Publications of the division during the last three years
1.J. Hakenmüller and G. Heusser, CONRADA low level
germanium test detector for the CONUS experiment, Appl.
Radiat. Isot.194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
2.N. Ackermann et al., Monte Carlo simulation of
background components in low level Germanium spectrometry,
Appl. Radiat. Isot.194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
3.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán
Undagoitia, First time-resolved measurement of
infrared scintillation light in gaseous xenon (2023).; Retrieved
from https://arxiv.org/abs/2303.09344
5.A. Trautner, Modular Flavor Symmetries and CP
from the top down, 8th Symposium on
Prospects in the Physics of Discrete Symmetries.; Retrieved
from https://arxiv.org/abs/2302.12626
6.C. Bonilla, J. Herms, O. Medina and E. Peinado, Neutrino mass hierarchy from the discrete dark matter
model, 8th Symposium on Prospects in the
Physics of Discrete Symmetries.; Retrieved from https://arxiv.org/abs/2302.08514
7.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino
mass scales (2023).; Retrieved from https://arxiv.org/abs/2301.10811
8.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F.
Meggendorfer and S. Skambraks, Operation of the
Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware
Perspective, J. Phys. Conf. Ser.2438
(2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
9.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of
neutrino magnetic moments from a galactic supernova burst at upcoming
detectors, PoSICHEP2022 (2022) 597.;
DOI:10.22323/1.414.0597
10.E. Aprile et al., The Triggerless Data
Acquisition System of the XENONnT Experiment (2022).; Retrieved
from https://arxiv.org/abs/2212.11032
11.S. Blasi, J. Bollig and F. Goertz, Holographic
Composite Higgs Model Building: Soft Breaking, Maximal Symmetry, and the
Higgs Mass (2022).; Retrieved from https://arxiv.org/abs/2212.11007
12.I. Bischer, C. Döring and A. Trautner, Telling
compositeness at a distance with outer automorphisms and CP
(2022).; Retrieved from https://arxiv.org/abs/2212.07439
13.M. Agostini et al., Liquid argon light
collection and veto modeling in GERDA Phase II (2022).; Retrieved
from https://arxiv.org/abs/2212.02856
14.A. Bally, Y. Chung and F. Goertz, The Hierarchy
Problem and the Top Yukawa: An Alternative to Top Partner
Solutions (2022).; Retrieved from https://arxiv.org/abs/2211.17254
15.T. Rink and M. Sen, Constraints on pseudo-Dirac
neutrinos using high-energy neutrinos from NGC 1068 (2022).;
Retrieved from https://arxiv.org/abs/2211.16520
16.E. Aprile et al., Low-energy Calibration of
XENON1T with an Internal \(^{37}\)Ar
Source (2022).; Retrieved from https://arxiv.org/abs/2211.14191
17.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma
Rays from Radiative Decay of Heavy Neutrinos? (2022).; Retrieved
from https://arxiv.org/abs/2211.00634
18.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with
Gauged \(U(1)_{L(-R)}\) (2022).;
Retrieved from https://arxiv.org/abs/2210.13402
19.T. Cheng, M. Lindner and M. Sen, Implications of
a matter-antimatter mass asymmetry in Penning-trap experiments
(2022).; Retrieved from https://arxiv.org/abs/2210.10819
20.H. Almazán et al., STEREO neutrino spectrum of
\(^{235}\)U fission rejects sterile
neutrino hypothesis, Nature613 (2023)
257–261.; DOI:10.1038/s41586-022-05568-2
21.E. Aprile et al., Effective Field Theory and
Inelastic Dark Matter Results from XENON1T (2022).; Retrieved
from https://arxiv.org/abs/2210.07591
22.E. Aprile et al., An approximate likelihood for
nuclear recoil searches with XENON1T data, Eur. Phys. J.
C82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
23.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment
on ”Damping of neutrino oscillations, decoherence and the lengths of
neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
24.J. Herms, S. Jana, V. P. K. and S. Saad, Light
thermal relics enabled by a second Higgs, 14th International Workshop on the Identification of Dark
Matter 2022.; Retrieved from https://arxiv.org/abs/2209.14882
25.I. Oda and P. Saake, BRST formalism of Weyl
conformal gravity, Phys. Rev. D106
(2022) 106007.; DOI:10.1103/PhysRevD.106.106007
26.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, Moscow Univ. Phys. Bull.77 (2022) 371–374.; DOI:10.3103/S0027134922020461
27.M. Agostini et al., Search for exotic physics in
double-\(\beta\) decays with GERDA
Phase II, JCAP12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
28.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) Gauge-Higgs Grand Unification: Minimal Viable
Models and Flavor (2022).; Retrieved from https://arxiv.org/abs/2208.13782
29.J. Kubo and J. Kuntz, Spontaneous conformal
symmetry breaking and quantum quadratic gravity, Phys. Rev.
