P. Povinec et al., Reference material for natural radionuclides in glass designed for underground experiments, J. Radioanal. Nucl. Chem. 307 (2016) 619–626.; DOI:10.1007/s10967-015-4202-6
711.P. Humbert, M. Lindner, S. Patra and J. Smirnov, Lepton Number Violation within the Conformal Inverse Seesaw, JHEP 09 (2015) 064.; DOI:10.1007/JHEP09(2015)064
712.M. Salathe and T. Kihm, Optimized digital filtering techniques for radiation detection with HPGe detectors, Nucl. Instrum. Meth. A 808 (2016) 150–155.; DOI:10.1016/j.nima.2015.11.051
713.E. Aprile et al., Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment, Eur. Phys. J. C 75 (2015) 546.; DOI:10.1140/epjc/s10052-015-3657-5
714.L. Ludhova et al., Geo-neutrinos and Borexino, Phys. Part. Nucl. 46 (2015) 174–181.; DOI:10.1134/S1063779615020148
715.P. Humbert, M. Lindner and J. Smirnov, The Inverse Seesaw in Conformal Electro-Weak Symmetry Breaking and Phenomenological Consequences, JHEP 06 (2015) 035.; DOI:10.1007/JHEP06(2015)035
716.W. Maneschg, Review of neutrinoless double beta decay experiments: Present status and near future, (A. Stahl & I. M. Nugent, Eds.)Nucl. Part. Phys. Proc. 260 (2015) 188–193.; DOI:10.1016/j.nuclphysbps.2015.02.039
717.M. Ahmad et al., CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector (2015).
718.M. Agostini et al., Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I, Eur. Phys. J. C 75 (2015) 255.; DOI:10.1140/epjc/s10052-015-3409-6
719.M. Agostini et al., LArGe: active background suppression using argon scintillation for the Gerda \(0\nu \beta \beta\) -experiment, Eur. Phys. J. C 75 (2015) 506.; DOI:10.1140/epjc/s10052-015-3681-5
720.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dark Matter Complementarity and the Z\(^\prime\) Portal, Phys. Rev. D 92 (2015) 083004.; DOI:10.1103/PhysRevD.92.083004
721.B. Allanach, A. Alves, F. S. Queiroz, K. Sinha and A. Strumia, Interpreting the CMS \(\ell^+\ell^- jj E\!\!\!\!/_{\rm T}\) Excess with a Leptoquark Model, Phys. Rev. D 92 (2015) 055023.; DOI:10.1103/PhysRevD.92.055023
722.W. Rodejohann and X.-J. Xu, Origin of Symmetric PMNS and CKM Matrices, Phys. Rev. D 91 (2015) 056004.; DOI:10.1103/PhysRevD.91.056004
723.M. Agostini et al., Results on \(\beta \beta\) decay with emission of two neutrinos or Majorons in\(^{76}\) Ge from GERDA Phase I, Eur. Phys. J. C 75 (2015) 416.; DOI:10.1140/epjc/s10052-015-3627-y
724.P. Fileviez Perez, New Paradigm for Baryon and Lepton Number Violation, Phys. Rept. 597 (2015) 1–30.; DOI:10.1016/j.physrep.2015.09.001
725.L. Di Noto et al., The SOX experiment in the neutrino physics, Nuovo Cim. C 38 (2015) 36.; DOI:10.1393/ncc/i2015-15036-y
726.S. Patra, N. Sahoo and N. Sahu, Dipolar dark matter in light of the 3.5 keV x-ray line, neutrino mass, and LUX data, Phys. Rev. D 91 (2015) 115013.; DOI:10.1103/PhysRevD.91.115013
727.J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs \(\mu\)\(\tau\) in Abelian and non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281–310.; DOI:10.1016/j.nuclphysb.2015.04.025
728.E. Akhmedov, Majorana neutrinos and other Majorana particles:Theory and experiment.; Retrieved from https://arxiv.org/abs/1412.3320
729.A. Collin, Reactor Antineutrino Experiments, PoS HQL2014 (2014) 018.; DOI:10.22323/1.223.0018
730.J. Smirnov, Gauge-Invariant Average of Einstein Equations for finite Volumes (2014).; Retrieved from https://arxiv.org/abs/1410.6480
731.N. Bozorgnia and T. Schwetz, What is the probability that direct detection experiments have observed Dark Matter?, JCAP 12 (2014) 015.; DOI:10.1088/1475-7516/2014/12/015
732.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, LHC Tests of Light Neutralino Dark Matter without Light Sfermions, JHEP 11 (2014) 106.; DOI:10.1007/JHEP11(2014)106
733.O. Smirnov et al., Solar neutrino with Borexino: results and perspectives, Phys. Part. Nucl. 46 (2015) 166–173.; DOI:10.1134/S1063779615020185
734.M. Agostini et al., Production, characterization and operation of \(^{76}\)Ge enriched BEGe detectors in GERDA, Eur. Phys. J. C 75 (2015) 39.; DOI:10.1140/epjc/s10052-014-3253-0
735.M. Duerr and P. Fileviez Perez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001.; DOI:10.1103/PhysRevD.91.095001
736.S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP 01 (2015) 143.; DOI:10.1007/JHEP01(2015)143
737.J. Heeck, Unbroken B L symmetry, Phys. Lett. B 739 (2014) 256–262.; DOI:10.1016/j.physletb.2014.10.067
738.S.-F. Ge, The Georgi Algorithms of Jet Clustering, JHEP 05 (2015) 066.; DOI:10.1007/JHEP05(2015)066
739.J. Kopp and J. Welter, The Not-So-Sterile 4th Neutrino: Constraints on New Gauge Interactions from Neutrino Oscillation Experiments, JHEP 12 (2014) 104.; DOI:10.1007/JHEP12(2014)104
740.Y. Abe et al., Ortho-positronium observation in the Double Chooz Experiment, JHEP 10 (2014) 032.; DOI:10.1007/JHEP10(2014)032
741.T. Marrodán Undagoitia, Liquid noble gases for direct dark matter searches, PoS TIPP2014 (2014) 011.; DOI:10.22323/1.213.0011
742.X.-J. Xu, H.-J. He and W. Rodejohann, Constraining Astrophysical Neutrino Flavor Composition from Leptonic Unitarity, JCAP 12 (2014) 039.; DOI:10.1088/1475-7516/2014/12/039
743.W. Rodejohann and H. Zhang, Signatures of Extra Dimensional Sterile Neutrinos, Phys. Lett. B 737 (2014) 81–89.; DOI:10.1016/j.physletb.2014.08.035
744.T. I. Banks et al., A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector, Nucl. Instrum. Meth. A 769 (2015) 88–96.; DOI:10.1016/j.nima.2014.09.068
745.Y. Abe et al., Improved measurements of the neutrino mixing angle \(\theta_{13}\) with the Double Chooz detector, JHEP 10 (2014) 086.; DOI:10.1007/JHEP02(2015)074
746.J. Kopp and M. Nardecchia, Flavor and CP violation in Higgs decays, JHEP 10 (2014) 156.; DOI:10.1007/JHEP10(2014)156
747.E. Aprile et al., Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment, JINST 9 (2014) P11006.; DOI:10.1088/1748-0221/9/11/P11006
748.D. D’Angelo et al., Recent Borexino results and prospects for the near future, (L. Bravina, Y. Foka, & S. Kabana, Eds.)EPJ Web Conf. 126 (2016) 02008.; DOI:10.1051/epjconf/201612602008
749.E. Akhmedov, J. Kopp and M. Lindner, Decoherence by wave packet separation and collective neutrino oscillations (2014).; Retrieved from https://arxiv.org/abs/1405.7275
750.I. Girardi, D. Meloni, T. Ohlsson, H. Zhang and S. Zhou, Constraining Sterile Neutrinos Using Reactor Neutrino Experiments, JHEP 08 (2014) 057.; DOI:10.1007/JHEP08(2014)057
751.Y. Abe et al., Precision Muon Reconstruction in Double Chooz, Nucl. Instrum. Meth. A 764 (2014) 330–339.; DOI:10.1016/j.nima.2014.07.058
752.M. Lindner, S. Schmidt and J. Smirnov, Neutrino Masses and Conformal Electro-Weak Symmetry Breaking, JHEP 10 (2014) 177.; DOI:10.1007/JHEP10(2014)177
753.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, A lower bound on light neutralino dark matter from LHC data, 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 205–2010).; Retrieved from https://arxiv.org/abs/1405.3884
754.N. Bozorgnia and T. Schwetz, Is the effect of the Sun’s gravitational potential on dark matter particles observable?, JCAP 08 (2014) 013.; DOI:10.1088/1475-7516/2014/08/013
755.P. Fileviez Perez and S. Ohmer, Low Scale Unification of Gauge Interactions, Phys. Rev. D 90 (2014) 037701.; DOI:10.1103/PhysRevD.90.037701
756.J. Kubo, K. S. Lim and M. Lindner, Gamma-ray Line from Nambu-Goldstone Dark Matter in a Scale Invariant Extension of the Standard Model, JHEP 09 (2014) 016.; DOI:10.1007/JHEP09(2014)016
757.J. Barry, J. Heeck and W. Rodejohann, Sterile neutrinos and right-handed currents in KATRIN, JHEP 07 (2014) 081.; DOI:10.1007/JHEP07(2014)081
758.E. Aprile et al., First Axion Results from the XENON100 Experiment, Phys. Rev. D 90 (2014) 062009.; DOI:10.1103/PhysRevD.90.062009
759.A. Greljo, J. F. Kamenik and J. Kopp, Disentangling Flavor Violation in the Top-Higgs Sector at the LHC, JHEP 07 (2014) 046.; DOI:10.1007/JHEP07(2014)046
760.B. Dasgupta and A. Yu. Smirnov, Leptonic CP Violation Phases, Quark-Lepton Similarity and Seesaw Mechanism, Nucl. Phys. B 884 (2014) 357–378.; DOI:10.1016/j.nuclphysb.2014.05.001
761.P. Fileviez Perez, S. Ohmer and H. H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283–287.; DOI:10.1016/j.physletb.2014.06.057
762.J. Kubo, K. S. Lim and M. Lindner, Electroweak Symmetry Breaking via QCD, Phys. Rev. Lett. 113 (2014) 091604.; DOI:10.1103/PhysRevLett.113.091604
763.A. Yu. Smirnov, Theory of neutrino masses and mixing, Nuovo Cim. C 037 (2014) 29–37.; DOI:10.1393/ncc/i2014-11761-y
764.P. Fileviez Perez and H. H. Patel, The Electroweak Vacuum Angle, Phys. Lett. B 732 (2014) 241–243.; DOI:10.1016/j.physletb.2014.03.064
765.D. Adey et al., Light sterile neutrino sensitivity at the nuSTORM facility, Phys. Rev. D 89 (2014) 071301.; DOI:10.1103/PhysRevD.89.071301
766.W. Rodejohann and H. Zhang, Reducing \(\theta_{13}\) to \(9^\circ\), Phys. Lett. B 732 (2014) 174–181.; DOI:10.1016/j.physletb.2014.03.040
767.D. Schmidt, T. Schwetz and H. Zhang, Status of the ZeeBabu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524–541.; DOI:10.1016/j.nuclphysb.2014.05.024
768.J. Smirnov, Regularization of Vacuum Fluctuations and Frame Dependence (2014).; Retrieved from https://arxiv.org/abs/1402.1490
769.P. Fileviez Perez and S. Spinner, Higgs mass and the Stueckelberg mechanism in supersymmetry, Phys. Rev. D 89 (2014) 095004.; DOI:10.1103/PhysRevD.89.095004
770.J. Kopp, L. Michaels and J. Smirnov, Loopy Constraints on Leptophilic Dark Matter and Internal Bremsstrahlung, JCAP 04 (2014) 022.; DOI:10.1088/1475-7516/2014/04/022
771.Y. Abe et al., Background-independent measurement of \(\theta_{13}\) in Double Chooz, Phys. Lett. B 735 (2014) 51–56.; DOI:10.1016/j.physletb.2014.04.045
772.C.-Y. Seng, J. de Vries, E. Mereghetti, H. H. Patel and M. Ramsey-Musolf, Nucleon electric dipole moments and the isovector parity- and time-reversal-odd pionnucleon coupling, Phys. Lett. B 736 (2014) 147–153.; DOI:10.1016/j.physletb.2014.07.014
773.N. Neitz, N. Kumar, F. Mackenroth, K. Z. Hatsagortsyan, C. H. Keitel and A. Di Piazza, Novel aspects of radiation reaction in the classical and the quantum regime, J. Phys. Conf. Ser. 497 (2014) 012015.; DOI:10.1088/1742-6596/497/1/012015
774.H. Simgen, G. Heusser, M. Laubenstein and G. Zuzel, Analysis of radioactive trace impurities with \(\mu\)Bq-sensitivity in Borexino, Int. J. Mod. Phys. A 29 (2014) 1442009.; DOI:10.1142/S0217751X14420093
775.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Sensitivity of oscillation experiments to the neutrino mass hierarchy, 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 121–128).
776.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Impact of TeV-scale sterile neutrinos on precision low-energy observables, 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 389–394).
777.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving electroweak fit with TeV-scale sterile neutrinos, 18th International Seminar on High Energy Physics.
778.L. F. Rauch, Detector characterization, electronic-recoil energy scale and astrophysical independent results in XENON100 (Master’s thesis). Heidelberg U.
