Publications of the division during the last three years
1.M. Agostini et al., An improved limit on the
neutrinoless double-electron capture of \(^{36}\)Ar with GERDA (2023).;
Retrieved from https://arxiv.org/abs/2311.02214
2.D. Basilico et al., Novel techniques for
alpha/beta pulse shape discrimination in Borexino (2023).;
Retrieved from https://arxiv.org/abs/2310.11826
3.M. Shaposhnikov and A. Y. Smirnov, Sterile
Neutrino Dark Matter, Matter-Antimatter Separation, and the QCD Phase
Transition (2023).; Retrieved from https://arxiv.org/abs/2309.13376
4.E. Aprile et al., Design and performance of the
field cage for the XENONnT experiment (2023).; Retrieved from https://arxiv.org/abs/2309.11996
5.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring Naturalness via Conjugate Fermions
(2023).; Retrieved from https://arxiv.org/abs/2309.05698
6.Y. Chung, A Naturalness motivated Top Yukawa
Model for the Composite Higgs (2023).; Retrieved from https://arxiv.org/abs/2309.00072
7.F. Goertz and Á. Pastor-Gutiérrez, New Phases of
the Standard Model Higgs Potential (2023).; Retrieved from https://arxiv.org/abs/2308.13594
8.H. Bonet et al., Pulse shape discrimination for
the CONUS experiment in the keV and sub-keV regime (2023).;
Retrieved from https://arxiv.org/abs/2308.12105
9.M. Agostini et al., Final Results of GERDA on the
Two-Neutrino Double-\(\beta\) Decay
Half-Life of Ge76, Phys. Rev. Lett.131
(2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
10.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(\mathcal{A}_4\) Symmetry (2023).;
Retrieved from https://arxiv.org/abs/2308.08981
11.J. Kubo and T. Kugo, Unitarity Violation in
Field Theories of Lee-Wick’s Complex Ghost (2023).; Retrieved
from https://arxiv.org/abs/2308.09006
12.S. Jana and S. Klett, Muonic Force and Neutrino
Non-Standard Interactions at Muon Colliders (2023).; Retrieved
from https://arxiv.org/abs/2308.07375
13.Y. F. Perez-Gonzalez and M. Sen, From Dirac to
Majorana: the Cosmic Neutrino Background capture rate in the minimally
extended Standard Model (2023).; Retrieved from https://arxiv.org/abs/2308.05147
14.A. de Gouvêa, J. Weill and M. Sen, Solar
neutrinos and \(\nu_2\) visible decays
to \(\nu_1\) (2023).; Retrieved
from https://arxiv.org/abs/2308.03838
15.M. Agostini et al., Search for tri-nucleon
decays of \(^{76}\)Ge in GERDA,
Eur. Phys. J. C83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
16.M. P. Bento, J. P. Silva and A. Trautner, The Basis Invariant
Flavor Puzzle (2023).; Retrieved from https://arxiv.org/abs/2308.00019
17.J. Herms, S. Jana, V. P. K. and S. Saad, Light
neutrinophilic dark matter from a scotogenic model, Phys.
Lett. B845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
18.G. Huang, Discovery potential of the Glashow
resonance in an air shower neutrino telescope (2023).; Retrieved
from https://arxiv.org/abs/2307.12153
19.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial
compositeness, Phys. Rev. D108 (2023)
095019.; DOI:10.1103/PhysRevD.108.095019
20.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining
LHAASO anomalous \(\gamma\)
event, JCAP11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
21.M. D. Astros, S. Fabian and F. Goertz, Minimal
Inert Doublet Benchmark for Dark Matter and the Baryon Asymmetry
(2023).; Retrieved from https://arxiv.org/abs/2307.01270
22.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Do pulsar timing arrays observe merging primordial black
holes? (2023).; Retrieved from https://arxiv.org/abs/2306.17836
23.M. Adrover et al., Cosmogenic background
simulations for the DARWIN observatory at different underground
locations (2023).; Retrieved from https://arxiv.org/abs/2306.16340
24.M. Sen and A. Y. Smirnov, Refractive neutrino
masses, ultralight dark matter and cosmology (2023).; Retrieved
from https://arxiv.org/abs/2306.15718
25.E. Aprile et al., Search for events in XENON1T
associated with gravitational waves, Phys. Rev. D108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
26.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C.
Tasillo, Does NANOGrav observe a dark sector phase
transition?, JCAP11 (2023) 053.;
DOI:10.1088/1475-7516/2023/11/053
27.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic
recoil calibration of the XENONnT detector, JINST18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
28.L. Angel et al., Toward a search for axionlike
particles at the LNLS, Phys. Rev. D108
(2023) 055030.; DOI:10.1103/PhysRevD.108.055030
29.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari,
Composite Dark Matter and Neutrino Masses from a
Light Hidden Sector (2023).; Retrieved from https://arxiv.org/abs/2305.09719
30.A. Bally, Y. Chung and F. Goertz, The Hierarchy
Problem and the Top Yukawa, 57th
Rencontres de Moriond on QCD and High Energy Interactions.;
Retrieved from https://arxiv.org/abs/2304.11891
31.E. Aprile et al., Searching for Heavy Dark
Matter near the Planck Mass with XENON1T, Phys. Rev.