D106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
30.A. N. Khan, Extra dimensions with light and
heavy neutral leptons: an application to CE\(\nu\)NS, JHEP01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
31.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of
heavy-ion collisions and their impact on particle correlations
(2022).; Retrieved from https://arxiv.org/abs/2208.04806
32.E. Akhmedov and A. Y. Smirnov, Damping of
neutrino oscillations, decoherence and the lengths of neutrino wave
packets, JHEP11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
33.A. N. Khan, Light new physics and neutrino
electromagnetic interactions in XENONnT, Phys. Lett. B837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
34.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts,
JCAP11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
35.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of
sterile neutrino dark matter via neutrino self-interactions,
JCAP11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
36.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
boson induced reheating and ultraviolet frozen-in dark matter,
JHEP02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
37.H. Almazan et al., Improved FIFRELIN
de-excitation model for neutrino applications (2022).; Retrieved
from https://arxiv.org/abs/2207.10918
38.E. Aprile et al., Search for New Physics in
Electronic Recoil Data from XENONnT, Phys. Rev. Lett.129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
40.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The first string-derived eclectic
flavor model with realistic phenomenology, JHEP09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
41.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum
gravity to dynamical chiral symmetry breaking (2022).; Retrieved
from https://arxiv.org/abs/2207.09817
42.B. Batell et al., Dark Sector Studies with
Neutrino Beams, 2022 Snowmass Summer
Study.; Retrieved from https://arxiv.org/abs/2207.06898
43.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting
bounds on neutrino magnetic moments and solar magnetic field,
JHEP10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
45.J. Berger et al., Snowmass 2021 White Paper:
Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino
Experiments, 2022 Snowmass Summer Study.;
Retrieved from https://arxiv.org/abs/2207.02882
46.G. Huang, Double and multiple bangs at tau
neutrino telescopes, Eur. Phys. J. C82
(2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
47.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann,
Search for Leptophilic Dark Matter at the
LHeC (2022).; Retrieved from https://arxiv.org/abs/2207.01656
48.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model
(2022).; Retrieved from https://arxiv.org/abs/2206.11903
49.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman
and K. Schmidt-Hoberg, A new life for sterile
neutrino dark matter after the pandemic (2022).; Retrieved from
https://arxiv.org/abs/2206.10630
50.G. Huang and N. Nath, Inference of neutrino
nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with
inverted mass ordering, Eur. Phys. J. C82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
51.S. Jana, Horizontal Symmetry and Large Neutrino
Magnetic Moments, PoSDISCRETE2020-2021
(2022) 037.; DOI:10.22323/1.405.0037
52.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S.
de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for Dark Sector by Repurposing the UVX Brazilian
Synchrotron (2022).; Retrieved from https://arxiv.org/abs/2206.05305
53.A. Schneider et al., Direct measurement of the
\(^{3}\)He\(^{+}\) magnetic moments,
Nature606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
54.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale
detectors, JINST17 (2022) P11025.;
DOI:10.1088/1748-0221/17/11/P11025
55.S. Klett, M. Lindner and A. Trautner, Generating
the Electro-Weak Scale by Vector-like Quark Condensation (2022).;
Retrieved from https://arxiv.org/abs/2205.15323
56.Á. Pastor-Gutiérrez and M. Yamada, UV completion
of extradimensional Yang-Mills theory for Gauge-Higgs unification
(2022).; Retrieved from https://arxiv.org/abs/2205.13250
57.M. Sen, Constraining pseudo-Dirac neutrinos from
a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
58.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the
sterile neutrino portal, Phys. Rev. D106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
59.T. Rink, Coherent elastic neutrino-nucleus
scattering – First constraints/observations and future potential,
56th Rencontres de Moriond on Electroweak
Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
60.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of
mu-tau neutrinos, Phys. Rev. D106
(2022) 083011.; DOI:10.1103/PhysRevD.106.083011
61.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT
Experiments, Phys. Rev. C106 (2022)
024328.; DOI:10.1103/PhysRevC.106.024328
62.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen,
Diffuse supernova neutrino background as a probe of
late-time neutrino mass generation, Phys. Rev. D106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
63.S. Weber, Quantum Field Theory and
Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand
Unification (Master’s thesis). Heidelberg U.
64.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability
from flavour symmetry, JHEP10 (2022)
080.; DOI:10.1007/JHEP10(2022)080
65.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the
cosmic neutrino background, Phys. Rev. D106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
66.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of
neutrino oscillations, JHEP08 (2022)
111.; DOI:10.1007/JHEP08(2022)111
67.L. Gráf, M. Lindner and O. Scholer, Unraveling
the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys.
Rev. D106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
68.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing Heavy Sterile Neutrinos at Ultrahigh Energy
Neutrino Telescopes via the Dipole Portal (2022).; Retrieved from
https://arxiv.org/abs/2204.10347
69.A. Trautner, Anatomy of a top-down approach to
discrete and modular flavor symmetry, PoSDISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
70.K. S. Babu, S. Jana and V. P. K., Correlating
W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model,
Phys. Rev. Lett.129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
71.J. Hakenmüller and W. Maneschg, Identification
of radiopure tungsten for low background applications, J.