779.P. Fileviez Pérez and H. H. Patel, Baryon Asymmetry, Dark Matter and Local Baryon Number, Phys. Lett. B 731 (2014) 232–235.; DOI:10.1016/j.physletb.2014.02.047
780.K. S. Babu et al., Working Group Report: Baryon Number Violation, Snowmass 2013: Snowmass on the Mississippi.; Retrieved from https://arxiv.org/abs/1311.5285
781.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028.; DOI:10.1007/JHEP03(2014)028
782.E. Aprile et al., Observation and applications of single-electron charge signals in the XENON100 experiment, J. Phys. G 41 (2014) 035201.; DOI:10.1088/0954-3899/41/3/035201
783.G. Bellini et al., New limits on heavy sterile neutrino mixing in B8 decay obtained with the Borexino detector, Phys. Rev. D 88 (2013) 072010.; DOI:10.1103/PhysRevD.88.072010
784.J. M. Arnold, P. Fileviez Pérez, B. Fornal and S. Spinner, B and L at the supersymmetry scale, dark matter, and R-parity violation, Phys. Rev. D 88 (2013) 115009.; DOI:10.1103/PhysRevD.88.115009
785.M. Lindner, D. Schmidt and A. Watanabe, Dark matter and U(1)’ symmetry for the right-handed neutrinos, Phys. Rev. D 89 (2014) 013007.; DOI:10.1103/PhysRevD.89.013007
786.B. Dasgupta and J. Kopp, Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure, Phys. Rev. Lett. 112 (2014) 031803.; DOI:10.1103/PhysRevLett.112.031803
787.T. Ohlsson, H. Zhang and S. Zhou, Nonstandard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments, Phys. Lett. B 728 (2014) 148–155.; DOI:10.1016/j.physletb.2013.11.052
788.M. Holthausen, J. Kubo, K. S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP 12 (2013) 076.; DOI:10.1007/JHEP12(2013)076
789.N. Bozorgnia, R. Catena and T. Schwetz, Anisotropic dark matter distribution functions and impact on WIMP direct detection, JCAP 12 (2013) 050.; DOI:10.1088/1475-7516/2013/12/050
790.L. Baudis, A. Ferella, A. Kish, A. Manalaysay, T. Marrodan Undagoitia and M. Schumann, Neutrino physics with multi-ton scale liquid xenon detectors, JCAP 01 (2014) 044.; DOI:10.1088/1475-7516/2014/01/044
791.M. Duerr and P. Fileviez Perez, Baryonic Dark Matter, Phys. Lett. B 732 (2014) 101–104.; DOI:10.1016/j.physletb.2014.03.011
792.S. Lindemann and H. Simgen, Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer, Eur. Phys. J. C 74 (2014) 2746.; DOI:10.1140/epjc/s10052-014-2746-1
793.W. Maneschg, GERDA phase II detectors: Behind the production and characterisation at low background conditions, (L. Miramonti & L. Pandola, Eds.)AIP Conf. Proc. 1549 (2013) 54–57.; DOI:10.1063/1.4818075
794.G. Bellini et al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007.; DOI:10.1103/PhysRevD.89.112007
795.P. Fileviez Perez and S. Spinner, Supersymmetry at the LHC and The Theory of R-parity, Phys. Lett. B 728 (2014) 489–495.; DOI:10.1016/j.physletb.2013.12.022
796.D. Adey et al., nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC (2013).; Retrieved from https://arxiv.org/abs/1308.6822
797.L. Lavoura, W. Rodejohann and A. Watanabe, Reproducing lepton mixing in a texture zero model, Phys. Lett. B 726 (2013) 352–355.; DOI:10.1016/j.physletb.2013.08.074
798.P. Fileviez Perez and M. B. Wise, Low Scale Quark-Lepton Unification, Phys. Rev. D 88 (2013) 057703.; DOI:10.1103/PhysRevD.88.057703
799.M. Agostini et al., Results on Neutrinoless Double-\(\beta\) Decay of \(^{76}\)Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 122503.; DOI:10.1103/PhysRevLett.111.122503
800.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, Cornering light Neutralino Dark Matter at the LHC, JHEP 10 (2013) 132.; DOI:10.1007/JHEP10(2013)132
801.M. Agostini et al., Pulse shape discrimination for GERDA Phase I data, Eur. Phys. J. C 73 (2013) 2583.; DOI:10.1140/epjc/s10052-013-2583-7
802.J. Heeck, Leptogenesis with Lepton-Number-Violating Dirac Neutrinos, Phys. Rev. D 88 (2013) 076004.; DOI:10.1103/PhysRevD.88.076004
803.S. Antusch, M. Holthausen, M. A. Schmidt and M. Spinrath, Solving the Strong CP Problem with Discrete Symmetries and the Right Unitarity Triangle, Nucl. Phys. B 877 (2013) 752–771.; DOI:10.1016/j.nuclphysb.2013.10.028
804.M. Agostini et al., The background in the \(0 \nu \beta \beta\) experiment GERDA, Eur. Phys. J. C 74 (2014) 2764.; DOI:10.1140/epjc/s10052-014-2764-z
805.A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024.; DOI:10.1007/JHEP09(2013)024
806.M. Holthausen and K. S. Lim, Quark and Leptonic Mixing Patterns from the Breakdown of a Common Discrete Flavor Symmetry, Phys. Rev. D 88 (2013) 033018.; DOI:10.1103/PhysRevD.88.033018
807.M. Blennow and T. Schwetz, Determination of the neutrino mass ordering by combining PINGU and Daya Bay II, JHEP 09 (2013) 089.; DOI:10.1007/JHEP09(2013)089
808.A. Merle, V. Niro and D. Schmidt, New Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of Frozen-In Scalars, JCAP 03 (2014) 028.; DOI:10.1088/1475-7516/2014/03/028
809.E. Aprile et al., The neutron background of the XENON100 dark matter search experiment, J. Phys. G 40 (2013) 115201.; DOI:10.1088/0954-3899/40/11/115201
810.M. Duerr, P. Fileviez Perez and M. Lindner, Left-Right Symmetric Theory with Light Sterile Neutrinos, Phys. Rev. D 88 (2013) 051701.; DOI:10.1103/PhysRevD.88.051701
811.J. Heeck and W. Rodejohann, Neutrinoless Quadruple Beta Decay, EPL 103 (2013) 32001.; DOI:10.1209/0295-5075/103/32001
812.P. Fileviez Perez, On the Origin of R-parity Violation in Supersymmetry, Int. J. Mod. Phys. A 28 (2013) 1330024.; DOI:10.1142/S0217751X1330024X
813.N. Bozorgnia, J. Herrero-Garcia, T. Schwetz and J. Zupan, Halo-independent methods for inelastic dark matter scattering, JCAP 07 (2013) 049.; DOI:10.1088/1475-7516/2013/07/049
814.D. Adey et al., Neutrinos from Stored Muons nuSTORM: Expression of Interest (2013).; Retrieved from https://arxiv.org/abs/1305.1419
815.P. S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, Constraining Neutrino Mass from Neutrinoless Double Beta Decay, Phys. Rev. D 88 (2013) 091301.; DOI:10.1103/PhysRevD.88.091301
816.G. Bellini et al., SOX: Short distance neutrino Oscillations with BoreXino, JHEP 08 (2013) 038.; DOI:10.1007/JHEP08(2013)038
817.P.-H. Gu, Parity: from strong CP problem to dark matter, neutrino masses and baryon asymmetry (2013).; Retrieved from https://arxiv.org/abs/1304.7647
818.G. Bellini et al., Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth, JCAP 08 (2013) 049.; DOI:10.1088/1475-7516/2013/08/049
819.J. Heeck, How stable is the photon?, Phys. Rev. Lett. 111 (2013) 021801.; DOI:10.1103/PhysRevLett.111.021801
820.T. Frossard, A. Kartavtsev and D. Mitrouskas, Systematic approach to \(\Delta\)L=1 processes in thermal leptogenesis, Phys. Rev. D 87 (2013) 125006.; DOI:10.1103/PhysRevD.87.125006
821.E. Aprile et al., Response of the XENON100 Dark Matter Detector to Nuclear Recoils, Phys. Rev. D 88 (2013) 012006.; DOI:10.1103/PhysRevD.88.012006
822.J. Kopp, Constraints on dark matter annihilation from AMS-02 results, Phys. Rev. D 88 (2013) 076013.; DOI:10.1103/PhysRevD.88.076013
823.M. Duerr, P. Fileviez Perez and M. B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801.; DOI:10.1103/PhysRevLett.110.231801
824.D. Budjas et al., Isotopically modified Ge detectors for \sc Gerda: from production to operation, JINST 8 (2013) P04018.; DOI:10.1088/1748-0221/8/04/P04018
825.P.-H. Gu, Mirror symmetry: from active and sterile neutrino masses to baryonic and dark matter asymmetries, Nucl. Phys. B 874 (2013) 158–176.; DOI:10.1016/j.nuclphysb.2013.05.013
826.T. Ohlsson, H. Zhang and S. Zhou, Effects of nonstandard neutrino interactions at PINGU, Phys. Rev. D 88 (2013) 013001.; DOI:10.1103/PhysRevD.88.013001
827.J. Barry and W. Rodejohann, Lepton number and flavour violation in TeV-scale left-right symmetric theories with large left-right mixing, JHEP 09 (2013) 153.; DOI:10.1007/JHEP09(2013)153
828.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050.; DOI:10.1007/JHEP05(2013)050
829.G. Bellini et al., Measurement of geo-neutrinos from 1353 days of Borexino, Phys. Lett. B 722 (2013) 295–300.; DOI:10.1016/j.physletb.2013.04.030
830.P. Fileviez Perez and M. B. Wise, Baryon Asymmetry and Dark Matter Through the Vector-Like Portal, JHEP 05 (2013) 094.; DOI:10.1007/JHEP05(2013)094
831.L. Baudis, A. Behrens, A. Ferella, A. Kish, T. Marrodan Undagoitia, D. Mayani and M. Schumann, Performance of the Hamamatsu R11410 Photomultiplier Tube in cryogenic Xenon Environments, JINST 8 (2013) P04026.; DOI:10.1088/1748-0221/8/04/P04026
832.T. R. Edgecock et al., High Intensity Neutrino Oscillation Facilities in Europe, Phys. Rev. ST Accel. Beams 16 (2013) 021002.; DOI:10.1103/PhysRevSTAB.16.021002
833.E. Andreotti et al., HEROICA: an Underground Facility for the Fast Screening of Germanium Detectors, JINST 8 (2013) P06012.; DOI:10.1088/1748-0221/8/06/P06012
834.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, JHEP 05 (2013) 081.; DOI:10.1007/JHEP05(2013)081
835.J. Kopp, E. T. Neil, R. Primulando and J. Zupan, From Gamma Ray Line Signals of Dark Matter to the LHC, Phys. Dark Univ. 2 (2013) 22–34.; DOI:10.1016/j.dark.2013.02.001
836.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, S. Lucht, S. Roth, M. Schumann, A. Stahl, A. Stüken and C. Wiebusch, Afterpulse Measurements of R7081 Photomultipliers for the Double Chooz Experiment, JINST 8 (2013) P04029.; DOI:10.1088/1748-0221/8/04/P04029
837.Y. Abe et al., First Measurement of \(\theta_{13}\) from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment, Phys. Lett. B 723 (2013) 66–70.; DOI:10.1016/j.physletb.2013.04.050
838.N. Memenga, W. Rodejohann and H. Zhang, \(A_4\) flavor symmetry model for Dirac neutrinos and sizable \(U_{e3}\), Phys. Rev. D 87 (2013) 053021.; DOI:10.1103/PhysRevD.87.053021
839.T. Ohlsson, H. Zhang and S. Zhou, Probing the leptonic Dirac CP-violating phase in neutrino oscillation experiments, Phys. Rev. D 87 (2013) 053006.; DOI:10.1103/PhysRevD.87.053006
840.P.-H. Gu, Multi-component dark matter with magnetic moments for Fermi-LAT gamma-ray line, Phys. Dark Univ. 2 (2013) 35–40.; DOI:10.1016/j.dark.2013.03.001
841.E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301.; DOI:10.1103/PhysRevLett.111.021301
842.H. Zhang, Light sterile neutrinos from flavor symmetries, (A. Blondel, I. Efthymiopoulos, & G. Prior, Eds.)J. Phys. Conf. Ser. 408 (2013) 012029.; DOI:10.1088/1742-6596/408/1/012029
843.M. Blennow and A. Yu. Smirnov, Neutrino propagation in matter, Adv. High Energy Phys. 2013 (2013) 972485.; DOI:10.1155/2013/972485
844.S. Pascoli and T. Schwetz, Prospects for neutrino oscillation physics, Adv. High Energy Phys. 2013 (2013) 503401.; DOI:10.1155/2013/503401
845.M. Pallavicini et al., Recent results and future development of Borexino, (T. Kobayashi, M. Nakahata, & T. Nakaya, Eds.)Nucl. Phys. B Proc. Suppl. 235-236 (2013) 55–60.; DOI:10.1016/j.nuclphysbps.2013.03.011
846.T. Schwetz, Status of sterile neutrino oscillations, (T. Kobayashi, M. Nakahata, & T. Nakaya, Eds.)Nucl. Phys. B Proc. Suppl. 235-236 (2013) 229–235.; DOI:10.1016/j.nuclphysbps.2013.04.015
847.C. O’Shaughnessy et al., High voltage capacitors for low background experiments, Eur. Phys. J. C 73 (2013) 2445.; DOI:10.1140/epjc/s10052-013-2445-3
848.J. Heeck, Gauged Flavor Symmetries, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 336–338.; DOI:10.1016/j.nuclphysbps.2013.04.121
849.M. Duerr, Lepton number violating new physics and neutrinoless double beta decay, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 24–27.; DOI:10.1016/j.nuclphysbps.2013.04.048
850.A. Ianni et al., Neutrinos from the sun and from radioactive sources, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 77–81.; DOI:10.1016/j.nuclphysbps.2013.04.061
851.D. Franco et al., Solar neutrino results from Borexino, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 104–106.; DOI:10.1016/j.nuclphysbps.2013.04.068
852.C. Buck, The Double Chooz experiment, PoS EPS-HEP2013 (2013) 514.; DOI:10.22323/1.180.0514
853.T. Ohlsson, H. Zhang and S. Zhou, Leptonic CP Violation in Neutrino Oscillations, PoS EPS-HEP2013 (2013) 538.; DOI:10.22323/1.180.0538
854.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Global Status of Sterile Neutrino Scenarios, PoS Neutel2013 (2013) 019.; DOI:10.22323/1.196.0019
855.R. Brugnera et al., Status of the GERDA experiment, PoS Neutel2013 (2013) 039.; DOI:10.22323/1.196.0039
856.T. Marrodán Undagoitia, Direct Dark Matter Search with XENON, 9th Patras Workshop on Axions, WIMPs and WISPs (pp. 189–194).; DOI:10.3204/DESY-PROC-2013-04/marrodan_undagoitia_teresa
857.T. Asaka, S. Eijima and A. Watanabe, Heavy neutrino search in accelerator-based experiments, JHEP 03 (2013) 125.; DOI:10.1007/JHEP03(2013)125
858.G. Bellini et al., Lifetime measurements of 214Po and 212Po with the CTF liquid scintillator detector at LNGS, Eur. Phys. J. A 49 (2013) 92.; DOI:10.1140/epja/i2013-13092-9