Lett.130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
32.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless
double beta decay, JHEP08 (2023) 043.;
DOI:10.1007/JHEP08(2023)043
33.E. Aprile et al., Detector signal
characterization with a Bayesian network in XENONnT, Phys.
Rev. D108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
34.E. Aprile et al., First Dark Matter Search with
Nuclear Recoils from the XENONnT Experiment, Phys. Rev.
Lett.131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
35.S. Jana and Y. Porto, New Resonances of
Supernova Neutrinos in Twisting Magnetic Fields (2023).;
Retrieved from https://arxiv.org/abs/2303.13572
36.G. Huang, M. Lindner and N. Volmer, Inferring
astrophysical neutrino sources from the Glashow resonance,
JHEP11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
37.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T.
Marrodán Undagoitia, First time-resolved
measurement of infrared scintillation light in gaseous xenon,
Eur. Phys. J. C83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
39.A. Trautner, Modular Flavor Symmetries and CP
from the top down, 8th Symposium on
Prospects in the Physics of Discrete Symmetries.; Retrieved
from https://arxiv.org/abs/2302.12626
40.C. Bonilla, J. Herms, O. Medina and E. Peinado, Neutrino mass hierarchy from the discrete dark matter
model, 8th Symposium on Prospects in the
Physics of Discrete Symmetries.; Retrieved from https://arxiv.org/abs/2302.08514
41.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino
mass scales, JHEP06 (2023) 078.;
DOI:10.1007/JHEP06(2023)078
42.N. Ackermann et al., Monte Carlo simulation of
background components in low level Germanium spectrometry,
Appl. Radiat. Isot.194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
43.J. Hakenmüller and G. Heusser, CONRADA low level
germanium test detector for the CONUS experiment, Appl.
Radiat. Isot.194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
44.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F.
Meggendorfer and S. Skambraks, Operation of the
Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware
Perspective, J. Phys. Conf. Ser.2438
(2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
45.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of
neutrino magnetic moments from a galactic supernova burst at upcoming
detectors, PoSICHEP2022 (2022) 597.;
DOI:10.22323/1.414.0597
46.E. Aprile et al., The triggerless data
acquisition system of the XENONnT experiment, JINST18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
47.S. Blasi, J. Bollig and F. Goertz, Holographic
composite Higgs model building: soft breaking, maximal symmetry, and the
Higgs mass, JHEP07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
48.I. Bischer, C. Döring and A. Trautner, Telling
compositeness at a distance with outer automorphisms and CP,
J. Phys. A56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
49.M. Agostini et al., Liquid argon light
collection and veto modeling in GERDA Phase II, Eur. Phys. J.
C83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
50.A. Bally, Y. Chung and F. Goertz, Hierarchy
problem and the top Yukawa coupling: An alternative to top partner
solutions, Phys. Rev. D108 (2023)
055008.; DOI:10.1103/PhysRevD.108.055008
51.T. Rink and M. Sen, Constraints on pseudo-Dirac
neutrinos using high-energy neutrinos from NGC 1068 (2022).;
Retrieved from https://arxiv.org/abs/2211.16520
52.E. Aprile et al., Low-energy calibration of
XENON1T with an internal \(^{{\textbf
{37}}}\)Ar source, Eur. Phys. J. C83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
53.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma
Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev.
Lett.131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
54.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with
Gauged \(U(1)_{L(-R)}\) (2022).;
Retrieved from https://arxiv.org/abs/2210.13402
55.T. Cheng, M. Lindner and M. Sen, Implications of
a matter-antimatter mass asymmetry in Penning-trap experiments,
Phys. Lett. B844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
56.H. Almazán et al., STEREO neutrino spectrum of
\(^{235}\)U fission rejects sterile
neutrino hypothesis, Nature613 (2023)
257–261.; DOI:10.1038/s41586-022-05568-2
57.E. Aprile et al., Effective Field Theory and
Inelastic Dark Matter Results from XENON1T (2022).; Retrieved
from https://arxiv.org/abs/2210.07591
58.E. Aprile et al., An approximate likelihood for
nuclear recoil searches with XENON1T data, Eur. Phys. J.
C82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
59.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment
on ”Damping of neutrino oscillations, decoherence and the lengths of
neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
60.J. Herms, S. Jana, V. P. K. and S. Saad, Light
thermal relics enabled by a second Higgs, SciPost Phys.