Phys. G49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
72.A. de Gouvêa, M. Sen and J. Weill, Visible
neutrino decays and the impact of the daughter-neutrino mass,
Phys. Rev. D106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
73.L. Althueser et al., GPU-based optical
simulation of the DARWIN detector, JINST17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
74.A. N. Khan, \(\sin^2\theta_W\) and neutrino
electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching
factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
75.M. Aker et al., KATRIN: status and prospects for
the neutrino mass and beyond, J. Phys. G49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
76.N. Bartosik et al., Simulated Detector
Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
78.S. Jindariani et al., Promising Technologies and
R&D Directions for the Future Muon Collider Detectors
(2022).; Retrieved from https://arxiv.org/abs/2203.07224
79.C. Awe et al., High Energy Physics Opportunities Using Reactor
Antineutrinos (2022).; Retrieved from https://arxiv.org/abs/2203.07214
82.M. Abdullah et al., Coherent elastic
neutrino-nucleus scattering: Terrestrial and astrophysical
applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
83.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal
Realization of Light Thermal Dark Matter, Phys. Rev.
Lett.129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
84.R. Mammen Abraham et al., Tau neutrinos in the
next decade: from GeV to EeV, J. Phys. G49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
85.J. L. Feng et al., The Forward Physics Facility
at the High-Luminosity LHC, J. Phys. G50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
86.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\)
Anomaly with Neutrino Magnetic Moments, PoSEPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
87.J. Aalbers et al., A next-generation liquid
xenon observatory for dark matter and neutrino physics, J.
Phys. G50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
88.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino
magnetic moments, JCAP09 (2022) 079.;
DOI:10.1088/1475-7516/2022/09/079
89.J. M. Berryman et al., Neutrino Self-Interactions: A White
Paper, 2022 Snowmass Summer Study.;
Retrieved from https://arxiv.org/abs/2203.01955
90.G. Busoni, Capture of DM in Compact
Stars, PoSPANIC2021 (2022) 046.;
DOI:10.22323/1.380.0046
91.M. Agostini et al., Pulse shape analysis in
Gerda Phase II, Eur. Phys. J. C82
(2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
92.J. Kubo and J. Kuntz, Analysis of unitarity in
conformal quantum gravity, Class. Quant. Grav.39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
93.K. S. Babu, P. S. B. Dev and S. Jana, Probing
neutrino mass models through resonances at neutrino telescopes,
Int. J. Mod. Phys. A37 (2022) 2230003.;
DOI:10.1142/S0217751X22300034
94.M. Aker et al., New Constraint on the Local
Relic Neutrino Background Overdensity with the First KATRIN Data
Runs, Phys. Rev. Lett.129 (2022)
011806.; DOI:10.1103/PhysRevLett.129.011806
95.A. Bonhomme et al., Direct measurement of the
ionization quenching factor of nuclear recoils in germanium in the keV
energy range, Eur. Phys. J. C82 (2022)
815.; DOI:10.1140/epjc/s10052-022-10768-1
96.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
Boson-Induced Reheating and Dark Matter Production,
Symmetry14 (2022) 306.; DOI:10.3390/sym14020306
97.H. de Kerret et al., The Double Chooz
antineutrino detectors, Eur. Phys. J. C82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
98.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoSEPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
99.H. Bonet et al., First upper limits on neutrino
electromagnetic properties from the CONUS experiment, Eur.
Phys. J. C82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
100.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles
and electrons in liquid xenon, Rev. Sci. Instrum.93 (2022) 113302.; DOI:10.1063/5.0087216
101.M. Aker et al., Improved eV-scale
sterile-neutrino constraints from the second KATRIN measurement
campaign, Phys. Rev. D105 (2022)
072004.; DOI:10.1103/PhysRevD.105.072004
102.A. N. Khan, Neutrino millicharge and other
electromagnetic interactions with COHERENT-2021 data, Nucl.
Phys. B986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
104.A. Yu. Smirnov and X.-J. Xu, Neutrino bound
states and bound systems, JHEP08
(2022) 170.; DOI:10.1007/JHEP08(2022)170
105.L. Šerkšnytė et al., Reevaluation of the cosmic
antideuteron flux from cosmic-ray interactions and from exotic
sources, Phys. Rev. D105 (2022)
083021.; DOI:10.1103/PhysRevD.105.083021
106.G. Busoni, Capture of Dark Matter in Neutron
Stars, Moscow Univ. Phys. Bull.77
(2022) 301–305.; DOI:10.3103/S0027134922020205
107.A. Ahmed and S. Najjari, Ultraviolet freeze-in
dark matter through the dilaton portal, Phys. Rev. D107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
108.K. S. Babu, S. Jana and A. Thapa, Vector boson
dark matter from trinification, JHEP02
(2022) 051.; DOI:10.1007/JHEP02(2022)051
109.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang,
Searching for new physics from SMEFT and
leptoquarks at the P2 experiment, Phys. Rev. D105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
110.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model
with minimal Higgs sector, JCAP05
(2022) 003.; DOI:10.1088/1475-7516/2022/05/003
111.E. Aprile et al., Emission of single and few
electrons in XENON1T and limits on light dark matter, Phys.