859.M. Holthausen, K. S. Lim and M. Lindner, Lepton Mixing Patterns from a Scan of Finite Discrete Groups, Phys. Lett. B 721 (2013) 61–67.; DOI:10.1016/j.physletb.2013.02.047
860.M. Agostini et al., Measurement of the half-life of the two-neutrino double beta decay of Ge-76 with the Gerda experiment, J. Phys. G 40 (2013) 035110.; DOI:10.1088/0954-3899/40/3/035110
861.K. H. Ackermann et al., The GERDA experiment for the search of \(0\nu\beta\beta\) decay in \(^{76}\)Ge, Eur. Phys. J. C 73 (2013) 2330.; DOI:10.1140/epjc/s10052-013-2330-0
862.J. Heeck and H. Zhang, Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos, JHEP 05 (2013) 164.; DOI:10.1007/JHEP05(2013)164
863.P. Fileviez Pérez and S. Spinner, Higgs mass via type II seesaw mechanism, Phys. Rev. D 87 (2013) 031702.; DOI:10.1103/PhysRevD.87.031702
864.T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D. Mitrouskas, Systematic approach to thermal leptogenesis, Phys. Rev. D 87 (2013) 085009.; DOI:10.1103/PhysRevD.87.085009
865.T. Ohlsson, H. Zhang and S. Zhou, Radiative corrections to the leptonic Dirac \(CP\)-violating phase, Phys. Rev. D 87 (2013) 013012.; DOI:10.1103/PhysRevD.87.013012
866.J. Heeck and W. Rodejohann, Sterile neutrino anarchy, Phys. Rev. D 87 (2013) 037301.; DOI:10.1103/PhysRevD.87.037301
867.M. Holthausen, M. Lindner and M. A. Schmidt, Lepton flavor at the electroweak scale: A complete \(A_{4}\) model, Phys. Rev. D 87 (2013) 033006.; DOI:10.1103/PhysRevD.87.033006
868.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, B. Reinhold and S. Schonert, PMT Test Facility at MPIK Heidelberg and Double Chooz Super Vertical Slice, (G. S. Tzanakos, Ed.)Nucl. Phys. Proc. Supl. 229-232 (2012) 456.; DOI:10.1016/j.nuclphysbps.2012.09.093
869.M. Holthausen, M. Lindner and M. A. Schmidt, CP and Discrete Flavour Symmetries, JHEP 04 (2013) 122.; DOI:10.1007/JHEP04(2013)122
870.J. Kopp, New Signals in Dark Matter Detectors, (M. Mondragón, A. Bashir, D. Delepine, F. Larios, O. Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J. Phys. Conf. Ser. 485 (2014) 012032.; DOI:10.1088/1742-6596/485/1/012032
871.Y. Abe et al., Direct Measurement of Backgrounds using Reactor-Off Data in Double Chooz, Phys. Rev. D 87 (2013) 011102.; DOI:10.1103/PhysRevD.87.011102
872.R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026.; DOI:10.1007/JHEP03(2013)026
873.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, On the interpretation of IceCube cascade events in terms of the Glashow resonance (2012).; Retrieved from https://arxiv.org/abs/1209.2422
874.S. K. Agarwalla et al., EUROnu-WP6 2010 Report (2012).; Retrieved from https://arxiv.org/abs/1209.2825
875.M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123.; DOI:10.1007/JHEP12(2012)123
876.P.-H. Gu, From Dirac neutrino masses to baryonic and dark matter asymmetries, Nucl. Phys. B 872 (2013) 38–61.; DOI:10.1016/j.nuclphysb.2013.03.014
877.P. Fileviez Perez, Baryon and Lepton Numbers: Life in the Desert, (M. Mondragón, A. Bashir, D. Delepine, F. Larios, O. Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J. Phys. Conf. Ser. 485 (2014) 012009.; DOI:10.1088/1742-6596/485/1/012009
878.Y. Abe et al., First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment, Phys. Rev. D 86 (2012) 112009.; DOI:10.1103/PhysRevD.86.112009
879.P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large \(θ_{13}\), Phys. Rev. D 87 (2013) 033004.; DOI:10.1103/PhysRevD.87.033004
880.P. Fileviez Perez and S. Spinner, On the Higgs Mass and Perturbativity, Phys. Lett. B 723 (2013) 371–383.; DOI:10.1016/j.physletb.2013.05.052
881.S. Clesse, L. Lopez-Honorez, C. Ringeval, H. Tashiro and M. H. G. Tytgat, Background reionization history from omniscopes, Phys. Rev. D 86 (2012) 123506.; DOI:10.1103/PhysRevD.86.123506
882.L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Phys. Rev. D 87 (2013) 093006.; DOI:10.1103/PhysRevD.87.093006
883.F. Kaether and C. Langbrandtner, Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs, JINST 7 (2012) P09002.; DOI:10.1088/1748-0221/7/09/P09002
884.W. Rodejohann and H. Zhang, Simple two Parameter Description of Lepton Mixing, Phys. Rev. D 86 (2012) 093008.; DOI:10.1103/PhysRevD.86.093008
885.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015.; DOI:10.1103/PhysRevD.86.076015
886.E. Aprile et al., Analysis of the XENON100 Dark Matter Search Data, Astropart. Phys. 54 (2014) 11–24.; DOI:10.1016/j.astropartphys.2013.10.002
887.P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of Neutralino Dark Matter, JHEP 07 (2013) 094.; DOI:10.1007/JHEP07(2013)094
888.H. Back et al., Borexino calibrations: Hardware, Methods, and Results, JINST 7 (2012) P10018.; DOI:10.1088/1748-0221/7/10/P10018
889.J. Heeck, Seesaw parametrization for n right-handed neutrinos, Phys. Rev. D 86 (2012) 093023.; DOI:10.1103/PhysRevD.86.093023
890.E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301.; DOI:10.1103/PhysRevLett.109.181301
891.Y. Abe et al., Reactor electron antineutrino disappearance in the Double Chooz experiment, Phys. Rev. D 86 (2012) 052008.; DOI:10.1103/PhysRevD.86.052008
892.P. Alvarez Sanchez et al., Measurement of CNGS muon neutrino speed with Borexino, Phys. Lett. B 716 (2012) 401–405.; DOI:10.1016/j.physletb.2012.08.052
893.M. Duerr, Neutrinoless Double Beta Decay and Neutrino Masses, (T. Fukuyama & R. N. Mohapatra, Eds.)AIP Conf. Proc. 1467 (2012) 235–238.; DOI:10.1063/1.4742106
894.B. Dumont, G. Belanger, S. Fichet, S. Kraml and T. Schwetz, Mixed sneutrino dark matter in light of the 2011 XENON and LHC results, JCAP 09 (2012) 013.; DOI:10.1088/1475-7516/2012/09/013
895.W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008.; DOI:10.1088/0954-3899/39/12/124008
896.M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019.; DOI:10.1103/PhysRevD.86.075019
897.M. Aoki, M. Duerr and J. Kubo, Multi-component dark matter system with non-standard annihilation processes of dark matter, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 169–176).
898.M. Holthausen, Vacuum alignment from group theory, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 115–122).
899.J. Heeck, Local flavor symmetries, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 99–106).
900.J. Barry, Sterile neutrinos for warm dark matter and the reactor anomaly in flavor symmetry models, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 1–10).
901.J. Herrero-Garcia, T. Schwetz and J. Zupan, Astrophysics independent bounds on the annual modulation of dark matter signals, Phys. Rev. Lett. 109 (2012) 141301.; DOI:10.1103/PhysRevLett.109.141301
902.L. Ludhova et al., Solar neutrino physics with Borexino I, 47th Rencontres de Moriond on Electroweak Interactions and Unified Theories (p. 341).; Retrieved from https://arxiv.org/abs/1205.2989
903.A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3+2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161.; DOI:10.1007/JHEP07(2012)161
904.E. Kh. Akhmedov and A. Wilhelm, Quantum field theoretic approach to neutrino oscillations in matter, JHEP 01 (2013) 165.; DOI:10.1007/JHEP01(2013)165
905.E. Kh. Akhmedov, S. Razzaque and A. Yu. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors, JHEP 02 (2013) 082.; DOI:10.1007/JHEP02(2013)082
906.J. Chakrabortty, P. Ghosh and W. Rodejohann, Lower Limits on \(\mu \to e \gamma\) from New Measurements on \(U_{e3}\), Phys. Rev. D 86 (2012) 075020.; DOI:10.1103/PhysRevD.86.075020
907.S. S. C. Law and K. L. McDonald, Inverse seesaw and dark matter in models with exotic lepton triplets, Phys. Lett. B 713 (2012) 490–494.; DOI:10.1016/j.physletb.2012.06.044
908.R. Abbasi et al., An absence of neutrinos associated with cosmic-ray acceleration in \(\gamma\)-ray bursts, Nature 484 (2012) 351–353.; DOI:10.1038/nature11068
909.K. N. Abazajian et al., Light Sterile Neutrinos: A White Paper (2012).; Retrieved from https://arxiv.org/abs/1204.5379
910.F. Bezrukov, A. Kartavtsev and M. Lindner, Leptogenesis in models with keV sterile neutrino dark matter, J. Phys. G 40 (2013) 095202.; DOI:10.1088/0954-3899/40/9/095202
911.L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179–185.; DOI:10.1016/j.physletb.2012.07.017
912.J. Heeck and W. Rodejohann, Neutrino Hierarchies from a Gauge Symmetry, Phys. Rev. D 85 (2012) 113017.; DOI:10.1103/PhysRevD.85.113017
913.M. Blennow and T. Schwetz, Identifying the Neutrino mass Ordering with INO and NOvA, JHEP 08 (2012) 058.; DOI:10.1007/JHEP08(2012)058
914.J. Barry, L. Dorame and W. Rodejohann, Linear Collider Test of a Neutrinoless Double Beta Decay Mechanism in left-right Symmetric Theories, Eur. Phys. J. C 72 (2012) 2023.; DOI:10.1140/epjc/s10052-012-2023-0
915.W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022.; DOI:10.1007/JHEP06(2012)022
916.P.-H. Gu, From dark matter to neutrinoless double beta decay (2012).; Retrieved from https://arxiv.org/abs/1203.4165
917.T. Araki, J. Heeck and J. Kubo, Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries, JHEP 07 (2012) 083.; DOI:10.1007/JHEP07(2012)083
918.M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, Asymmetric Dark Matter and Dark Radiation, JCAP 07 (2012) 022.; DOI:10.1088/1475-7516/2012/07/022
919.G. Bellini et al., Search for Solar Axions Produced in \(p(d,\rm{^3He})A\) Reaction with Borexino Detector, Phys. Rev. D 85 (2012) 092003.; DOI:10.1103/PhysRevD.85.092003
920.K. L. McDonald, Sommerfeld Enhancement from Multiple Mediators, JHEP 07 (2012) 145.; DOI:10.1007/JHEP07(2012)145
921.B. von Harling and K. L. McDonald, Secluded Dark Matter Coupled to a Hidden CFT, JHEP 08 (2012) 048.; DOI:10.1007/JHEP08(2012)048
922.T. Asaka and A. Watanabe, Atmospheric Sterile Neutrinos, JHEP 07 (2012) 112.; DOI:10.1007/JHEP07(2012)112
923.G. Bellini et al., Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth, JCAP 05 (2012) 015.; DOI:10.1088/1475-7516/2012/05/015
924.D. Schmidt, T. Schwetz and T. Toma, Direct Detection of Leptophilic Dark Matter in a Model with Radiative Neutrino Masses, Phys. Rev. D 85 (2012) 073009.; DOI:10.1103/PhysRevD.85.073009
925.S. Choubey, M. Duerr, M. Mitra and W. Rodejohann, Lepton Number and Lepton Flavor Violation through Color Octet States, JHEP 05 (2012) 017.; DOI:10.1007/JHEP05(2012)017
926.P.-H. Gu, Mirror left-right symmetry, Phys. Lett. B 713 (2012) 485–489.; DOI:10.1016/j.physletb.2012.06.042
927.E. Akhmedov, D. Hernandez and A. Smirnov, Neutrino production coherence and oscillation experiments, JHEP 04 (2012) 052.; DOI:10.1007/JHEP04(2012)052
928.W. Rodejohann, M. Tanimoto and A. Watanabe, Relating large \(U_{e3}\) to the ratio of neutrino mass-squared differences, Phys. Lett. B 710 (2012) 636–640.; DOI:10.1016/j.physletb.2012.03.037
929.C. Buck et al., Measuring the (14)C isotope concentration in a liquid organic scintillator at a small-volume setup, Instrum. Exp. Tech. 55 (2012) 34–37.; DOI:10.1134/S0020441212010022
930.W. Rodejohann, Neutrino-less double beta decay: Neutrino physics, Acta Phys. Polon. B 43 (2012) 71–78.; DOI:10.5506/APhysPolB.43.71
931.M. Agostini et al., LArGe \& for active background suppression in GERDA, (L. Oberauer, G. Raffelt, & R. Wagner, Eds.)J. Phys. Conf. Ser. 375 (2012) 042009.; DOI:10.1088/1742-6596/375/1/042009
932.L. Lopez Honorez, Coupled quintessence through dark energy density, (L. Oberauer, G. Raffelt, & R. Wagner, Eds.)J. Phys. Conf. Ser. 375 (2012) 032007.; DOI:10.1088/1742-6596/375/1/032007
933.G. Testera et al., High precision Be-7 solar neutrinos measurement and day night effect obtained with Borexino, (A. Capone, G. De Bonis, M. De Vincenzi, & A. Morselli, Eds.)Nucl. Instrum. Meth. A 692 (2012) 258–261.; DOI:10.1016/j.nima.2012.01.006
934.T. Schwetz, Neutrino mass and mixing: Status, (R. Godbole & N. K. Mondal, Eds.)Pramana 79 (2012) 979–992.; DOI:10.1007/s12043-012-0414-2
935.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multicomponent dark matter system with nonstandard annihilation processes of dark matter, (B. Szczerbinska, K. Babu, B. Balantekin, B. Dutta, & R. N. Mohapatra, Eds.)AIP Conf. Proc. 1534 (2013) 31–38.; DOI:10.1063/1.4807340
936.M. Barnabe Heider, Semiconductor-based experiments for neutrinoless double beta decay search, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 141–145.; DOI:10.1016/j.nuclphysbps.2012.09.023
937.C. Aberle, C. Buck, F. X. Hartmann, M. Lindner, S. Schönert, S. Wagner and H. Watanabe, Large Scale Production of the Liquid Scintillator for the Double Chooz Experiment, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 448–448.; DOI:10.1016/j.nuclphysbps.2012.09.085
938.M. Agostini et al., Procurement, production and testing of BEGe detectors depleted in \(^{76}Ge\), (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 489–489.; DOI:10.1016/j.nuclphysbps.2012.09.126
939.L. Lopez-Honorez, Biases on cosmological parameters by general relativity effects, 47th Rencontres de Moriond on Cosmology (pp. 29–32).