Proc.12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
61.I. Oda and P. Saake, BRST formalism of Weyl
conformal gravity, Phys. Rev. D106
(2022) 106007.; DOI:10.1103/PhysRevD.106.106007
62.A. de Gouvêa et al., Theory of Neutrino Physics
– Snowmass TF11 (aka NF08) Topical Group Report (2022).;
Retrieved from https://arxiv.org/abs/2209.07983
63.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, Moscow Univ. Phys. Bull.77 (2022) 371–374.; DOI:10.3103/S0027134922020461
64.M. Agostini et al., Search for exotic physics in
double-\(\beta\) decays with GERDA
Phase II, JCAP12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
65.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable
models and flavor, JHEP04 (2023) 012.;
DOI:10.1007/JHEP04(2023)012
66.J. Kubo and J. Kuntz, Spontaneous conformal
symmetry breaking and quantum quadratic gravity, Phys. Rev.
D106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
67.A. N. Khan, Extra dimensions with light and
heavy neutral leptons: an application to CE\(\nu\)NS, JHEP01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
68.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of
heavy-ion collisions and their impact on particle correlations,
Phys. Rev. C108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
69.E. Akhmedov and A. Y. Smirnov, Damping of
neutrino oscillations, decoherence and the lengths of neutrino wave
packets, JHEP11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
70.A. N. Khan, Light new physics and neutrino
electromagnetic interactions in XENONnT, Phys. Lett. B837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
71.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts,
JCAP11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
72.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of
sterile neutrino dark matter via neutrino self-interactions,
JCAP11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
73.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
boson induced reheating and ultraviolet frozen-in dark matter,
JHEP02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
74.H. Almazan et al., Improved FIFRELIN
de-excitation model for neutrino applications, Eur. Phys. J.
A59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
75.E. Aprile et al., Search for New Physics in
Electronic Recoil Data from XENONnT, Phys. Rev. Lett.129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
77.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The first string-derived eclectic
flavor model with realistic phenomenology, JHEP09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
78.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum
gravity to dynamical chiral symmetry breaking, SciPost
Phys.15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
80.M. Aker et al., Search for Lorentz-invariance
violation with the first KATRIN data, Phys. Rev. D107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
81.M. Aker et al., Search for keV-scale sterile
neutrinos with the first KATRIN data, Eur. Phys. J. C83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
82.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting
bounds on neutrino magnetic moments and solar magnetic field,
JHEP10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
83.S. Richers and M. Sen, Fast Flavor Transformations, In
I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).;
DOI:10.1007/978-981-15-8818-1_125-1
84.J. Berger et al., Snowmass 2021 White Paper:
Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino
Experiments, Snowmass 2021.; Retrieved from
https://arxiv.org/abs/2207.02882
85.G. Huang, Double and multiple bangs at tau
neutrino telescopes, Eur. Phys. J. C82
(2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
86.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann,
Search for leptophilic dark matter at the
LHeC, J. Phys. G50 (2023) 065001.;
DOI:10.1088/1361-6471/accc4a
87.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model,
Mod. Phys. Lett. A38 (2023).; DOI:10.1142/S0217732323500499
88.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman
and K. Schmidt-Hoberg, Minimal sterile neutrino
dark matter, Phys. Rev. D107 (2023)
L071702.; DOI:10.1103/PhysRevD.107.L071702
89.G. Huang and N. Nath, Inference of neutrino
nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with
inverted mass ordering, Eur. Phys. J. C82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
90.S. Jana, Horizontal Symmetry and Large Neutrino
Magnetic Moments, PoSDISCRETE2020-2021
(2022) 037.; DOI:10.22323/1.405.0037
91.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S.
de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian
synchrotron, Eur. Phys. J. C83 (2023)
514.; DOI:10.1140/epjc/s10052-023-11603-x
92.A. Schneider et al., Direct measurement of the
\(^{3}\)He\(^{+}\) magnetic moments,
Nature606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
93.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale
detectors, JINST17 (2022) P11025.;
DOI:10.1088/1748-0221/17/11/P11025
94.S. Klett, M. Lindner and A. Trautner, Generating
the electro-weak scale by vector-like quark condensation,
SciPost Phys.14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
95.Á. Pastor-Gutiérrez and M. Yamada, UV completion
of extradimensional Yang-Mills theory for Gauge-Higgs
unification, SciPost Phys.15 (2023)
101.; DOI:10.21468/SciPostPhys.15.3.101
96.M. Sen, Constraining pseudo-Dirac neutrinos from
a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
97.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the
sterile neutrino portal, Phys. Rev. D106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
98.T. Rink, Coherent elastic neutrino-nucleus
scattering – First constraints/observations and future potential,
56th Rencontres de Moriond on Electroweak
Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
99.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of
mu-tau neutrinos, Phys. Rev. D106
(2022) 083011.; DOI:10.1103/PhysRevD.106.083011
100.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT
Experiments, Phys. Rev. C106 (2022)
024328.; DOI:10.1103/PhysRevC.106.024328
101.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen,
Diffuse supernova neutrino background as a probe of
late-time neutrino mass generation, Phys. Rev. D106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
102.S. Weber, Quantum Field Theory and
Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand
Unification (Master’s thesis). Heidelberg U.