Rev. D106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
112.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs:
singlet-assisted baryogenesis w/o topological defects,
JHEP10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
113.E. Aprile et al., Application and modeling of
an online distillation method to reduce krypton and argon in
XENON1T, PTEP2022 (2022) 053H01.;
DOI:10.1093/ptep/ptac074
114.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino
telescopes, JCAP02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
115.S. Jana, S. Klett and M. Lindner, Flavor seesaw
mechanism, Phys. Rev. D105 (2022)
115015.; DOI:10.1103/PhysRevD.105.115015
116.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Top-down anatomy of flavor symmetry
breakdown, Phys. Rev. D105 (2022)
055018.; DOI:10.1103/PhysRevD.105.055018
117.E. Aprile et al., Material radiopurity control
in the XENONnT experiment, Eur. Phys. J. C82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
119.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of
nonstandard neutrino self-interactions: An EFT approach,
Phys. Rev. D105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
120.G. Huang and N. Nath, Neutrino meets ultralight
dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology,
JCAP05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
121.M. Sajjad Athar et al., Status and perspectives
of neutrino physics, Prog. Part. Nucl. Phys.124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
122.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on
reheating and dark matter production, Phys. Lett. B831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
123.H. Almazán et al., Searching for Hidden
Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO
Experiment, Phys. Rev. Lett.128 (2022)
061801.; DOI:10.1103/PhysRevLett.128.061801
124.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar
extensions, JHEP05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
125.M. Sen, Sterile neutrino dark matter, neutrino
secret self-interactions and extra radiation, J. Phys. Conf.
Ser.2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
126.G. Huang and W. Rodejohann, Tritium beta decay
with modified neutrino dispersion relations: KATRIN in the dark
sea (2021).; Retrieved from https://arxiv.org/abs/2110.03718
127.H. Bonet et al., Novel constraints on neutrino
physics beyond the standard model from the CONUS experiment,
JHEP05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
128.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their
breaking, PoSEPS-HEP2021 (2022) 698.;
DOI:10.22323/1.398.0698
129.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and
N. Rupp, Characterization of alpha and beta
interactions in liquid xenon, Eur. Phys. J. C82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
130.E. Akhmedov, Nuclear fusion catalyzed by doubly
charged scalars: Implications for energy production, Phys.
Rev. D106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
131.L. A. Anchordoqui et al., The Forward Physics
Facility: Sites, experiments, and physics potential, Phys.
Rept.968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
132.M. Aoki, J. Kubo and J. Yang, Inflation and
dark matter after spontaneous Planck scale generation by hidden chiral
symmetry breaking, JCAP01 (2022) 005.;
DOI:10.1088/1475-7516/2022/01/005
133.A. Ismail, S. Jana and R. M. Abraham, Neutrino
up-scattering via the dipole portal at forward LHC detectors,
Phys. Rev. D105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
134.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W.
Thomas and M. Virgato, Improved treatment of dark
matter capture in neutron stars III: nucleon and exotic targets,
JCAP11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
135.F. Goertz, Flavour observables and composite
dynamics: leptons, Eur. Phys. J. ST231
(2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
136.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M.
Bartelmann, Gravitational wave induced baryon
acoustic oscillations, SciPost Phys.12
(2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
137.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei,
Science with the TianQin Observatory: Preliminary
results on stochastic gravitational-wave background, Phys.
Rev. D105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
138.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark
matter particles, PTEP2022 (2022)
013F01.; DOI:10.1093/ptep/ptab139
139.H. Almazán et al., Joint Measurement of the
\(^{235}\)U Antineutrino Spectrum by
Prospect and Stereo, Phys. Rev. Lett.128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
140.A. Y. Smirnov and V. B. Valera, Resonance
refraction and neutrino oscillations, JHEP09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
141.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of
same-sign diboson+ET, Phys. Rev. D105
(2022) 055014.; DOI:10.1103/PhysRevD.105.055014
142.M. Aker et al., Direct neutrino-mass
measurement with sub-electronvolt sensitivity, Nature
Phys.18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
143.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Orbifolds from Sp(4,Z) and their
modular symmetries, Nucl. Phys. B971
(2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
144.M. Aker et al., Precision measurement of the
electron energy-loss function in tritium and deuterium gas for the
KATRIN experiment, Eur. Phys. J. C81
(2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
145.A. Trautner, Living on the Fermi edge: On
baryon transport and Fermi condensation, Phys. Lett. B833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
146.V. C. Antochi et al., Improved quality tests of
R11410-21 photomultiplier tubes for the XENONnT experiment,
JINST16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
147.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M.
Virgato, Improved treatment of dark matter capture
in white dwarfs, JCAP10 (2021) 083.;
DOI:10.1088/1475-7516/2021/10/083
148.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M.