940.J. Herrero-Garcia, T. Schwetz and J. Zupan, On the annual modulation signal in dark matter direct detection, JCAP 03 (2012) 005.; DOI:10.1088/1475-7516/2012/03/005
941.R. Abbasi et al., Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, Phys. Rev. D 85 (2012) 042002.; DOI:10.1103/PhysRevD.85.042002
942.M. Holthausen, K. S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs Mass, JHEP 02 (2012) 037.; DOI:10.1007/JHEP02(2012)037
943.Z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013.; DOI:10.1103/PhysRevD.86.013013
944.J. Heeck and W. Rodejohann, Hidden O(2) and SO(2) Symmetry in Lepton Mixing, JHEP 02 (2012) 094.; DOI:10.1007/JHEP02(2012)094
945.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, RG running in a minimal UED model in light of recent LHC Higgs mass bounds, Phys. Lett. B 712 (2012) 419–424.; DOI:10.1016/j.physletb.2012.05.029
946.T. Asaka, S. Eijima and H. Ishida, Kinetic Equations for Baryogenesis via Sterile Neutrino Oscillation, JCAP 02 (2012) 021.; DOI:10.1088/1475-7516/2012/02/021
947.Y. Abe et al., Indication of Reactor \(\bar{\nu}_e\) Disappearance in the Double Chooz Experiment, Phys. Rev. Lett. 108 (2012) 131801.; DOI:10.1103/PhysRevLett.108.131801
948.M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26–63.; DOI:10.1016/j.aop.2012.10.007
949.C. Aberle, C. Buck, B. Gramlich, F. X. Hartmann, M. Lindner, S. Schonert, U. Schwan, S. Wagner and H. Watanabe, Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection, JINST 7 (2012) P06008.; DOI:10.1088/1748-0221/7/06/P06008
950.A. Kartavtsev, A Remark on the Koide relation for quarks (2011).; Retrieved from https://arxiv.org/abs/1111.0480
951.M. Holthausen and M. A. Schmidt, Natural Vacuum Alignment from Group Theory: The Minimal Case, JHEP 01 (2012) 126.; DOI:10.1007/JHEP01(2012)126
952.R. Abbasi et al., The IceCube Neutrino Observatory V: Future Developments, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2742
953.R. Abbasi et al., The IceCube Neutrino Observatory IV: Searches for Dark Matter and Exotic Particles, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2738
954.R. Abbasi et al., IceCube - Astrophysics and Astroparticle Physics at the South Pole (2011).; Retrieved from https://arxiv.org/abs/1111.5188
955.R. Abbasi et al., Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program, Astron. Astrophys. 539 (2012) A60.; DOI:10.1051/0004-6361/201118071
956.C. Aberle, C. Buck, F. X. Hartmann and S. Schonert, Light yield and energy transfer in a new Gd-loaded liquid scintillator, Chem. Phys. Lett. 516 (2011) 257–262.; DOI:10.1016/j.cplett.2011.09.067
957.E. Akhmedov and T. Schwetz, LSND and MiniBooNE within (3+1) plus NSI, (B. S. Acharya, M. Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc. 1382 (2011) 94–96.; DOI:10.1063/1.3644278
958.S. Choubey, T. Schwetz and P. Vahle, Summary of the Oscillation Physics Working Group, (B. S. Acharya, M. Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc. 1382 (2011) 77–81.; DOI:10.1063/1.3644274
959.W. Maneschg et al., Production and characterization of a custom-made \(^{228}Th\) source with reduced neutron source strength for the Borexino experiment, Nucl. Instrum. Meth. A 680 (2012) 161–167.; DOI:10.1016/j.nima.2012.04.019
960.J. Kopp, T. Schwetz and J. Zupan, Light Dark Matter in the light of CRESST-II, JCAP 03 (2012) 001.; DOI:10.1088/1475-7516/2012/03/001
961.P.-H. Gu and U. Sarkar, Inflationary Baryogenesis with Low Reheating Temperature and Testable Neutron-Antineutron Oscillation (2011).; Retrieved from https://arxiv.org/abs/1110.2926
962.G. Bellini et al., First evidence of pep solar neutrinos by direct detection in Borexino, Phys. Rev. Lett. 108 (2012) 051302.; DOI:10.1103/PhysRevLett.108.051302
963.C. H. Kom and W. Rodejohann, Four-jet final state in same-sign lepton colliders and neutrinoless double beta decay mechanisms, Phys. Rev. D 85 (2012) 015013.; DOI:10.1103/PhysRevD.85.015013
964.P.-H. Gu and U. Sarkar, Common Origin of Baryon Asymmetry and Proton Decay, Mod. Phys. Lett. A 28 (2013) 1350159.; DOI:10.1142/S0217732313501599
965.P.-H. Gu, A left-right symmetric model with SU(2)-triplet fermions, Phys. Rev. D 84 (2011) 097301.; DOI:10.1103/PhysRevD.84.097301
966.J. Barry, W. Rodejohann and H. Zhang, Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models, JCAP 01 (2012) 052.; DOI:10.1088/1475-7516/2012/01/052
967.H. Zhang, Light Sterile Neutrino in the Minimal Extended Seesaw, Phys. Lett. B 714 (2012) 262–266.; DOI:10.1016/j.physletb.2012.06.074
968.R. Abbasi et al., Observation of an Anisotropy in the Galactic Cosmic Ray arrival direction at 400 TeV with IceCube, Astrophys. J. 746 (2012) 33.; DOI:10.1088/0004-637X/746/1/33
969.J. Heeck and W. Rodejohann, Kinetic and mass mixing with three abelian groups, Phys. Lett. B 705 (2011) 369–374.; DOI:10.1016/j.physletb.2011.10.050
970.R. Abbasi et al., The Design and Performance of IceCube DeepCore, Astropart. Phys. 35 (2012) 615–624.; DOI:10.1016/j.astropartphys.2012.01.004
971.R. Abbasi et al., IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, Astron. Astrophys. 535 (2011) A109.; DOI:10.1051/0004-6361/201117810e
972.T. Schwetz, M. Tortola and J. W. F. Valle, Where we are on \(\theta_{13}\): addendum to “Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters”, New J. Phys. 13 (2011) 109401.; DOI:10.1088/1367-2630/13/10/109401
973.R. Abbasi et al., Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube, Astrophys. J. 748 (2012) 118.; DOI:10.1088/0004-637X/748/2/118
974.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, The Glashow resonance at IceCube: signatures, event rates and \(pp\) vs. \(p\gamma\) interactions, JCAP 10 (2011) 017.; DOI:10.1088/1475-7516/2011/10/017
975.W. Rodejohann and J. W. F. Valle, Symmetrical Parametrizations of the Lepton Mixing Matrix, Phys. Rev. D 84 (2011) 073011.; DOI:10.1103/PhysRevD.84.073011
976.R. Abbasi et al., The IceCube Neutrino Observatory I: Point Source Searches, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2741
977.R. Abbasi et al., The IceCube Neutrino Observatory II: All Sky Searches: Atmospheric, Diffuse and EHE, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2736
978.P.-H. Gu and U. Sarkar, Baryogenesis and neutron-antineutron oscillation at TeV, Phys. Lett. B 705 (2011) 170–173.; DOI:10.1016/j.physletb.2011.10.017
979.D. P. George and K. L. McDonald, Gravity on a Little Warped Space, Phys. Rev. D 84 (2011) 064007.; DOI:10.1103/PhysRevD.84.064007
980.H. Zhang and S. Zhou, Radiative corrections and explicit perturbations to the tetra-maximal neutrino mixing with large \(\theta_{13}\), Phys. Lett. B 704 (2011) 296–302.; DOI:10.1016/j.physletb.2011.09.033
981.A. Adulpravitchai and R. Takahashi, A4 Flavor Models in Split Seesaw Mechanism, JHEP 09 (2011) 127.; DOI:10.1007/JHEP09(2011)127
982.W. Rodejohann, H. Zhang and S. Zhou, Systematic search for successful lepton mixing patterns with nonzero \(\theta_{13}\), Nucl. Phys. B 855 (2012) 592–607.; DOI:10.1016/j.nuclphysb.2011.10.017
983.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) Symmetry at the Electroweak Scale, Phys. Rev. D 84 (2011) 075007.; DOI:10.1103/PhysRevD.84.075007
984.W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys. E 20 (2011) 1833–1930.; DOI:10.1142/S0218301311020186
985.R. Abbasi et al., Neutrino analysis of the September 2010 Crab Nebula flare and time-integrated constraints on neutrino emission from the Crab using IceCube, Astrophys. J. 745 (2012) 45.; DOI:10.1088/0004-637X/745/1/45
986.N. Haba and R. Takahashi, Predictions via large \(\theta_{13}\) from cascades, Phys. Lett. B 702 (2011) 388–393.; DOI:10.1016/j.physletb.2011.07.029
987.T. Schwetz and J. Zupan, Dark Matter attempts for CoGeNT and DAMA, JCAP 08 (2011) 008.; DOI:10.1088/1475-7516/2011/08/008
988.M. Duerr, M. Lindner and A. Merle, On the Quantitative Impact of the Schechter-Valle Theorem, JHEP 06 (2011) 091.; DOI:10.1007/JHEP06(2011)091
989.M. Duerr, D. P. George and K. L. McDonald, Neutrino Mass and \(\mu \rightarrow e + \gamma\) from a Mini-Seesaw, JHEP 07 (2011) 103.; DOI:10.1007/JHEP07(2011)103
990.R. Abbasi et al., Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube, Astrophys. J. 740 (2011) 16.; DOI:10.1088/0004-637X/740/1/16
991.J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: Models and Phenomenology, JHEP 07 (2011) 091.; DOI:10.1007/JHEP07(2011)091
992.M. Lindner, D. Schmidt and T. Schwetz, Dark Matter and neutrino masses from global U(1)\(_{B−L}\) symmetry breaking, Phys. Lett. B 705 (2011) 324–330.; DOI:10.1016/j.physletb.2011.10.022
993.A. Merle and V. Niro, Deriving Models for keV sterile Neutrino Dark Matter with the Froggatt-Nielsen mechanism, JCAP 07 (2011) 023.; DOI:10.1088/1475-7516/2011/07/023
994.R. Leitner, M. Malinsky, B. Roskovec and H. Zhang, Non-standard antineutrino interactions at Daya Bay, JHEP 12 (2011) 001.; DOI:10.1007/JHEP12(2011)001
995.R. Abbasi et al., Time-Dependent Searches for Point Sources of Neutrinos with the 40-String and 22-String Configurations of IceCube, Astrophys. J. 744 (2012) 1.; DOI:10.1088/0004-637X/744/1/1
996.R.-Z. Yang and H. Zhang, Minimal seesaw model with \(S_4\) flavor symmetry, Phys. Lett. B 700 (2011) 316–321.; DOI:10.1016/j.physletb.2011.05.014
997.C. Bauer et al., Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment, JINST 6 (2011) P06008.; DOI:10.1088/1748-0221/6/06/P06008
998.G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302.; DOI:10.1103/PhysRevLett.107.141302
999.G. Bellini et al., Absence of day–night asymmetry of 862 keV \(^7\)Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B 707 (2012) 22–26.; DOI:10.1016/j.physletb.2011.11.025
1000.E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302.; DOI:10.1103/PhysRevLett.107.131302
1001.E. Aprile et al., Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data, Phys. Rev. D 84 (2011) 061101.; DOI:10.1103/PhysRevD.84.061101
1002.R. Abbasi et al., A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector, Phys. Rev. D 84 (2011) 082001.; DOI:10.1103/PhysRevD.84.082001
1003.E. Aprile et al., Likelihood Approach to the First Dark Matter Results from XENON100, Phys. Rev. D 84 (2011) 052003.; DOI:10.1103/PhysRevD.84.052003
1004.T. Schwetz, M. Tortola and J. W. F. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004.; DOI:10.1088/1367-2630/13/6/063004
1005.R. Abbasi et al., Background studies for acoustic neutrino detection at the South Pole, Astropart. Phys. 35 (2012) 312–324.; DOI:10.1016/j.astropartphys.2011.09.004
1006.A. Adulpravitchai, B. Batell and J. Pradler, Non-Abelian Discrete Dark Matter, Phys. Lett. B 700 (2011) 207–216.; DOI:10.1016/j.physletb.2011.04.015
1007.R. Abbasi et al., Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data, Phys. Rev. D 83 (2011) 092003.; DOI:10.1103/PhysRevD.84.079902
1008.A. Dueck, W. Rodejohann and K. Zuber, Neutrinoless Double Beta Decay, the Inverted Hierarchy and Precision Determination of theta(12), Phys. Rev. D 83 (2011) 113010.; DOI:10.1103/PhysRevD.83.113010
1009.J. Kopp, M. Maltoni and T. Schwetz, Are There Sterile Neutrinos at the eV Scale?, Phys. Rev. Lett. 107 (2011) 091801.; DOI:10.1103/PhysRevLett.107.091801
1010.M. Duerr, M. Lindner and K. Zuber, Consistency Test of Neutrinoless Double Beta Decay with one Isotope, Phys. Rev. D 84 (2011) 093004.; DOI:10.1103/PhysRevD.84.093004
1011.S. Choubey et al., International Design Study for the Neutrino Factory, Interim Design Report (2011).; Retrieved from https://arxiv.org/abs/1112.2853
1012.T. Schwetz, Reactor anomaly, Theta(13), and sterile neutrinos, 14th International Workshop on Neutrino Telescopes: Un altro modo di guardare il cielo (pp. 183–192).