103.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability
from flavour symmetry, JHEP10 (2022)
080.; DOI:10.1007/JHEP10(2022)080
104.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the
cosmic neutrino background, Phys. Rev. D106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
105.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of
neutrino oscillations, JHEP08 (2022)
111.; DOI:10.1007/JHEP08(2022)111
106.L. Gráf, M. Lindner and O. Scholer, Unraveling
the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys.
Rev. D106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
107.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes
via the dipole portal, Phys. Lett. B840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
108.A. Trautner, Anatomy of a top-down approach to
discrete and modular flavor symmetry, PoSDISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
109.K. S. Babu, S. Jana and V. P. K., Correlating
W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model,
Phys. Rev. Lett.129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
110.J. Hakenmüller and W. Maneschg, Identification
of radiopure tungsten for low background applications, J.
Phys. G49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
111.A. de Gouvêa, M. Sen and J. Weill, Visible
neutrino decays and the impact of the daughter-neutrino mass,
Phys. Rev. D106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
112.L. Althueser et al., GPU-based optical
simulation of the DARWIN detector, JINST17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
113.A. N. Khan, \(\sin^2\theta_W\) and neutrino
electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching
factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
114.M. Aker et al., KATRIN: status and prospects
for the neutrino mass and beyond, J. Phys. G49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
115.N. Bartosik et al., Simulated Detector
Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
116.D. Stratakis et al., A Muon Collider Facility
for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
117.S. Jindariani et al., Promising Technologies
and R&D Directions for the Future Muon Collider Detectors
(2022).; Retrieved from https://arxiv.org/abs/2203.07224
118.C. Awe et al., High Energy Physics Opportunities Using Reactor
Antineutrinos (2022).; Retrieved from https://arxiv.org/abs/2203.07214
121.M. Abdullah et al., Coherent elastic
neutrino-nucleus scattering: Terrestrial and astrophysical
applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
122.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter,
Phys. Rev. Lett.129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
123.R. Mammen Abraham et al., Tau neutrinos in the
next decade: from GeV to EeV, J. Phys. G49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
124.J. L. Feng et al., The Forward Physics Facility
at the High-Luminosity LHC, J. Phys. G50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
125.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\)
Anomaly with Neutrino Magnetic Moments, PoSEPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
126.J. Aalbers et al., A next-generation liquid
xenon observatory for dark matter and neutrino physics, J.
Phys. G50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
127.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino
magnetic moments, JCAP09 (2022) 079.;
DOI:10.1088/1475-7516/2022/09/079
128.J. M. Berryman et al., Neutrino
self-interactions: A white paper, Phys. Dark Univ.42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
129.G. Busoni, Capture of DM in Compact
Stars, PoSPANIC2021 (2022) 046.;
DOI:10.22323/1.380.0046
130.M. Agostini et al., Pulse shape analysis in
Gerda Phase II, Eur. Phys. J. C82
(2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
131.J. Kubo and J. Kuntz, Analysis of unitarity in
conformal quantum gravity, Class. Quant. Grav.39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
132.K. S. Babu, P. S. B. Dev and S. Jana, Probing
neutrino mass models through resonances at neutrino telescopes,
Int. J. Mod. Phys. A37 (2022) 2230003.;
DOI:10.1142/S0217751X22300034
133.M. Aker et al., New Constraint on the Local
Relic Neutrino Background Overdensity with the First KATRIN Data
Runs, Phys. Rev. Lett.129 (2022)
011806.; DOI:10.1103/PhysRevLett.129.011806
134.A. Bonhomme et al., Direct measurement of the
ionization quenching factor of nuclear recoils in germanium in the keV
energy range, Eur. Phys. J. C82 (2022)
815.; DOI:10.1140/epjc/s10052-022-10768-1
135.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
Boson-Induced Reheating and Dark Matter Production,
Symmetry14 (2022) 306.; DOI:10.3390/sym14020306
136.H. de Kerret et al., The Double Chooz
antineutrino detectors, Eur. Phys. J. C82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
137.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoSEPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
138.H. Bonet et al., First upper limits on neutrino
electromagnetic properties from the CONUS experiment, Eur.
Phys. J. C82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
139.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles
and electrons in liquid xenon, Rev. Sci. Instrum.93 (2022) 113302.; DOI:10.1063/5.0087216
140.M. Aker et al., Improved eV-scale
sterile-neutrino constraints from the second KATRIN measurement
campaign, Phys. Rev. D105 (2022)
072004.; DOI:10.1103/PhysRevD.105.072004
141.A. N. Khan, Neutrino millicharge and other
electromagnetic interactions with COHERENT-2021 data, Nucl.