Schmelling, Sub-TeV hadronic interaction model
differences and their impact on air showers, Eur. Phys. J.
C81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
149.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification,
Phys. Rev. D105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
150.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly
and neutrino magnetic moments, JHEP10
(2021) 240.; DOI:10.1007/JHEP10(2021)240
151.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an
explanation of Fermilab muon g \(-\) 2
measurement, Phys. Lett. B820 (2021)
136529.; DOI:10.1016/j.physletb.2021.136529
152.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard
interactions in CE\(\nu\)NS,
Phys. Rev. D104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
153.M. Agostini et al., Characterization of
inverted coaxial \(^{76}\)Ge detectors
in GERDA for future double-\(\beta\)
decay experiments, Eur. Phys. J. C81
(2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
154.M. Agostini et al., Calibration of the Gerda
experiment, Eur. Phys. J. C81 (2021)
682.; DOI:10.1140/epjc/s10052-021-09403-2
155.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O.
Sumensari, Single leptoquark solutions to the
B-physics anomalies, Phys. Rev. D104
(2021) 055017.; DOI:10.1103/PhysRevD.104.055017
156.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence
of oscillations in matter and supernova neutrinos, JCAP06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
157.J. Herms and A. Ibarra, Production and
signatures of multi-flavour dark matter scenarios with t-channel
mediators, JCAP10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
158.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment,
JHEP06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
159.M. Aker et al., The design, construction, and
commissioning of the KATRIN experiment, JINST16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
160.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider,
Phys. Rev. D105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
161.G. Huang and W. Rodejohann, Solving the Hubble
tension without spoiling Big Bang Nucleosynthesis, Phys. Rev.
D103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
162.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon
collider, Phys. Rev. D103 (2021)
095005.; DOI:10.1103/PhysRevD.103.095005
163.K. S. Babu, D. Goncalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
between LHC and Oscillation Experiments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.28
164.S. Jana, V. P. K. and S. Saad, Light Scalar and
Lepton Anomalous Magnetic Moments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.23
165.M. Schmelling, Á. Pastor Gutiérrez, H. Schoorlemmer and R. D.
Parsons, Sub-TeV hadronic interaction model
differences and their impact on air-showers, PoSICRC2021 (2021) 476.; DOI:10.22323/1.395.0476
166.I. Bischer, C. Döring and A. Trautner, Simultaneous Block Diagonalization of Matrices of Finite
Order, J. Phys. A54 (2021) 085203.;
DOI:10.1088/1751-8121/abd979
167.S. Fabian, F. Goertz and Y. Jiang, Dark matter
and nature of electroweak phase transition with an inert doublet,
JCAP09 (2021) 011.; DOI:10.1088/1475-7516/2021/09/011
168.P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F.
Keilbach, T. Plehn, G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost
Phys.13 (2022) 064.; DOI:10.21468/SciPostPhys.13.3.064
169.C. Bonilla, J. Herms, A. Ibarra and P. Strobl, Neutrino parameters in the Planck-scale lepton number
breaking scenario with extended scalar sectors, Phys. Rev.
D103 (2021) 035010.; DOI:10.1103/PhysRevD.103.035010
170.J. Kubo, J. Kuntz, M. Lindner, J. Rezacek, P. Saake and A. Trautner,
Unified emergence of energy scales and cosmic
inflation, JHEP08 (2021) 016.; DOI:10.1007/JHEP08(2021)016
171.N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M.
Virgato, Nucleon Structure and Strong Interactions
in Dark Matter Capture in Neutron Stars, Phys. Rev.
Lett.127 (2021) 111803.; DOI:10.1103/PhysRevLett.127.111803
172.O. Fischer, M. Reininghaus and R. Ulrich, Avenues to new-physics searches in cosmic ray air
showers, PoSICHEP2020 (2021) 602.;
DOI:10.22323/1.390.0602
173.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, PoSICHEP2020
(2021) 143.; DOI:10.22323/1.390.0143
174.E. Aprile et al., Search for Coherent Elastic
Scattering of Solar \(^8\)B Neutrinos
in the XENON1T Dark Matter Experiment, Phys. Rev. Lett.126 (2021) 091301.; DOI:10.1103/PhysRevLett.126.091301
175.P. D. Bolton, F. F. Deppisch, L. Gráf and F. Šimkovic, Two-Neutrino Double Beta Decay with Sterile
Neutrinos, Phys. Rev. D103 (2021)
055019.; DOI:10.1103/PhysRevD.103.055019
176.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and N\(_{eff}\). Part II. The
freeze-in case, JCAP03 (2021) 082.;
DOI:10.1088/1475-7516/2021/03/082
177.E. Aprile et al., Search for inelastic
scattering of WIMP dark matter in XENON1T, Phys. Rev. D103 (2021) 063028.; DOI:10.1103/PhysRevD.103.063028
178.H. Bonet et al., Constraints on elastic
neutrino nucleus scattering in the fully coherent regime from the CONUS
experiment, Phys. Rev. Lett.126 (2021)
041804.; DOI:10.1103/PhysRevLett.126.041804
179.G. Huang and S. Zhou, Tentative sensitivity of
future \(0\nu \beta\beta\)-decay
experiments to neutrino masses and Majorana CP phases,
JHEP03 (2021) 084.; DOI:10.1007/JHEP03(2021)084
180.S. Al Kharusi et al., SNEWS 2.0: a
next-generation supernova early warning system for multi-messenger
astronomy, New J. Phys.23 (2021)
031201.; DOI:10.1088/1367-2630/abde33
181.L. Graf, S. Jana, M. Lindner, W. Rodejohann and X.-J. Xu, Flavored neutrinoless double beta decay, Phys.