1013.N. Haba, K. Oda and R. Takahashi, Dirichlet Higgs as radion stabilizer in warped compactification, JHEP 05 (2011) 125.; DOI:10.1007/JHEP05(2011)125
1014.H. Hettmansperger, M. Lindner and W. Rodejohann, Phenomenological Consequences of sub-leading Terms in See-Saw Formulas, JHEP 04 (2011) 123.; DOI:10.1007/JHEP04(2011)123
1015.R. Abbasi et al., Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector, Phys. Rev. Lett. 106 (2011) 141101.; DOI:10.1103/PhysRevLett.106.141101
1016.T. Asaka, S. Eijima and H. Ishida, Mixing of Active and Sterile Neutrinos, JHEP 04 (2011) 011.; DOI:10.1007/JHEP04(2011)011
1017.R. Abbasi et al., First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector, Phys. Rev. D 84 (2011) 072001.; DOI:10.1103/PhysRevD.84.072001
1018.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, Renormalization Group Running of the Neutrino Mass Operator in Extra Dimensions, JHEP 04 (2011) 052.; DOI:10.1007/JHEP04(2011)052
1019.G. Bellini et al., Muon and Cosmogenic Neutron Detection in Borexino, JINST 6 (2011) P05005.; DOI:10.1088/1748-0221/6/05/P05005
1020.R. Abbasi et al., Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope, Phys. Rev. D 84 (2011) 022004.; DOI:10.1103/PhysRevD.84.022004
1021.R. Abbasi et al., Search for neutrino-induced cascades with five years of AMANDA data, Astropart. Phys. 34 (2011) 420–430.; DOI:10.1016/j.astropartphys.2010.10.007
1022.R. Abbasi et al., Constraints on high-energy neutrino emission from SN 2008D, Astron. Astrophys. 527 (2011) A28.; DOI:10.1051/0004-6361/201015770
1023.E. Aprile et al., Study of the electromagnetic background in the XENON100 experiment, Phys. Rev. D 83 (2011) 082001.; DOI:10.1103/PhysRevD.83.082001
1024.P.-H. Gu, Significant neutrinoless double beta decay with quasi-Dirac neutrinos, Phys. Rev. D 85 (2012) 093016.; DOI:10.1103/PhysRevD.85.093016
1025.W. Rodejohann and H. Zhang, Extension of an empirical charged lepton mass relation to the neutrino sector, Phys. Lett. B 698 (2011) 152–156.; DOI:10.1016/j.physletb.2011.03.007
1026.Y. Sestayo, Search strategies for discovering extraterrestrial neutrinos with IceCube, (E. G. Anassontzis, P. A. Rapidis, & L. K. Resvanis, Eds.)Nucl. Instrum. Meth. A 626-627 (2011) S196–S199.; DOI:10.1016/j.nima.2010.06.264
1027.M. Weber, A study of radon background in the XENON100 experiment, (R. Ford, Ed.)AIP Conf. Proc. 1338 (2011) 208–213.; DOI:10.1063/1.3579583
1028.H. Simgen, Low background aspects of GERDA, (R. Ford, Ed.)AIP Conf. Proc. 1338 (2011) 149–155.; DOI:10.1063/1.3579573
1029.L. Perasso et al., Neutrino interactions at few MeV: Results from Borexino at Gran Sasso, (R. Caruso, A. Insolia, M. C. Maccarone, & V. Pirronello, Eds.)Nucl. Phys. B Proc. Suppl. 212-213 (2011) 121–127.; DOI:10.1016/j.nuclphysbps.2011.03.017
1030.M. Lindner and C. Weinheimer, Den Geisterteilchen auf der Spur, Physik J. 10N7 (2011) 31–37.
1031.E. Kh. Akhmedov and T. Schwetz, New MiniBooNE results and non-standard neutrino interactions, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 217 (2011) 217–219.; DOI:10.1016/j.nuclphysbps.2011.04.106
1032.W. Rodejohann and M. Shiozawa, Messengers of new physics, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 217 (2011) 383–387.; DOI:10.1016/j.nuclphysbps.2011.04.143
1033.C. Aberle, C. Buck, F. X. Hartmann, S. Schonert and S. Wagner, Light output of Double Chooz scintillators for low energy electrons, JINST 6 (2011) P11006.; DOI:10.1088/1748-0221/6/11/P11006
1034.S. Schonert, New techniques in 0nu beta beta germanium experiments, (G. Mills, S. Elliott, T. Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl. 221 (2011) 244–247.; DOI:10.1016/j.nuclphysbps.2011.09.011
1035.C. Buck, A. Di Vacri, G. Mention and D. Motta, Scintillator \& and construction of a prototype for the Double Chooz experiment, (G. Mills, S. Elliott, T. Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl. 221 (2011) 372.; DOI:10.1016/j.nuclphysbps.2011.10.020
1036.P. Huber, J. Kopp, M. Lindner, A. Merle, W. Rodejohann, M. Rolinec, T. Schwetz and W. Winter, Physics potential of future reactor neutrino experiments, (G. Mills, S. Elliott, T. Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl. 221 (2011) 360.; DOI:10.1016/j.nuclphysbps.2011.10.010
1037.S. Odrowski, E. Resconi and Y. Sestayo, Search for Galactic Cosmic Ray Accelerators with the combined IceCube 40-strings and AMANDA detector, 32nd International Cosmic Ray Conference (Vol. 4, p. 157).; DOI:10.7529/ICRC2011/V04/0320
1038.E. Resconi, High Energy Neutrino Astronomy: IceCube 22 and 40 Strings, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 267–273.; DOI:10.1016/j.nuclphysbps.2012.09.042
1039.G. Aad et al., Measurement of underlying event characteristics using charged particles in pp collisions at \(\sqrt{s} = 900 GeV\) and 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 112001.; DOI:10.1103/PhysRevD.83.112001
1040.J. Barry, R. N. Mohapatra and W. Rodejohann, Testing the Bimodal/Schizophrenic Neutrino Hypothesis in Neutrino-less Double Beta Decay and Neutrino Telescopes, Phys. Rev. D 83 (2011) 113012.; DOI:10.1103/PhysRevD.83.113012
1041.A. Adulpravitchai, K. Kojima and R. Takahashi, Cascade Textures and SUSY SO(10) GUT, JHEP 02 (2011) 086.; DOI:10.1007/JHEP02(2011)086
1042.J. Heeck and W. Rodejohann, Neutrino Phenomenology of gauged \(L_\mu - L_\tau\): MINOS and beyond, (B. S. Acharya, M. Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc. 1382 (2011) 144–146.; DOI:10.1063/1.3644295
1043.R. Abbasi et al., Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector, Astrophys. J. 732 (2011) 18.; DOI:10.1088/0004-637X/732/1/18
1044.M. Agostini, C. A. Ur, D. Budjas, E. Bellotti, R. Brugnera, C. M. Cattadori, A. di Vacri, A. Garfagnini, L. Pandola and S. Schonert, Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76, JINST 6 (2011) P03005.; DOI:10.1088/1748-0221/6/03/P03005
1045.J. Kopp, V. Niro, T. Schwetz and J. Zupan, Leptophilic Dark Matter in Direct Detection Experiments and in the Sun, PoS IDM2010 (2011) 118.; DOI:10.22323/1.110.0118
1046.P.-H. Gu, Double and Linear Seesaw from Left-Right and Peccei-Quinn Symmetry Breaking (2010).; Retrieved from https://arxiv.org/abs/1011.2380
1047.E. Kh. Akhmedov, Beta decay and other processes in strong electromagnetic fields, Phys. Atom. Nucl. 74 (2011) 1299–1315.; DOI:10.1134/S1063778811080035
1048.W. Rodejohann and H. Zhang, Higgs triplets at like-sign linear colliders and neutrino mixing, Phys. Rev. D 83 (2011) 073005.; DOI:10.1103/PhysRevD.83.073005
1049.F. Bezrukov, F. Kahlhoefer, M. Lindner, F. Kahlhoefer and M. Lindner, Interplay between scintillation and ionization in liquid xenon Dark Matter searches, Astropart. Phys. 35 (2011) 119–127.; DOI:10.1016/j.astropartphys.2011.06.008
1050.P.-H. Gu and M. Lindner, Natural Inflation and Flavor Mixing from Peccei-Quinn Symmetry Breaking, Phys. Lett. B 697 (2011) 229–232.; DOI:10.1016/j.physletb.2011.02.005
1051.K. Kojima, H. Sawanaka and R. Takahashi, Cascade Hierarchy in SUSY SU(5) GUT (2010).; Retrieved from https://arxiv.org/abs/1011.5678
1052.T. Schwetz, Direct detection data and possible hints for low-mass WIMPs, PoS IDM2010 (2011) 070.; DOI:10.22323/1.110.0070
1053.M. Lindner, A. Merle and V. Niro, Soft \(L_e - L_\mu - L_\tau\) flavour symmetry breaking and sterile neutrino keV Dark Matter, JCAP 01 (2011) 034.; DOI:10.1088/1475-7516/2011/01/034
1054.W. Rodejohann, Neutrinoless Double Beta Decay in Particle Physics, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 113–117.; DOI:10.1016/j.nuclphysbps.2012.09.018
1055.G. Bellini et al., Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS, Phys. Lett. B 696 (2011) 191–196.; DOI:10.1016/j.physletb.2010.12.030
1056.S. Ray, W. Rodejohann and M. A. Schmidt, Lower bounds on the smallest lepton mixing angle, Phys. Rev. D 83 (2011) 033002.; DOI:10.1103/PhysRevD.83.033002
1057.K. L. McDonald, Light Neutrinos from a Mini-Seesaw Mechanism in Warped Space, Phys. Lett. B 696 (2011) 266–272.; DOI:10.1016/j.physletb.2010.12.059
1058.R. Abbasi et al., Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube, Phys. Rev. D 83 (2011) 012001.; DOI:10.1103/PhysRevD.83.012001
1059.R. Abbasi et al., Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube, Phys. Rev. D 82 (2010) 112003.; DOI:10.1103/PhysRevD.82.112003
1060.P.-H. Gu and M. Lindner, Universal Seesaw from Left-Right and Peccei-Quinn Symmetry Breaking, Phys. Lett. B 698 (2011) 40–43.; DOI:10.1016/j.physletb.2011.02.042
1061.P. Di Bari, S. F. King, C. Luhn, A. Merle and A. Schmidt-May, Radiative Inflation and Dark Energy, Phys. Rev. D 84 (2011) 083524.; DOI:10.1103/PhysRevD.84.083524
1062.K. L. McDonald and D. E. Morrissey, Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector, JHEP 02 (2011) 087.; DOI:10.1007/JHEP02(2011)087
1063.R. Alonso et al., Summary Report of MINSIS Workshop in Madrid, Madrid Neutrino NSI Workshop (MINSIS).; Retrieved from https://arxiv.org/abs/1009.0476
1064.P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev. D 83 (2011) 055008.; DOI:10.1103/PhysRevD.83.055008
1065.R. Abbasi et al., The first search for extremely-high energy cosmogenic neutrinos with the IceCube Neutrino Observatory, Phys. Rev. D 82 (2010) 072003.; DOI:10.1103/PhysRevD.82.072003
1066.Y. Shimizu and R. Takahashi, Deviations from Tri-Bimaximality and Quark-Lepton Complementarity, EPL 93 (2011) 61001.; DOI:10.1209/0295-5075/93/61001
1067.R. Abbasi et al., Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope, Eur. Phys. J. C 69 (2010) 361–378.; DOI:10.1140/epjc/s10052-010-1411-6
1068.E. Kh. Akhmedov and A. Yu. Smirnov, Neutrino oscillations: Entanglement, energy-momentum conservation and QFT, Found. Phys. 41 (2011) 1279–1306.; DOI:10.1007/s10701-011-9545-4
1069.S. S. C. Law and K. L. McDonald, Broken Symmetry as a Stabilizing Remnant, Phys. Rev. D 82 (2010) 104032.; DOI:10.1103/PhysRevD.82.104032
1070.F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016.; DOI:10.1007/JHEP01(2011)016
1071.A. Adulpravitchai, P.-H. Gu and M. Lindner, Connections between the Seesaw and Dark Matter Searches, Phys. Rev. D 82 (2010) 073013.; DOI:10.1103/PhysRevD.82.073013
1072.P.-H. Gu and U. Sarkar, Leptogenesis with Linear, Inverse or Double Seesaw, Phys. Lett. B 694 (2011) 226–232.; DOI:10.1016/j.physletb.2010.09.062
1073.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) and different Muon Neutrino and Anti-Neutrino Oscillations: MINOS and beyond, J. Phys. G 38 (2011) 085005.; DOI:10.1088/0954-3899/38/8/085005
1074.E. Akhmedov and T. Schwetz, MiniBooNE and LSND data: Non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations, JHEP 10 (2010) 115.; DOI:10.1007/JHEP10(2010)115
1075.J. Barry and W. Rodejohann, Neutrino Mass Sum-rules in Flavor Symmetry Models, Nucl. Phys. B 842 (2011) 33–50.; DOI:10.1016/j.nuclphysb.2010.08.015
1076.F. Bezrukov, Inflation in the standard model and \(\nu\)MSM with non-minimal coupling to gravity, (J.-M. Alimi & A. Fuzfa, Eds.)AIP Conf. Proc. 1241 (2010) 511–520.; DOI:10.1063/1.3462679
1077.R. Mehrem and A. Hohenegger, A Generalisation For The Infinite Integral Over Three Spherical Bessel Functions, J. Phys. A 43 (2010) 9.; DOI:10.1088/1751-8113/43/45/455204
1078.A. Dueck, S. Petcov and W. Rodejohann, On Leptonic Unitary Triangles and Boomerangs, Phys. Rev. D 82 (2010) 013005.; DOI:10.1103/PhysRevD.82.013005
1079.T. Kobayashi, Y. Nakai and R. Takahashi, Revisiting superparticle spectra in superconformal flavor models, JHEP 09 (2010) 093.; DOI:10.1007/JHEP09(2010)093
1080.P.-H. Gu, Relations between Neutrino and Charged Fermion Masses, Phys. Rev. Lett. 105 (2010) 131802.; DOI:10.1103/PhysRevLett.105.131802
1081.P.-H. Gu, Large Lepton Asymmetry for Small Baryon Asymmetry and Warm Dark Matter, Phys. Rev. D 82 (2010) 093009.; DOI:10.1103/PhysRevD.82.093009
1082.J. Bernabeu et al., EURONU WP6 2009 Yearly Report: Update of the Physics Potential of Nufact, Superbeams and Betabeams (2010).; Retrieved from https://arxiv.org/abs/1005.3146
1083.M. Lindner, A. Merle and V. Niro, Enhancing Dark Matter Annihilation into Neutrinos, Phys. Rev. D 82 (2010) 123529.; DOI:10.1103/PhysRevD.82.123529
1084.R. Abbasi et al., Measurement of the Anisotropy of Cosmic Ray Arrival Directions with IceCube, Astrophys. J. Lett. 718 (2010) L194.; DOI:10.1088/2041-8205/718/2/L194
1085.W. Rodejohann, Inverse Neutrino-less Double Beta Decay Revisited: Neutrinos, Higgs Triplets and a Muon Collider, Phys. Rev. D 81 (2010) 114001.; DOI:10.1103/PhysRevD.81.114001
1086.N. Haba, K. Oda and R. Takahashi, Phenomenological Aspects of Dirichlet Higgs Model from Extra-Dimension, JHEP 07 (2010) 079.; DOI:10.1007/JHEP07(2010)079
1087.M. Garny, A. Hohenegger and A. Kartavtsev, Quantum corrections to leptogenesis from the gradient expansion (2010).; Retrieved from https://arxiv.org/abs/1005.5385
1088.E. Akhmedov, Neutrino oscillations in quantum mechanics and quantum field theory, Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond (pp. 377–391).; DOI:10.1142/9789814350198_0036
1089.P.-H. Gu, E. Ma and U. Sarkar, Pseudo-Majoron as Dark Matter, Phys. Lett. B 690 (2010) 145–148.; DOI:10.1016/j.physletb.2010.05.012
1090.R. Abbasi et al., Measurement of Acoustic Attenuation in South Pole Ice, Astropart. Phys. 34 (2011) 382–393.; DOI:10.1016/j.astropartphys.2010.10.003
1091.R. Abbasi et al., The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector, Astropart. Phys. 34 (2010) 48–58.; DOI:10.1016/j.astropartphys.2010.05.001
1092.A. Merle, The GSI oscillation mystery, (A. Faessler & V. Rodin, Eds.)Prog. Part. Nucl. Phys. 64 (2010) 445–447.; DOI:10.1016/j.ppnp.2009.12.071
1093.S. Choubey et al., International Design Study for the Neutrino Factory: First Progress Report (2010).