Phys. B986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
143.A. Yu. Smirnov and X.-J. Xu, Neutrino bound
states and bound systems, JHEP08
(2022) 170.; DOI:10.1007/JHEP08(2022)170
144.L. Šerkšnytė et al., Reevaluation of the cosmic
antideuteron flux from cosmic-ray interactions and from exotic
sources, Phys. Rev. D105 (2022)
083021.; DOI:10.1103/PhysRevD.105.083021
145.G. Busoni, Capture of Dark Matter in Neutron
Stars, Moscow Univ. Phys. Bull.77
(2022) 301–305.; DOI:10.3103/S0027134922020205
146.A. Ahmed and S. Najjari, Ultraviolet freeze-in
dark matter through the dilaton portal, Phys. Rev. D107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
147.K. S. Babu, S. Jana and A. Thapa, Vector boson
dark matter from trinification, JHEP02
(2022) 051.; DOI:10.1007/JHEP02(2022)051
148.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang,
Searching for new physics from SMEFT and
leptoquarks at the P2 experiment, Phys. Rev. D105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
149.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model
with minimal Higgs sector, JCAP05
(2022) 003.; DOI:10.1088/1475-7516/2022/05/003
150.E. Aprile et al., Emission of single and few
electrons in XENON1T and limits on light dark matter, Phys.
Rev. D106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
151.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs:
singlet-assisted baryogenesis w/o topological defects,
JHEP10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
152.E. Aprile et al., Application and modeling of
an online distillation method to reduce krypton and argon in
XENON1T, PTEP2022 (2022) 053H01.;
DOI:10.1093/ptep/ptac074
153.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino
telescopes, JCAP02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
154.S. Jana, S. Klett and M. Lindner, Flavor seesaw
mechanism, Phys. Rev. D105 (2022)
115015.; DOI:10.1103/PhysRevD.105.115015
155.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Top-down anatomy of flavor symmetry
breakdown, Phys. Rev. D105 (2022)
055018.; DOI:10.1103/PhysRevD.105.055018
156.E. Aprile et al., Material radiopurity control
in the XENONnT experiment, Eur. Phys. J. C82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
158.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of
nonstandard neutrino self-interactions: An EFT approach,
Phys. Rev. D105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
159.G. Huang and N. Nath, Neutrino meets ultralight
dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology,
JCAP05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
160.M. Sajjad Athar et al., Status and perspectives
of neutrino physics, Prog. Part. Nucl. Phys.124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
161.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on
reheating and dark matter production, Phys. Lett. B831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
162.H. Almazán et al., Searching for Hidden
Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO
Experiment, Phys. Rev. Lett.128 (2022)
061801.; DOI:10.1103/PhysRevLett.128.061801
163.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar
extensions, JHEP05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
164.M. Sen, Sterile neutrino dark matter, neutrino
secret self-interactions and extra radiation, J. Phys. Conf.
Ser.2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
165.G. Huang and W. Rodejohann, Tritium beta decay
with modified neutrino dispersion relations: KATRIN in the dark
sea, Nucl. Phys. B993 (2023) 116262.;
DOI:10.1016/j.nuclphysb.2023.116262
166.H. Bonet et al., Novel constraints on neutrino
physics beyond the standard model from the CONUS experiment,
JHEP05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
167.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their
breaking, PoSEPS-HEP2021 (2022) 698.;
DOI:10.22323/1.398.0698
168.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and
N. Rupp, Characterization of alpha and beta
interactions in liquid xenon, Eur. Phys. J. C82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
169.E. Akhmedov, Nuclear fusion catalyzed by doubly
charged scalars: Implications for energy production, Phys.
Rev. D106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
170.L. A. Anchordoqui et al., The Forward Physics
Facility: Sites, experiments, and physics potential, Phys.
Rept.968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
171.M. Aoki, J. Kubo and J. Yang, Inflation and
dark matter after spontaneous Planck scale generation by hidden chiral
symmetry breaking, JCAP01 (2022) 005.;
DOI:10.1088/1475-7516/2022/01/005
172.A. Ismail, S. Jana and R. M. Abraham, Neutrino
up-scattering via the dipole portal at forward LHC detectors,
Phys. Rev. D105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
173.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W.
Thomas and M. Virgato, Improved treatment of dark
matter capture in neutron stars III: nucleon and exotic targets,
JCAP11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
174.F. Goertz, Flavour observables and composite
dynamics: leptons, Eur. Phys. J. ST231
(2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
175.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M.
Bartelmann, Gravitational wave induced baryon
acoustic oscillations, SciPost Phys.12
(2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
176.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei,
Science with the TianQin Observatory: Preliminary
results on stochastic gravitational-wave background, Phys.
Rev. D105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
177.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark
matter particles, PTEP2022 (2022)
013F01.; DOI:10.1093/ptep/ptab139
178.H. Almazán et al., Joint Measurement of the
\(^{235}\)U Antineutrino Spectrum by
Prospect and Stereo, Phys. Rev. Lett.128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
179.A. Y. Smirnov and V. B. Valera, Resonance
refraction and neutrino oscillations, JHEP09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
180.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of
same-sign diboson+\(+{E\!\!\!\!/}_{T}\), Phys. Rev.