Rev. D103 (2021) 055007.; DOI:10.1103/PhysRevD.103.055007
182.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars II: Leptonic Targets, JCAP03
(2021) 086.; DOI:10.1088/1475-7516/2021/03/086
183.H. Bonet et al., Large-size sub-keV sensitive
germanium detectors for the CONUS experiment, Eur. Phys. J.
C81 (2021) 267.; DOI:10.1140/epjc/s10052-021-09038-3
184.E. Akhmedov, Neutrino oscillations in matter:
from microscopic to macroscopic description, JHEP02 (2021) 107.; DOI:10.1007/JHEP02(2021)107
185.J. L. Diaz-Cruz, U. J. Saldana-Salazar, K. M. Tame-Narvaez and V. T.
Tenorth, Natural 2HDMs without FCNCs,
Phys. Rev. D104 (2021) 035018.; DOI:10.1103/PhysRevD.104.035018
186.H. Almazán et al., First antineutrino energy
spectrum from \(^{235}\)U fissions with
the STEREO detector at ILL, J. Phys. G48 (2021) 075107.; DOI:10.1088/1361-6471/abd37a
187.E. Aprile et al., \(^{222}\)Rn emanation measurements for the
XENON1T experiment, Eur. Phys. J. C81
(2021) 337.; DOI:10.1140/epjc/s10052-020-08777-z
188.F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range
mechanisms in \(0\nu\beta\beta\)
decay, Phys. Rev. D102 (2020) 095016.;
DOI:10.1103/PhysRevD.102.095016
189.S. Bruenner, D. Cichon, G. Eurin, P. Herrero Gómez, F. Jörg, T.
Marrodán Undagoitia, H. Simgen and N. Rupp, Radon
daughter removal from PTFE surfaces and its application in liquid xenon
detectors, Eur. Phys. J. C81 (2021)
343.; DOI:10.1140/epjc/s10052-021-09047-2
190.K. S. Babu, P. S. B. Dev, S. Jana and A. Thapa, Unified framework for \(B\)-anomalies, muon \(g − 2\) and neutrino masses,
JHEP03 (2021) 179.; DOI:10.1007/JHEP03(2021)179
191.S. Blasi, V. Brdar and K. Schmitz, Has NANOGrav
found first evidence for cosmic strings?, Phys. Rev.
Lett.126 (2021) 041305.; DOI:10.1103/PhysRevLett.126.041305
192.M. Agostini et al., Final Results of GERDA on
the Search for Neutrinoless Double-\(\beta\) Decay, Phys. Rev.
Lett.125 (2020) 252502.; DOI:10.1103/PhysRevLett.125.252502
193.T. Abrahão et al., Search for signatures of
sterile neutrinos with Double Chooz, Eur. Phys. J. C81 (2021) 775.; DOI:10.1140/epjc/s10052-021-09459-0
194.L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, : a Hilbert series for
the QCD chiral Lagrangian, JHEP01
(2021) 142.; DOI:10.1007/JHEP01(2021)142
195.M. P. Bento, R. Boto, J. P. Silva and A. Trautner, A fully basis invariant Symmetry Map of the 2HDM,
JHEP21 (2020) 229.; DOI:10.1007/JHEP02(2021)220
196.A. N. Khan, Constraints on general light
mediators from PandaX-II electron recoil data, Phys. Lett.
B819 (2021) 136415.; DOI:10.1016/j.physletb.2021.136415
197.T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus, N.