1094.G. Bellini et al., Observation of Geo-Neutrinos, Phys. Lett. B 687 (2010) 299–304.; DOI:10.1016/j.physletb.2010.03.051
1095.K.-I. Izawa, Y. Nakai and R. Takahashi, Nonlinearly Realized Extended Supergravity, Phys. Rev. D 82 (2010) 075008.; DOI:10.1103/PhysRevD.82.075008
1096.J. Barry and W. Rodejohann, Deviations from tribimaximal mixing due to the vacuum expectation value misalignment in \(A_4\) models, Phys. Rev. D 81 (2010) 093002.; DOI:10.1103/PhysRevD.81.119901
1097.M. Mezzetto and T. Schwetz, \(\theta_{13}\): Phenomenology, present status and prospect, J. Phys. G 37 (2010) 103001.; DOI:10.1088/0954-3899/37/10/103001
1098.W. Rodejohann, Non-Unitary PMNS Matrix, Leptogenesis and Low Energy CP Violation, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 93–97.; DOI:10.1063/1.3399406
1099.M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028.; DOI:10.1103/PhysRevD.81.085028
1100.R. Abbasi et al., Calibration and Characterization of the IceCube Photomultiplier Tube, Nucl. Instrum. Meth. A 618 (2010) 139–152.; DOI:10.1016/j.nima.2010.03.102
1101.P.-H. Gu, Resonant Leptogenesis and Verifiable Seesaw from Large Extra Dimensions, Phys. Rev. D 81 (2010) 073002.; DOI:10.1103/PhysRevD.81.073002
1102.P.-H. Gu, A Left-Right Symmetric Model for Neutrino Masses, Baryon Asymmetry and Dark Matter, Phys. Rev. D 81 (2010) 095002.; DOI:10.1103/PhysRevD.81.095002
1103.F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47–54.; DOI:10.1016/j.physletb.2010.01.030
1104.A. Adulpravitchai and M. A. Schmidt, Flavored Orbifold GUT - an SO(10) x S4 model, JHEP 01 (2011) 106.; DOI:10.1007/JHEP01(2011)106
1105.E. Kh. Akhmedov and J. Kopp, Neutrino Oscillations: Quantum Mechanics vs. Quantum Field Theory, JHEP 04 (2010) 008.; DOI:10.1007/JHEP04(2010)008
1106.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a storage ring, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio, Eds.)J. Phys. Conf. Ser. 203 (2010) 012098.; DOI:10.1088/1742-6596/203/1/012098
1107.A. Smolnikov, Development and installation of the GERDA experiment, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio, Eds.)J. Phys. Conf. Ser. 203 (2010) 012059.; DOI:10.1088/1742-6596/203/1/012059
1108.S. Schonert, Neutrinoless double beta decay, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio, Eds.)J. Phys. Conf. Ser. 203 (2010) 012014.; DOI:10.1088/1742-6596/203/1/012014
1109.W. Rodejohann, Scaling in the neutrino mass matrix and the see-saw mechanism, (A. Faessler & V. Rodin, Eds.)Prog. Part. Nucl. Phys. 64 (2010) 321–323.; DOI:10.1016/j.ppnp.2009.12.041
1110.C. H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing, Eur. Phys. J. C 70 (2010) 1099–1110.; DOI:10.1140/epjc/s10052-010-1492-2
1111.M. Misiaszek et al., Results from the Borexino experiment, (A. Zalewska, Ed.)Acta Phys. Polon. B 41 (2010) 1603–1610.
1112.M. Barnabe-Heider, D. Budjas, K. Gusev and S. Schonert, Operation and performance of a bare broad-energy germanium detector in liquid argon, JINST 5 (2010) P10007.; DOI:10.1088/1748-0221/5/10/P10007
1113.A. Hohenegger, Finite density aspects of leptogenesis, (S. Cabrera, M. Hirsch, V. Mitsou, C. Munoz, S. Pastor, M. A. Tortola, J. W. F. Valle, et al., Eds.)J. Phys. Conf. Ser. 259 (2010) 012074.; DOI:10.1088/1742-6596/259/1/012074
1114.T. Schwetz, Neutrino physics: A theoretical review, (F. Bianchi, Ed.)PoS FPCP2010 (2010) 051.; DOI:10.22323/1.116.0051
1115.H. Simgen, Observation of neutrinos from sun and earth with the BOREXINO detector, (F. M. Rieger, C. van Eldik, & W. Hofmann, Eds.)PoS TEXAS2010 (2010) 215.; DOI:10.22323/1.123.0215
1116.S. Riboldi, C. Cattadori, A. D’Andragora, A. Pullia, F. Zocca, M. Barnabe-Heider and D. Budjas, A low-noise charge sensitive preamplifier for Ge spectroscopy operating at cryogenic temperature in the GERDA experiment, 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and 17th Room Temperature Semiconductor Detectors Workshop (pp. 1386–1388).; DOI:10.1109/NSSMIC.2010.5873998
1117.D. Budjas, O. Chkvorets and S. Schonert, Background suppression using pulse shape analysis with a BEGe detector for neutrinoless double beta decay search with GERDA, (M. L. Marshak, Ed.)AIP Conf. Proc. 1182 (2009) 96–99.; DOI:10.1063/1.3293966
1118.F. Bezrukov and D. Gorbunov, Light inflaton Hunter’s Guide, JHEP 05 (2010) 010.; DOI:10.1007/JHEP05(2010)010
1119.M. Holthausen and R. Takahashi, GIMPs from Extra Dimensions, Phys. Lett. B 691 (2010) 56–59.; DOI:10.1016/j.physletb.2010.06.012
1120.W. Rodejohann, On Non-Unitary Lepton Mixing and Neutrino Mass Observables, Phys. Lett. B 684 (2010) 40–47.; DOI:10.1016/j.physletb.2009.12.031
1121.J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014.; DOI:10.1088/1475-7516/2010/02/014
1122.F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of the Standard Model, Phys. Rev. D 81 (2010) 085032.; DOI:10.1103/PhysRevD.81.085032
1123.G. Bellini et al., New experimental limits on the Pauli forbidden transitions in C-12 nuclei obtained with 485 days Borexino data, Phys. Rev. C 81 (2010) 034317.; DOI:10.1103/PhysRevC.81.034317
1124.M. Holthausen, M. Lindner and M. A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right Symmetric Model, Phys. Rev. D 82 (2010) 055002.; DOI:10.1103/PhysRevD.82.055002
1125.R. Abbasi et al., Extending the search for neutrino point sources with IceCube above the horizon, Phys. Rev. Lett. 103 (2009) 221102.; DOI:10.1103/PhysRevLett.103.221102
1126.J. Kopp and A. Merle, Ultra-low Q values for neutrino mass measurements, Phys. Rev. C 81 (2010) 045501.; DOI:10.1103/PhysRevC.81.045501
1127.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter, Phys. Rev. D 81 (2010) 085027.; DOI:10.1103/PhysRevD.81.085027
1128.N. Haba, K. Oda and R. Takahashi, Dirichlet Higgs in extra-dimension, consistent with electroweak data, Acta Phys. Polon. B 42 (2011) 33–44.; DOI:10.5506/APhysPolB.42.33
1129.M. Pallavicini et al., Solar neutrino results from Borexino and main future perspectives, (A. Capone, M. De Vincenzi, F. Lucarelli, A. Morselli, & V. Vitale, Eds.)Nucl. Instrum. Meth. A 630 (2011) 210–213.; DOI:10.1016/j.nima.2010.06.067
1130.T. Kobayashi, Y. Nakai and R. Takahashi, Fine Tuning in General Gauge Mediation, JHEP 01 (2010) 003.; DOI:10.1007/JHEP01(2010)003
1131.R. Abbasi et al., Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector, Phys. Rev. D 81 (2010) 057101.; DOI:10.1103/PhysRevD.81.057101
1132.N. Haba, K. Oda and R. Takahashi, Diagonal Kaluza-Klein expansion under brane localized potential, Acta Phys. Polon. B 41 (2010) 1291–1316.; Retrieved from https://arxiv.org/abs/0910.4528
1133.T. Schwetz, Phenomenology of future neutrino oscillation experiments, European Strategy for Future Neutrino Physics (pp. 75–84).
1134.T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu model, Phys. Lett. B 681 (2009) 269–275.; DOI:10.1016/j.physletb.2009.10.025
1135.S. Choubey and W. Rodejohann, Flavor Composition of UHE Neutrinos at Source and at Neutrino Telescopes, Phys. Rev. D 80 (2009) 113006.; DOI:10.1103/PhysRevD.80.113006
1136.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Vertex contribution to the CP-violating parameter, Phys. Rev. D 80 (2009) 125027.; DOI:10.1103/PhysRevD.80.125027
1137.V. Niro, A. Bottino, N. Fornengo and S. Scopel, Investigating light neutralinos at neutrino telescopes, Phys. Rev. D 80 (2009) 095019.; DOI:10.1103/PhysRevD.80.095019
1138.R. Abbasi et al., Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy, Astropart. Phys. 33 (2010) 277–286.; DOI:10.1016/j.astropartphys.2010.01.012
1139.J. Kopp, M. Lindner, V. Niro and T. E. J. Underwood, On the Consistency of Perturbativity and Gauge Coupling Unification, Phys. Rev. D 81 (2010) 025008.; DOI:10.1103/PhysRevD.81.025008
1140.D. Budjas, M. Barnabe Heider, O. Chkvorets, N. Khanbekov and S. Schonert, Pulse shape discrimination studies with a Broad-Energy Germanium detector for signal identification and background suppression in the GERDA double beta decay experiment, JINST 4 (2009) P10007.; DOI:10.1088/1748-0221/4/10/P10007
1141.A. Adulpravitchai, M. Lindner, A. Merle and R. N. Mohapatra, Radiative Transmission of Lepton Flavor Hierarchies, Phys. Lett. B 680 (2009) 476–479.; DOI:10.1016/j.physletb.2009.09.042
1142.P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044.; DOI:10.1088/1126-6708/2009/11/044
1143.A. Adulpravitchai, M. Lindner and A. Merle, Confronting Flavour Symmetries and extended Scalar Sectors with Lepton Flavour Violation Bounds, Phys. Rev. D 80 (2009) 055031.; DOI:10.1103/PhysRevD.80.055031
1144.R. Abbasi et al., Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope, Astrophys. J. 710 (2010) 346–359.; DOI:10.1088/0004-637X/710/1/346
1145.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries, JHEP 09 (2009) 018.; DOI:10.1088/1126-6708/2009/09/018
1146.S. Goswami, S. T. Petcov, S. Ray and W. Rodejohann, Large |U(e3)| and Tri-bimaximal Mixing, Phys. Rev. D 80 (2009) 053013.; DOI:10.1103/PhysRevD.80.053013
1147.J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502.; DOI:10.1103/PhysRevD.80.083502
1148.A. Merle, Why a splitting in the final state cannot explain the GSI-Oscillations, Phys. Rev. C 80 (2009) 054616.; DOI:10.1103/PhysRevC.80.054616
1149.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring Neutrino Mass with Radioactive Ions in a Storage Ring, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 165–168.; DOI:10.1063/1.3399282
1150.J. Kopp, T. Ota and W. Winter, Optimization study for non-standard interaction search in a neutrino factory, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 135–139.; DOI:10.1063/1.3399275
1151.S. Choubey, T. Schwetz and C. Walter, Working Group 1 Report (Theory), (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 65–74.; DOI:10.1063/1.3399397
1152.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Flavor Symmetries from T**2/Z(N) Orbifolds, JHEP 07 (2009) 053.; DOI:10.1088/1126-6708/2009/07/053
1153.D. Franco et al., The First year of Borexino, Heavy Quarks and Leptons 2008 (HQ&L08).; Retrieved from https://arxiv.org/abs/0905.1044
1154.E. Kh. Akhmedov and A. Yu. Smirnov, Paradoxes of neutrino oscillations, Phys. Atom. Nucl. 72 (2009) 1363–1381.; DOI:10.1134/S1063778809080122
1155.A. S. Joshipura and W. Rodejohann, Scaling in the Neutrino Mass Matrix, mu-tau Symmetry and the See-Saw Mechanism, Phys. Lett. B 678 (2009) 276–282.; DOI:10.1016/j.physletb.2009.06.035
1156.R. Abbasi et al., First Neutrino Point-Source Results From the 22-String IceCube Detector, Astrophys. J. Lett. 701 (2009) L47–L51.; DOI:10.1088/0004-637X/701/1/L47
1157.S. Goswami, S. Khan and W. Rodejohann, Minimal Textures in Seesaw Mass Matrices and their low and high Energy Phenomenology, Phys. Lett. B 680 (2009) 255–262.; DOI:10.1016/j.physletb.2009.08.056
1158.F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089.; DOI:10.1088/1126-6708/2009/07/089
1159.M. Garny and M. M. Muller, Kadanoff-Baym Equations with Non-Gaussian Initial Conditions: The Equilibrium Limit, Phys. Rev. D 80 (2009) 085011.; DOI:10.1103/PhysRevD.80.085011
1160.J. Kopp, Mossbauer neutrinos in quantum mechanics and quantum field theory, JHEP 06 (2009) 049.; DOI:10.1088/1126-6708/2009/06/049
1161.A. Adulpravitchai, A. Blum and W. Rodejohann, Golden Ratio Prediction for Solar Neutrino Mixing, New J. Phys. 11 (2009) 063026.; DOI:10.1088/1367-2630/11/6/063026
1162.W. Rodejohann, Non-Unitary Lepton Mixing Matrix, Leptogenesis and Low Energy CP Violation, EPL 88 (2009) 51001.; DOI:10.1209/0295-5075/88/51001
1163.G. Bellini et al., Low energy solar neutrino signals in Borexino, 13th International Workshop on Neutrino Telescopes: Un altro modo di guardare il cielo: Tribute to Galileo (pp. 111–123).