D105 (2022) 055014.; DOI:10.1103/PhysRevD.105.055014
181.M. Aker et al., Direct neutrino-mass
measurement with sub-electronvolt sensitivity, Nature
Phys.18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
182.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Orbifolds from Sp(4,Z) and their
modular symmetries, Nucl. Phys. B971
(2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
183.M. Aker et al., Precision measurement of the
electron energy-loss function in tritium and deuterium gas for the
KATRIN experiment, Eur. Phys. J. C81
(2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
184.A. Trautner, Living on the Fermi edge: On
baryon transport and Fermi condensation, Phys. Lett. B833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
185.V. C. Antochi et al., Improved quality tests of
R11410-21 photomultiplier tubes for the XENONnT experiment,
JINST16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
186.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M.
Virgato, Improved treatment of dark matter capture
in white dwarfs, JCAP10 (2021) 083.;
DOI:10.1088/1475-7516/2021/10/083
187.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M.
Schmelling, Sub-TeV hadronic interaction model
differences and their impact on air showers, Eur. Phys. J.
C81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
188.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification,
Phys. Rev. D105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
189.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly
and neutrino magnetic moments, JHEP10
(2021) 240.; DOI:10.1007/JHEP10(2021)240
190.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an
explanation of Fermilab muon g \(-\) 2
measurement, Phys. Lett. B820 (2021)
136529.; DOI:10.1016/j.physletb.2021.136529
191.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard
interactions in CE\(\nu\)NS,
Phys. Rev. D104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
192.M. Agostini et al., Characterization of
inverted coaxial \(^{76}\)Ge detectors
in GERDA for future double-\(\beta\)
decay experiments, Eur. Phys. J. C81
(2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
193.M. Agostini et al., Calibration of the Gerda
experiment, Eur. Phys. J. C81 (2021)
682.; DOI:10.1140/epjc/s10052-021-09403-2
194.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O.
Sumensari, Single leptoquark solutions to the
B-physics anomalies, Phys. Rev. D104
(2021) 055017.; DOI:10.1103/PhysRevD.104.055017
195.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence
of oscillations in matter and supernova neutrinos, JCAP06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
196.J. Herms and A. Ibarra, Production and
signatures of multi-flavour dark matter scenarios with t-channel
mediators, JCAP10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
197.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment,
JHEP06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
198.M. Aker et al., The design, construction, and
commissioning of the KATRIN experiment, JINST16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
199.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider,
Phys. Rev. D105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
200.G. Huang and W. Rodejohann, Solving the Hubble
tension without spoiling Big Bang Nucleosynthesis, Phys. Rev.
D103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
201.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon
collider, Phys. Rev. D103 (2021)
095005.; DOI:10.1103/PhysRevD.103.095005
202.K. S. Babu, D. Goncalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
between LHC and Oscillation Experiments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.28
203.S. Jana, V. P. K. and S. Saad, Light Scalar and
Lepton Anomalous Magnetic Moments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.23
204.M. Schmelling, Á. Pastor Gutiérrez, H. Schoorlemmer and R. D.
Parsons, Sub-TeV hadronic interaction model
differences and their impact on air-showers, PoSICRC2021 (2021) 476.; DOI:10.22323/1.395.0476
205.I. Bischer, C. Döring and A. Trautner, Simultaneous Block Diagonalization of Matrices of Finite
Order, J. Phys. A54 (2021) 085203.;
DOI:10.1088/1751-8121/abd979
206.S. Fabian, F. Goertz and Y. Jiang, Dark matter
and nature of electroweak phase transition with an inert doublet,
JCAP09 (2021) 011.; DOI:10.1088/1475-7516/2021/09/011
207.P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F.
Keilbach, T. Plehn, G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost
Phys.13 (2022) 064.; DOI:10.21468/SciPostPhys.13.3.064
208.C. Bonilla, J. Herms, A. Ibarra and P. Strobl, Neutrino parameters in the Planck-scale lepton number
breaking scenario with extended scalar sectors, Phys. Rev.
D103 (2021) 035010.; DOI:10.1103/PhysRevD.103.035010
209.J. Kubo, J. Kuntz, M. Lindner, J. Rezacek, P. Saake and A. Trautner,
Unified emergence of energy scales and cosmic
inflation, JHEP08 (2021) 016.; DOI:10.1007/JHEP08(2021)016
210.N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M.
Virgato, Nucleon Structure and Strong Interactions
in Dark Matter Capture in Neutron Stars, Phys. Rev.