Koivunen and K. Tuominen, Pseudo-Goldstone dark
matter: gravitational waves and direct-detection blind spots,
JHEP10 (2020) 080.; DOI:10.1007/JHEP10(2020)080
198.K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, Exotic Higgs decays into displaced jets at the
LHeC, JHEP02 (2021) 161.; DOI:10.1007/JHEP02(2021)161
199.I. Bischer, T. Plehn and W. Rodejohann, Dark
Matter EFT, the Third – Neutrino WIMPs, SciPost Phys.10 (2021) 039.; DOI:10.21468/SciPostPhys.10.2.039
200.S. Jana, P. K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments
and neutrino masses, Phys. Rev. D102
(2020) 075003.; DOI:10.1103/PhysRevD.102.075003
201.V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology,
Astrophysics, and Direct Detection, JCAP01 (2021) 039.; DOI:10.1088/1475-7516/2021/01/039
202.V. Brdar, O. Fischer and A. Yu. Smirnov, Model-independent bounds on the nonoscillatory
explanations of the MiniBooNE excess, Phys. Rev. D103 (2021) 075008.; DOI:10.1103/PhysRevD.103.075008
203.P. Agostini et al., The Large HadronElectron
Collider at the HL-LHC, J. Phys. G48
(2021) 110501.; DOI:10.1088/1361-6471/abf3ba
204.T. Abrahão et al., Reactor rate modulation
oscillation analysis with two detectors in Double Chooz,
JHEP01 (2021) 190.; DOI:10.1007/JHEP01(2021)190
205.E. Aprile et al., Projected WIMP sensitivity of
the XENONnT dark matter experiment, JCAP11 (2020) 031.; DOI:10.1088/1475-7516/2020/11/031
206.G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S.
Vogl, EFT interpretation of XENON1T electron recoil
excess: Neutrinos and dark matter, Phys. Rev. D103 (2021) 023024.; DOI:10.1103/PhysRevD.103.023024
207.K. S. Babu, S. Jana and M. Lindner, Large
Neutrino Magnetic Moments in the Light of Recent Experiments,
JHEP10 (2020) 040.; DOI:10.1007/JHEP10(2020)040
208.M. Aoki, V. Brdar and J. Kubo, Heavy dark
matter, neutrino masses, and Higgs naturalness from a strongly
interacting hidden sector, Phys. Rev. D102 (2020) 035026.; DOI:10.1103/PhysRevD.102.035026
209.M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, XENON1T anomaly: A light Z’ from a Two Higgs Doublet
Model, Phys. Lett. B811 (2020)
135972.; DOI:10.1016/j.physletb.2020.135972
210.M. Andriamirado et al., Note on
arXiv:2005.05301, ’Preparation of the Neutrino-4 experiment on search
for sterile neutrino and the obtained results of measurements’
(2020).; Retrieved from https://arxiv.org/abs/2006.13147
211.A. N. Khan, Can Nonstandard Neutrino
Interactions explain the XENON1T spectral excess?, Phys.
Lett. B809 (2020) 135782.; DOI:10.1016/j.physletb.2020.135782
212.A. Bally, S. Jana and A. Trautner, Neutrino
self-interactions and XENON1T electron recoil excess, Phys.
Rev. Lett.125 (2020) 161802.; DOI:10.1103/PhysRevLett.125.161802
213.E. Aprile et al., Excess electronic recoil
events in XENON1T, Phys. Rev. D102
(2020) 072004.; DOI:10.1103/PhysRevD.102.072004
214.T. Alanne, G. Arcadi, F. Goertz, V. Tenorth and S. Vogl, Model-independent constraints with extended dark matter
EFT, JHEP10 (2020) 172.; DOI:10.1007/JHEP10(2020)172
215.T. Rink, W. Rodejohann and K. Schmitz, Leptogenesis and low-energy CP violation in a
type-II-dominated left-right seesaw model, Nucl. Phys. B972 (2021) 115552.; DOI:10.1016/j.nuclphysb.2021.115552
216.J. Aalbers et al., Solar neutrino detection
sensitivity in DARWIN via electron scattering, Eur. Phys. J.
C80 (2020) 1133.; DOI:10.1140/epjc/s10052-020-08602-7
217.M. Agostini et al., First Search for Bosonic
Superweakly Interacting Massive Particles with Masses up to 1 MeV/\(c^2\) with GERDA, Phys. Rev.
Lett.125 (2020) 011801.; DOI:10.1103/PhysRevLett.125.011801
218.S. Centelles Chuliá, C. Döring, W. Rodejohann and U. J.
Saldaña-Salazar, Natural axion model from
flavour, JHEP09 (2020) 137.; DOI:10.1007/JHEP09(2020)137
219.M. J. Zurowski, E. Barberio and G. Busoni, Inelastic Dark Matter and the SABRE Experiment,
JCAP12 (2020) 014.; DOI:10.1088/1475-7516/2020/12/014
220.D. Cichon, G. Eurin, F. Jörg, T. Marrodán Undagoitia and N. Rupp,
Transmission of xenon scintillation light through
PTFE, JINST15 (2020) P09010.; DOI:10.1088/1748-0221/15/09/P09010
221.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and \(N_{{\rm eff}}\),
JCAP06 (2020) 058.; DOI:10.1088/1475-7516/2020/06/058
222.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars, JCAP09 (2020) 028.; DOI:10.1088/1475-7516/2020/09/028
223.C. Jaramillo, M. Lindner and W. Rodejohann, Seesaw neutrino dark matter by freeze-out,
JCAP04 (2021) 023.; DOI:10.1088/1475-7516/2021/04/023
224.M. Berbig, S. Jana and A. Trautner, The Hubble
tension and a renormalizable model of gauged neutrino
self-interactions, Phys. Rev. D102
(2020) 115008.; DOI:10.1103/PhysRevD.102.115008
225.F. F. Deppisch, L. Graf, W. Rodejohann and X.-J. Xu, Neutrino Self-Interactions and Double Beta Decay,
Phys. Rev. D102 (2020) 051701.; DOI:10.1103/PhysRevD.102.051701
226.S. Blasi, C. Csaki and F. Goertz, A natural
composite Higgs via universal boundary conditions, SciPost
Phys.10 (2021) 121.; DOI:10.21468/SciPostPhys.10.5.121
227.H. Almazán et al., Accurate Measurement of the
Electron Antineutrino Yield of \(^{235}\)U Fissions from the STEREO
Experiment with 119 Days of Reactor-On Data, Phys. Rev.