1164.R. Abbasi et al., Search for high-energy muon neutrinos from the ’naked-eye’ GRB 080319B with the IceCube neutrino telescope, Astrophys. J. 701 (2009) 1721–1731.; DOI:10.1088/0004-637X/701/2/1721
1165.R. Abbasi et al., Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II, Phys. Rev. D 79 (2009) 102005.; DOI:10.1103/PhysRevD.79.102005
1166.R. Abbasi et al., Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector, Phys. Rev. Lett. 102 (2009) 201302.; DOI:10.1103/PhysRevLett.102.201302
1167.A. Blum and C. Hagedorn, The Cabibbo Angle in a Supersymmetric D(14) Model, Nucl. Phys. B 821 (2009) 327–353.; DOI:10.1016/j.nuclphysb.2009.06.028
1168.A. Gross and J. L. Bazo Alba, Search for sources of astrophysical neutrinos with IceCube, (F. A. Aharonian, W. Hofmann, & F. Rieger, Eds.)AIP Conf. Proc. 1085 (2009) 779–782.; DOI:10.1063/1.3076795
1169.O. Schulz, The IceCube DeepCore, (F. A. Aharonian, W. Hofmann, & F. Rieger, Eds.)AIP Conf. Proc. 1085 (2009) 783–786.; DOI:10.1063/1.3076796
1170.W. Rodejohann, Deviations from tri-bimaximal mixing, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 336–338.; DOI:10.1016/j.nuclphysbps.2009.02.078
1171.E. Akhmedov, Neutrino oscillograms of the Earth and CP violation in neutrino oscillations, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 204–206.; DOI:10.1016/j.nuclphysbps.2009.02.048
1172.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a storage ring, Eur. Phys. J. C 64 (2009) 549–560.; DOI:10.1140/epjc/s10052-009-1168-y
1173.S. Choubey et al., Working group report: Neutrino physics, (R. Basu, Ed.)Pramana 72 (2009) 269–275.; DOI:10.1007/s12043-009-0023-x
1174.L. Ludhova et al., 200 days of Borexino data, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 90–95.; DOI:10.1016/j.nuclphysbps.2009.02.021
1175.S. Pastor and S. Schonert, Session I: Probing low energy and mass scales, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 371–376.; DOI:10.1016/j.nuclphysbps.2009.02.087
1176.G. Alimonti et al., The liquid handling systems for the Borexino solar neutrino detector, Nucl. Instrum. Meth. A 609 (2009) 58–78.; DOI:10.1016/j.nima.2009.07.028
1177.J. Kisiel et al., The LAGUNA project: Towards the giant liquid based detectors for proton decay searches and for low energy neutrino astrophysics, PoS EPS-HEP2009 (2009) 283.; DOI:10.22323/1.084.0283
1178.E. Resconi and F. Aharonian (Eds.), High-energy gamma-rays and neutrinos from extra-galactic sources. Proceedings, International Workshop, Heidelberg, Germany, January 13-16, 2009 (Vol. 18, pp. pp.1483–1664).
1179.A. D’Andragora et al., Spectroscopic performances of the GERDA cryogenic Charge Sensitive Amplifier based on JFET-CMOS ASIC, coupled to germanium detectors, 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (pp. 396–400).; DOI:10.1109/NSSMIC.2009.5401678
1180.P. Grabmayr, L. Baudis, A. Caldwell, C. Cattadori, M. Hult, J. Jochum, V. Kornoukhov, S. Schönert and K. Zuber, Production chain of isotopically modified ge-diodes for the \(2\beta 0\nu\)-search with GERDA, 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (pp. 1758–1760).; DOI:10.1109/NSSMIC.2009.5402216
1181.C. H. Albright and W. Rodejohann, Comparing Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal Mixing, Eur. Phys. J. C 62 (2009) 599–608.; DOI:10.1140/epjc/s10052-009-1074-3
1182.W. Maneschg, A. Merle and W. Rodejohann, Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay, EPL 85 (2009) 51002.; DOI:10.1209/0295-5075/85/51002
1183.T. Schwetz, Physics Potential of Future Atmospheric Neutrino Searches, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 158–163.; DOI:10.1016/j.nuclphysbps.2009.02.037
1184.M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero \(\theta_{13}\), PoS IDM2008 (2008) 072.; DOI:10.22323/1.064.0072
1185.F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029.; DOI:10.1088/1475-7516/2009/06/029
1186.A. Adulpravitchai, A. Blum and C. Hagedorn, A Supersymmetric D4 Model for mu-tau Symmetry, JHEP 03 (2009) 046.; DOI:10.1088/1126-6708/2009/03/046
1187.S. Schonert, T. K. Gaisser, E. Resconi and O. Schulz, Vetoing atmospheric neutrinos in a high energy neutrino telescope, Phys. Rev. D 79 (2009) 043009.; DOI:10.1103/PhysRevD.79.043009
1188.F. L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88–92.; DOI:10.1016/j.physletb.2009.03.035
1189.F. L. Bezrukov and Y. Burnier, Towards a solution of the strong CP problem by compact extra dimensions, Phys. Rev. D 80 (2009) 125004.; DOI:10.1103/PhysRevD.80.125004
1190.C. Hagedorn, M. A. Schmidt and A. Yu. Smirnov, Lepton Mixing and Cancellation of the Dirac Mass Hierarchy in SO(10) GUTs with Flavor Symmetries T(7) and Sigma(81), Phys. Rev. D 79 (2009) 036002.; DOI:10.1103/PhysRevD.79.036002
1191.O. Smirnov et al., The first year of Borexino, 18th International Conference on Particles and Nuclei (pp. 788–790).
1192.G. Ranucci et al., Results and perspectives of the solar neutrino experiment Borexino, 34th International Conference on High Energy Physics.; Retrieved from https://arxiv.org/abs/0810.0176
1193.R. Abbasi et al., Solar Energetic Particle Spectrum on 13 December 2006 Determined by IceTop, Astrophys. J. Lett. 689 (2008) L65–L68.; DOI:10.1086/595679
1194.E. Kh. Akhmedov and V. Niro, An Accurate analytic description of neutrino oscillations in matter, JHEP 12 (2008) 106.; DOI:10.1088/1126-6708/2008/12/106
1195.F. L. Bezrukov, Non-minimal coupling in inflation and inflating with the Higgs boson, 15th International Seminar on High Energy Physics.; Retrieved from https://arxiv.org/abs/0810.3165
1196.R. Abbasi et al., The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping, Nucl. Instrum. Meth. A 601 (2009) 294–316.; DOI:10.1016/j.nima.2009.01.001
1197.W. Rodejohann, Unified Parametrization for Quark and Lepton Mixing Angles, Phys. Lett. B 671 (2009) 267–271.; DOI:10.1016/j.physletb.2008.12.010
1198.D. Budjas et al., Highly sensitive gamma-spectrometers of GERDA for material screening. Part I., 14th International School on Particles and Cosmology.; Retrieved from https://arxiv.org/abs/0812.0723
1199.D. Budjas, M. Barnabe Heider, O. Chkvorets, S. Schonert and N. Khanbekov, Pulse Shape Analysis with a Broad-Energy Germanium Detector for the GERDA experiment, 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors (pp. 2513–2515).; DOI:10.1109/NSSMIC.2008.4774866
1200.M. Barnabe Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K. Gusev, S. Schönert and M. Shirchenko, Performance of bare high-purity germanium detectors in liquid argon for the GERDA experiment, 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors (pp. 3513–3516).; DOI:10.1109/NSSMIC.2008.4775094
1201.M. Garny, Particle Physics and Dark Energy: Beyond Classical Dynamics (Other thesis).
1202.A. Pullia, F. Zocca, S. Riboldi, D. Budjáš, A. D’Andragora and C. Cattadori, A cryogenic low-noise JFET-CMOS preamplifier for the HPGe detectors of GERDA, 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors (pp. 2056–2060).; DOI:10.1109/NSSMIC.2008.4774881
1203.A. Anisimov, Y. Bartocci and F. L. Bezrukov, Inflaton mass in the nuMSM inflation, Phys. Lett. B 671 (2009) 211–215.; DOI:10.1016/j.physletb.2008.12.028
1204.R. Abbasi et al., Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II, Phys. Rev. D 79 (2009) 062001.; DOI:10.1103/PhysRevD.79.062001
1205.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Theory of the Neutrino Mass, Melbourne Neutrino Theory Workshop (Neutrino 08).; Retrieved from https://arxiv.org/abs/0808.0812
1206.H. Kienert, J. Kopp, M. Lindner and A. Merle, The GSI anomaly, (J. Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser. 136 (2008) 022049.; DOI:10.1088/1742-6596/136/2/022049
1207.G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006.; DOI:10.1103/PhysRevD.82.033006
1208.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A(4) Flavour Symmetry, Nucl. Phys. B 809 (2009) 218–243.; DOI:10.1016/j.nuclphysb.2008.10.002
1209.S. Choubey, W. Rodejohann and P. Roy, Phenomenological consequences of four zero neutrino Yukawa textures, Nucl. Phys. B 808 (2009) 272–291.; DOI:10.1016/j.nuclphysb.2009.04.021
1210.A. Hohenegger, A. Kartavtsev and M. Lindner, Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time, Phys. Rev. D 78 (2008) 085027.; DOI:10.1103/PhysRevD.78.085027
1211.G. Alimonti et al., The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600 (2009) 568–593.; DOI:10.1016/j.nima.2008.11.076
1212.C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302.; DOI:10.1103/PhysRevLett.101.091302
1213.E. Kh. Akhmedov, M. Maltoni and A. Yu. Smirnov, Neutrino oscillograms of the Earth: Effects of 1-2 mixing and CP-violation, JHEP 06 (2008) 072.; DOI:10.1088/1126-6708/2008/06/072
1214.J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007.; DOI:10.1103/PhysRevD.78.053007
1215.W. Rodejohann, The See-saw mechanism: Neutrino mixing, leptogenesis and lepton flavor violation, (R. Basu, Ed.)Pramana 72 (2009) 217–227.; DOI:10.1007/s12043-009-0018-7
1216.C. H. Albright and W. Rodejohann, Model-Independent Analysis of Tri-bimaximal Mixing: A Softly-Broken Hidden or an Accidental Symmetry?, Phys. Lett. B 665 (2008) 378–383.; DOI:10.1016/j.physletb.2008.06.044
1217.E. Meroni et al., Borexino and solar neutrinos, 4th International Workshop on Neutrino Oscillations in Venice: Ten Years after the Neutrino Oscillations (pp. 431–436).