Lett.127 (2021) 111803.; DOI:10.1103/PhysRevLett.127.111803
211.O. Fischer, M. Reininghaus and R. Ulrich, Avenues to new-physics searches in cosmic ray air
showers, PoSICHEP2020 (2021) 602.;
DOI:10.22323/1.390.0602
212.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, PoSICHEP2020
(2021) 143.; DOI:10.22323/1.390.0143
213.E. Aprile et al., Search for Coherent Elastic
Scattering of Solar \(^8\)B Neutrinos
in the XENON1T Dark Matter Experiment, Phys. Rev. Lett.126 (2021) 091301.; DOI:10.1103/PhysRevLett.126.091301
214.P. D. Bolton, F. F. Deppisch, L. Gráf and F. Šimkovic, Two-Neutrino Double Beta Decay with Sterile
Neutrinos, Phys. Rev. D103 (2021)
055019.; DOI:10.1103/PhysRevD.103.055019
215.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and N\(_{eff}\). Part II. The
freeze-in case, JCAP03 (2021) 082.;
DOI:10.1088/1475-7516/2021/03/082
216.E. Aprile et al., Search for inelastic
scattering of WIMP dark matter in XENON1T, Phys. Rev. D103 (2021) 063028.; DOI:10.1103/PhysRevD.103.063028
217.H. Bonet et al., Constraints on elastic
neutrino nucleus scattering in the fully coherent regime from the CONUS
experiment, Phys. Rev. Lett.126 (2021)
041804.; DOI:10.1103/PhysRevLett.126.041804
218.G. Huang and S. Zhou, Tentative sensitivity of
future \(0\nu \beta\beta\)-decay
experiments to neutrino masses and Majorana CP phases,
JHEP03 (2021) 084.; DOI:10.1007/JHEP03(2021)084
219.S. Al Kharusi et al., SNEWS 2.0: a
next-generation supernova early warning system for multi-messenger
astronomy, New J. Phys.23 (2021)
031201.; DOI:10.1088/1367-2630/abde33
220.L. Graf, S. Jana, M. Lindner, W. Rodejohann and X.-J. Xu, Flavored neutrinoless double beta decay, Phys.
Rev. D103 (2021) 055007.; DOI:10.1103/PhysRevD.103.055007
221.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars II: Leptonic Targets, JCAP03
(2021) 086.; DOI:10.1088/1475-7516/2021/03/086
222.H. Bonet et al., Large-size sub-keV sensitive
germanium detectors for the CONUS experiment, Eur. Phys. J.
C81 (2021) 267.; DOI:10.1140/epjc/s10052-021-09038-3
223.E. Akhmedov, Neutrino oscillations in matter:
from microscopic to macroscopic description, JHEP02 (2021) 107.; DOI:10.1007/JHEP02(2021)107
224.J. L. Diaz-Cruz, U. J. Saldana-Salazar, K. M. Tame-Narvaez and V. T.
Tenorth, Natural 2HDMs without FCNCs,
Phys. Rev. D104 (2021) 035018.; DOI:10.1103/PhysRevD.104.035018
225.H. Almazán et al., First antineutrino energy
spectrum from \(^{235}\)U fissions with
the STEREO detector at ILL, J. Phys. G48 (2021) 075107.; DOI:10.1088/1361-6471/abd37a
226.E. Aprile et al., \(^{222}\)Rn emanation measurements for the
XENON1T experiment, Eur. Phys. J. C81
(2021) 337.; DOI:10.1140/epjc/s10052-020-08777-z
227.F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range
mechanisms in \(0\nu\beta\beta\)
decay, Phys. Rev. D102 (2020) 095016.;
DOI:10.1103/PhysRevD.102.095016
228.S. Bruenner, D. Cichon, G. Eurin, P. Herrero Gómez, F. Jörg, T.
Marrodán Undagoitia, H. Simgen and N. Rupp, Radon
daughter removal from PTFE surfaces and its application in liquid xenon
detectors, Eur. Phys. J. C81 (2021)
343.; DOI:10.1140/epjc/s10052-021-09047-2
229.K. S. Babu, P. S. B. Dev, S. Jana and A. Thapa, Unified framework for \(B\)-anomalies, muon \(g − 2\) and neutrino masses,
JHEP03 (2021) 179.; DOI:10.1007/JHEP03(2021)179
230.S. Blasi, V. Brdar and K. Schmitz, Has NANOGrav
found first evidence for cosmic strings?, Phys. Rev.
Lett.126 (2021) 041305.; DOI:10.1103/PhysRevLett.126.041305
231.M. Agostini et al., Final Results of GERDA on
the Search for Neutrinoless Double-\(\beta\) Decay, Phys. Rev.
Lett.125 (2020) 252502.; DOI:10.1103/PhysRevLett.125.252502
232.T. Abrahão et al., Search for signatures of
sterile neutrinos with Double Chooz, Eur. Phys. J. C81 (2021) 775.; DOI:10.1140/epjc/s10052-021-09459-0
233.L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, : a Hilbert series for
the QCD chiral Lagrangian, JHEP01
(2021) 142.; DOI:10.1007/JHEP01(2021)142
234.M. P. Bento, R. Boto, J. P. Silva and A. Trautner, A fully basis invariant Symmetry Map of the 2HDM,
JHEP21 (2020) 229.; DOI:10.1007/JHEP02(2021)220
235.A. N. Khan, Constraints on general light
mediators from PandaX-II electron recoil data, Phys. Lett.
B819 (2021) 136415.; DOI:10.1016/j.physletb.2021.136415
236.T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus, N.