Lett.125 (2020) 201801.; DOI:10.1103/PhysRevLett.125.201801
228.S. Blasi, V. Brdar and K. Schmitz, Fingerprint
of low-scale leptogenesis in the primordial gravitational-wave
spectrum, Phys. Rev. Res.2 (2020)
043321.; DOI:10.1103/PhysRevResearch.2.043321
229.S. Jana, N. Okada and D. Raut, Displaced vertex
and disappearing track signatures in type-III seesaw, Eur.
Phys. J. C82 (2022) 927.; DOI:10.1140/epjc/s10052-022-10855-3
230.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S.
Hannestad, MeV-scale reheating temperature and
cosmological production of light sterile neutrinos, JCAP08 (2020) 015.; DOI:10.1088/1475-7516/2020/08/015
231.F. F. Deppisch, L. Graf and F. Šimkovic, Searching for New Physics in Two-Neutrino Double Beta
Decay, Phys. Rev. Lett.125 (2020)
171801.; DOI:10.1103/PhysRevLett.125.171801
232.F. Agostini et al., Sensitivity of the DARWIN
observatory to the neutrinoless double beta decay of \(^{136}\)Xe, Eur. Phys. J. C80 (2020) 808.; DOI:10.1140/epjc/s10052-020-8196-z
233.V. Brdar, M. Lindner, S. Vogl and X.-J. Xu, Revisiting neutrino self-interaction constraints from
\(Z\) and \(\tau\) decays, Phys. Rev. D101 (2020) 115001.; DOI:10.1103/PhysRevD.101.115001
234.E. Aprile et al., Energy resolution and
linearity of XENON1T in the MeV energy range, Eur. Phys. J.
C80 (2020) 785.; DOI:10.1140/epjc/s10052-020-8284-0
235.K. S. Babu, D. Gonçalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
Between LHC and Oscillation Experiments, Phys. Lett. B815 (2021) 136131.; DOI:10.1016/j.physletb.2021.136131
236.S. Jana, V. P. K. and S. Saad, Resolving
electron and muon \(g-2\) within the
2HDM, Phys. Rev. D101 (2020) 115037.;
DOI:10.1103/PhysRevD.101.115037
237.Y. P. Porto-Silva, S. Prakash, O. L. G. Peres, H. Nunokawa and H.
Minakata, Constraining visible neutrino decay at
KamLAND and JUNO, Eur. Phys. J. C80
(2020) 999.; DOI:10.1140/epjc/s10052-020-08573-9
238.A. Trautner, On the systematic construction of
basis invariants, (E. Widmann, J. Marton, A. Pichler, M. Simon,
& D. Murtagh, Eds.)J. Phys. Conf. Ser.1586 (2020) 012005.; DOI:10.1088/1742-6596/1586/1/012005
239.Y. P. Porto-Silva and M. C. de Oliveira, Theory
of Neutrino Detection – Flavor Oscillations and Weak Values,
Eur. Phys. J. C81 (2021) 330.; DOI:10.1140/epjc/s10052-021-09108-6
240.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, MUonE sensitivity to new physics explanations of the muon
anomalous magnetic moment, JHEP05
(2020) 053.; DOI:10.1007/JHEP05(2020)053
241.G. Arcadi, G. Busoni, T. Hugle and V. T. Tenorth, Comparing 2HDM \(+\)
Scalar and Pseudoscalar Simplified Models at LHC, JHEP06 (2020) 098.; DOI:10.1007/JHEP06(2020)098
242.P. Bakhti and A. Yu. Smirnov, Oscillation
tomography of the Earth with solar neutrinos and future
experiments, Phys. Rev. D101 (2020)
123031.; DOI:10.1103/PhysRevD.101.123031
243.A. E. Cárcamo Hernández, C. O. Dib and U. J. Saldaña-Salazar, When \(\tan \beta\)
meets all the mixing angles, Phys. Lett. B809 (2020) 135750.; DOI:10.1016/j.physletb.2020.135750
244.C. Buck et al., A novel experiment for coherent
elastic neutrino nucleus scattering: CONUS, (K. Clark, C.
Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf.
Ser.1342 (2020) 012094.; DOI:10.1088/1742-6596/1342/1/012094