1218.S. Choubey, V. Niro and W. Rodejohann, On Probing \(\theta_{23}\) in Neutrino Telescopes, Phys. Rev. D 77 (2008) 113006.; DOI:10.1103/PhysRevD.77.113006
1219.E. Kh. Akhmedov, J. Kopp and M. Lindner, On application of the time-energy uncertainty relation to Mossbauer neutrino experiments, J. Phys. G 36 (2009) 078001.; DOI:10.1088/0954-3899/36/7/078001
1220.E. Kh. Akhmedov and W. Rodejohann, A Yukawa coupling parameterization for type I + II seesaw formula and applications to lepton flavor violation and leptogenesis, JHEP 06 (2008) 106.; DOI:10.1088/1126-6708/2008/06/106
1221.A. Kartavtsev and D. Besak, Baryogenesis via Leptogenesis in an inhomogeneous Universe, Phys. Rev. D 78 (2008) 083001.; DOI:10.1103/PhysRevD.78.083001
1222.T. Ota, Non-standard neutrino interactions in reactor and superbeam experiments, (O. Yasuda, N. Mondal, & Chihiro. Ohmori, Eds.)AIP Conf. Proc. 981 (2008) 231–233.; DOI:10.1063/1.2898943
1223.G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A\(_4\), JHEP 03 (2008) 052.; DOI:10.1088/1126-6708/2008/03/052
1224.E. Kh. Akhmedov, J. Kopp and M. Lindner, Oscillations of Mossbauer neutrinos, JHEP 05 (2008) 005.; DOI:10.1088/1126-6708/2008/05/005
1225.H. O. Back et al., Study of phenylxylylethane (PXE) as scintillator for low energy neutrino experiments, Nucl. Instrum. Meth. A 585 (2008) 48–60.; DOI:10.1016/j.nima.2007.10.045
1226.G. Bellini et al., Search for solar axions emitted in the M1-transition of Li-7* with Borexino CTF, Eur. Phys. J. C 54 (2008) 61–72.; DOI:10.1140/epjc/s10052-008-0530-9
1227.W. Maneschg, M. Laubenstein, D. Budjas, W. Hampel, G. Heusser, K. T. Knopfle, B. Schwingenheuer and H. Simgen, Measurements of extremely low radioactivity levels in stainless steel for GERDA, Nucl. Instrum. Meth. A 593 (2008) 448–453.; DOI:10.1016/j.nima.2008.05.036
1228.P. Peiffer, T. Pollmann, S. Schonert, A. Smolnikov and S. Vasiliev, Pulse shape analysis of scintillation signals from pure and xenon-doped liquid argon for radioactive background identification, JINST 3 (2008) P08007.; DOI:10.1088/1748-0221/3/08/P08007
1229.G. Bellini et al., First results on Be-7 solar neutrinos from the Borexino real time detector, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052006.; DOI:10.1088/1742-6596/120/5/052006
1230.T. Kirsten, Retrospect of GALLEX/GNO, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052013.; DOI:10.1088/1742-6596/120/5/052013
1231.G. Zuzel, Low-level techniques applied in experiments looking for rare events, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052015.; DOI:10.1088/1742-6596/120/5/052015
1232.H. Simgen, Status of the GERDA experiment, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052052.; DOI:10.1088/1742-6596/120/5/052052
1233.C. Galbiati et al., New results on solar neutrino fluxes from 192 days of Borexino data, (J. Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser. 136 (2008) 022001.; DOI:10.1088/1742-6596/136/2/022001
1234.P. Huber, J. Kopp, M. Lindner and W. Winter, GLoBES: General long baseline experiment simulator, (A. Breskin, M. Henneaux, V. Mukhanov, & H. Rubinstein, Eds.)PoS NUFACT08 (2008) 145.; DOI:10.22323/1.074.0145
1235.J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, (A. Breskin, M. Henneaux, V. Mukhanov, & H. Rubinstein, Eds.)PoS NUFACT08 (2008) 134.; DOI:10.22323/1.074.0134
1236.M. Barnabe-Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K. Gusev, S. Schonert and M. Shirchenko, Operation of bare HPGe detectors in LAr/LN(2) for the GERDA experiment, (J. Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser. 136 (2008) 042046.; DOI:10.1088/1742-6596/136/4/042046
1237.W. Rodejohann and K. A. Hochmuth, Lepton flavor violation, leptogenesis and neutrino mixing in quark-lepton complementarity scenarios, (S. Khalil, Ed.)Int. J. Mod. Phys. A 22 (2007) 5875–5888.; DOI:10.1142/S0217751X07039092
1238.S. Pakvasa, W. Rodejohann and T. J. Weiler, Unitary parametrization of perturbations to tribimaximal neutrino mixing, Phys. Rev. Lett. 100 (2008) 111801.; DOI:10.1103/PhysRevLett.100.111801
1239.M. Ackermann et al., Search for Ultra High-Energy Neutrinos with AMANDA-II, Astrophys. J. 675 (2008) 1014–1024.; DOI:10.1086/527046
1240.S. Pakvasa, W. Rodejohann and T. J. Weiler, Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements, JHEP 02 (2008) 005.; DOI:10.1088/1126-6708/2008/02/005
1241.J. Kopp, M. Lindner, T. Ota and J. Sato, Impact of non-standard neutrino interactions on future oscillation experiments, 15th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY07) (pp. 756–759).; Retrieved from https://arxiv.org/abs/0710.1867
1242.M. Lindner and M. M. Muller, Comparison of Boltzmann kinetics with quantum dynamics for a chiral Yukawa model far from equilibrium, Phys. Rev. D 77 (2008) 025027.; DOI:10.1103/PhysRevD.77.025027
1243.A. Bandyopadhyay, Physics at a future Neutrino Factory and super-beam facility, (S. Choubey et al., Eds.)Rept. Prog. Phys. 72 (2009) 106201.; DOI:10.1088/0034-4885/72/10/106201
1244.A. Blum, C. Hagedorn and A. Hohenegger, theta(C) from the Dihedral flavor symmetries D(7) and D(14), JHEP 03 (2008) 070.; DOI:10.1088/1126-6708/2008/03/070
1245.A. Blum and A. Merle, General Conditions for Lepton Flavour Violation at Tree- and 1-Loop Level, Phys. Rev. D 77 (2008) 076005.; DOI:10.1103/PhysRevD.77.076005
1246.A. Blum, C. Hagedorn and M. Lindner, Fermion Masses and Mixings from Dihedral Flavor Symmetries with Preserved Subgroups, Phys. Rev. D 77 (2008) 076004.; DOI:10.1103/PhysRevD.77.076004
1247.D. Budjas et al., Highly Sensitive Gamma-Spectrometers of GERDA for Material Screening: Part 2 (2007).; Retrieved from https://arxiv.org/abs/0812.0768
1248.J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007.; DOI:10.1103/PhysRevD.77.013007
1249.C. Arpesella et al., First real time detection of Be-7 solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101–108.; DOI:10.1016/j.physletb.2007.09.054
1250.A. Gross, C. H. Ha, C. Rott, M. Tluczykont, E. Resconi, T. DeYoung and G. Wikstrom, The combined AMANDA and IceCube Neutrino Telescope, 30th International Cosmic Ray Conference (Vol. 3, pp. 1253–1256).
1251.J. K. Becker, W. Rhode, P. L. Biermann, A. Gross, K. Münich and J. Dreyer, On the interpretation of high-energy neutrino limits, 30th International Cosmic Ray Conference (Vol. 3, pp. 1209–1212).
1252.E. Kh. Akhmedov, Do charged leptons oscillate?, JHEP 09 (2007) 116.; DOI:10.1088/1126-6708/2007/09/116
1253.S. Goswami and W. Rodejohann, MiniBooNE results and neutrino schemes with 2 sterile neutrinos: Possible mass orderings and observables related to neutrino masses, JHEP 10 (2007) 073.; DOI:10.1088/1126-6708/2007/10/073
1254.K. A. Hochmuth, S. T. Petcov and W. Rodejohann, U(PMNS) = U**dagger (l) U(nu), Phys. Lett. B 654 (2007) 177–188.; DOI:10.1016/j.physletb.2007.08.072
1255.A. Blum, R. N. Mohapatra and W. Rodejohann, Inverted mass hierarchy from scaling in the neutrino mass matrix: Low and high energy phenomenology, Phys. Rev. D 76 (2007) 053003.; DOI:10.1103/PhysRevD.76.053003
1256.D. Autiero et al., Large underground, liquid based detectors for astro-particle physics in Europe: Scientific case and prospects, JCAP 11 (2007) 011.; DOI:10.1088/1475-7516/2007/11/011
1257.A. Achterberg et al., The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA, Astrophys. J. 674 (2008) 357–370.; DOI:10.1086/524920
1258.A. Achterberg et al., Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector, Phys. Rev. D 76 (2007) 027101.; DOI:10.1103/PhysRevD.76.027101
1259.J. Kopp and M. Lindner, Detecting atmospheric neutrino oscillations in the ATLAS detector at CERN, Phys. Rev. D 76 (2007) 093003.; DOI:10.1103/PhysRevD.76.093003
1260.M. A. Schmidt, Renormalization group evolution in the type I+ II seesaw model, Phys. Rev. D 76 (2007) 073010.; DOI:10.1103/PhysRevD.76.073010
1261.M. Wojcik and G. Zuzel, Behavior of the Rn-222 daughters on copper surfaces during cleaning, (P. Loaiza, Ed.)AIP Conf. Proc. 897 (2007) 53–58.; DOI:10.1063/1.2722068
1262.H. Simgen and G. Zuzel, Ultrapure gases: From the production plant to the laboratory, (P. Loaiza, Ed.)AIP Conf. Proc. 897 (2007) 45–50.; DOI:10.1063/1.2722067
1263.M. Wojcik and G. Zuzel, A novel low background cryogenic detector for radon in gas, (P. Loaiza, Ed.)AIP Conf. Proc. 897 (2007) 39–44.; DOI:10.1063/1.2722066
1264.S. Kanemura, K. Matsuda, T. Ota, S. Petcov, T. Shindou, E. Takasugi and K. Tsumura, CP violation due to multi Froggatt-Nielsen fields, Eur. Phys. J. C 51 (2007) 927–931.; DOI:10.1140/epjc/s10052-007-0343-2
1265.K. A. Hochmuth, M. Lindner and G. G. Raffelt, Exploiting the directional sensitivity of the Double Chooz near detector, Phys. Rev. D 76 (2007) 073001.; DOI:10.1103/PhysRevD.76.073001
1266.M. Barnabe Heider et al., Operation of a GERDA Phase I prototype detector in liquid argon and nitrogen, 14th International School on Particles and Cosmology.; Retrieved from https://arxiv.org/abs/0812.3976
1267.J. Kopp, M. Lindner and A. Merle, Self-Calibration of Neutrino Detectors using characteristic Backgrounds, Nucl. Instrum. Meth. A 582 (2007) 456–461.; DOI:10.1016/j.nima.2007.08.239
1268.A. Merle and W. Rodejohann, Getting Information on |U(e3)|**2 from Neutrino-less Double Beta Decay, Adv. High Energy Phys. 2007 (2007) 82674.; DOI:10.1155/2007/82674
1269.M. Lindner and W. Rodejohann, Large and almost maximal neutrino mixing within the type II see-saw mechanism, JHEP 05 (2007) 089.; DOI:10.1088/1126-6708/2007/05/089
1270.W. Rodejohann, Broken mu - tau symmetry and leptonic CP violation, 12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery (pp. 313–328).
1271.M. I. Adamovich et al., Observation of a resonance in the K(s)p decay channel at a mass of 1765 MeV/c**2, Eur. Phys. J. C 50 (2007) 535–538.; DOI:10.1140/epjc/s10052-007-0284-9
1272.J. Kopp, M. Lindner and T. Ota, Discovery reach for non-standard interactions in a neutrino factory, Phys. Rev. D 76 (2007) 013001.; DOI:10.1103/PhysRevD.76.013001
1273.M. Di Marco, P. Peiffer and S. Schonert, LArGe: Background suppression using liquid argon (LAr) scintillation for 0 nu beta beta decay search with enriched germanium (Ge) detectors, (P. S. Marrocchesi, F. L. Navarria, M. Paganoni, & P. G. Pelfer, Eds.)Nucl. Phys. B Proc. Suppl. 172 (2007) 45–48.; DOI:10.1016/j.nuclphysbps.2007.07.019
1274.S. Funk et al., XMM-Newton observations reveal the X-ray counterpart of the very-high-energy gamma-ray source HESSJ1640-465, Astrophys. J. 662 (2007) 517–524.; DOI:10.1086/516567
1275.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432–438.; DOI:10.1016/j.cpc.2007.05.004
1276.E. Resconi, IceCube: Multiwavelength search for neutrinos from transient point sources, (F. Halzen, A. Karle, & T. Montaruli, Eds.)J. Phys. Conf. Ser. 60 (2007) 223–226.; DOI:10.1088/1742-6596/60/1/047
1277.A. Kappes, J. Hinton, C. Stegmann and F. A. Aharonian, Potential neutrino signals from galactic gamma-ray sources, (F. Halzen, A. Karle, & T. Montaruli, Eds.)J. Phys. Conf. Ser. 60 (2007) 243–246.; DOI:10.1088/1742-6596/60/1/052
1278.C. Cattadori, O. Chkvorets, C. Tomei, M. Junker, L. Pandola, K. Kroninger, A. Pullia, F. Zocca, V. Re and C. Ur, The GERmanium Detector Array read-out: Status and developments, (F. Cervelli, F. Forti, R. Paoletti, & A. Scribano, Eds.)Nucl. Instrum. Meth. A 572 (2007) 479–480.; DOI:10.1016/j.nima.2006.10.226
1279.M. I. Adamovich et al., Production of V0 pairs in the hyperon experiment WA89, Eur. Phys. J. C 52 (2007) 857–874.; DOI:10.1140/epjc/s10052-007-0436-y
1280.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, GLoBES: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 439–440.; DOI:10.1016/j.cpc.2007.05.007
1281.W. Rodejohann, Neutrino Mixing and Neutrino Telescopes, JCAP 01 (2007) 029.; DOI:10.1088/1475-7516/2007/01/029
1282.M. Garny, B-L-symmetric Baryogenesis with Leptonic Quintessence, (J. Sola, Ed.)J. Phys. A 40 (2007) 7005–7010.; DOI:10.1088/1751-8113/40/25/S53
1283.A. Dighe, S. Goswami and W. Rodejohann, Corrections to Tri-bimaximal Neutrino Mixing: Renormalization and Planck Scale Effects, Phys. Rev. D 75 (2007) 073023.; DOI:10.1103/PhysRevD.75.073023
1284.A. Achterberg et al., Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope, Phys. Rev. D 75 (2007) 102001.; DOI:10.1103/PhysRevD.75.102001
1285.K. A. Hochmuth and W. Rodejohann, On Symmetric Lepton Mixing Matrices, Phys. Lett. B 644 (2007) 147–152.; DOI:10.1016/j.physletb.2006.11.042
1286.J. Kopp, Efficient numerical diagonalization of hermitian 3 x 3 matrices, Int. J. Mod. Phys. C 19 (2008) 523–548.; DOI:10.1142/S0129183108012303
1287.P. Huber, M. Lindner, M. Rolinec and W. Winter, Optimization of a neutrino factory oscillation experiment, Phys. Rev. D 74 (2006) 073003.; DOI:10.1103/PhysRevD.74.073003
1288.J. Kopp, M. Lindner, A. Merle and M. Rolinec, Reactor Neutrino Experiments with a Large Liquid Scintillator Detector, JHEP 01 (2007) 053.; DOI:10.1088/1126-6708/2007/01/053
1289.A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26 (2006) 155–173.; DOI:10.1016/j.astropartphys.2006.06.007
1290.C. Hagedorn, M. Lindner and F. Plentinger, The Discrete flavor symmetry D(5), Phys. Rev. D 74 (2006) 025007.; DOI:10.1103/PhysRevD.74.025007
 
 


Last modified: Thu 25. April 2024 at 15:21:22 , Impressum , Datenschutzhinweis