Koivunen and K. Tuominen, Pseudo-Goldstone dark
matter: gravitational waves and direct-detection blind spots,
JHEP10 (2020) 080.; DOI:10.1007/JHEP10(2020)080
237.K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, Exotic Higgs decays into displaced jets at the
LHeC, JHEP02 (2021) 161.; DOI:10.1007/JHEP02(2021)161
238.I. Bischer, T. Plehn and W. Rodejohann, Dark
Matter EFT, the Third – Neutrino WIMPs, SciPost Phys.10 (2021) 039.; DOI:10.21468/SciPostPhys.10.2.039
239.S. Jana, P. K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments
and neutrino masses, Phys. Rev. D102
(2020) 075003.; DOI:10.1103/PhysRevD.102.075003
240.V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology,
Astrophysics, and Direct Detection, JCAP01 (2021) 039.; DOI:10.1088/1475-7516/2021/01/039
241.V. Brdar, O. Fischer and A. Yu. Smirnov, Model-independent bounds on the nonoscillatory
explanations of the MiniBooNE excess, Phys. Rev. D103 (2021) 075008.; DOI:10.1103/PhysRevD.103.075008
242.P. Agostini et al., The Large HadronElectron
Collider at the HL-LHC, J. Phys. G48
(2021) 110501.; DOI:10.1088/1361-6471/abf3ba
243.T. Abrahão et al., Reactor rate modulation
oscillation analysis with two detectors in Double Chooz,
JHEP01 (2021) 190.; DOI:10.1007/JHEP01(2021)190
244.E. Aprile et al., Projected WIMP sensitivity of
the XENONnT dark matter experiment, JCAP11 (2020) 031.; DOI:10.1088/1475-7516/2020/11/031
245.G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S.
Vogl, EFT interpretation of XENON1T electron recoil
excess: Neutrinos and dark matter, Phys. Rev. D103 (2021) 023024.; DOI:10.1103/PhysRevD.103.023024
246.K. S. Babu, S. Jana and M. Lindner, Large
Neutrino Magnetic Moments in the Light of Recent Experiments,
JHEP10 (2020) 040.; DOI:10.1007/JHEP10(2020)040
247.M. Aoki, V. Brdar and J. Kubo, Heavy dark
matter, neutrino masses, and Higgs naturalness from a strongly
interacting hidden sector, Phys. Rev. D102 (2020) 035026.; DOI:10.1103/PhysRevD.102.035026
248.M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, XENON1T anomaly: A light Z’ from a Two Higgs Doublet
Model, Phys. Lett. B811 (2020)
135972.; DOI:10.1016/j.physletb.2020.135972
249.M. Andriamirado et al., Note on
arXiv:2005.05301, ’Preparation of the Neutrino-4 experiment on search
for sterile neutrino and the obtained results of measurements’
(2020).; Retrieved from https://arxiv.org/abs/2006.13147
250.A. N. Khan, Can Nonstandard Neutrino
Interactions explain the XENON1T spectral excess?, Phys.
Lett. B809 (2020) 135782.; DOI:10.1016/j.physletb.2020.135782
251.A. Bally, S. Jana and A. Trautner, Neutrino
self-interactions and XENON1T electron recoil excess, Phys.
Rev. Lett.125 (2020) 161802.; DOI:10.1103/PhysRevLett.125.161802
252.E. Aprile et al., Excess electronic recoil
events in XENON1T, Phys. Rev. D102
(2020) 072004.; DOI:10.1103/PhysRevD.102.072004
253.T. Alanne, G. Arcadi, F. Goertz, V. Tenorth and S. Vogl, Model-independent constraints with extended dark matter
EFT, JHEP10 (2020) 172.; DOI:10.1007/JHEP10(2020)172
254.T. Rink, W. Rodejohann and K. Schmitz, Leptogenesis and low-energy CP violation in a
type-II-dominated left-right seesaw model, Nucl. Phys. B972 (2021) 115552.; DOI:10.1016/j.nuclphysb.2021.115552
255.J. Aalbers et al., Solar neutrino detection
sensitivity in DARWIN via electron scattering, Eur. Phys. J.
C80 (2020) 1133.; DOI:10.1140/epjc/s10052-020-08602-7
256.M. Agostini et al., First Search for Bosonic
Superweakly Interacting Massive Particles with Masses up to 1 MeV/\(c^2\) with GERDA, Phys. Rev.
Lett.125 (2020) 011801.; DOI:10.1103/PhysRevLett.125.011801
257.S. Centelles Chuliá, C. Döring, W. Rodejohann and U. J.
Saldaña-Salazar, Natural axion model from
flavour, JHEP09 (2020) 137.; DOI:10.1007/JHEP09(2020)137
258.M. J. Zurowski, E. Barberio and G. Busoni, Inelastic Dark Matter and the SABRE Experiment,
JCAP12 (2020) 014.; DOI:10.1088/1475-7516/2020/12/014
259.D. Cichon, G. Eurin, F. Jörg, T. Marrodán Undagoitia and N. Rupp,
Transmission of xenon scintillation light through
PTFE, JINST15 (2020) P09010.; DOI:10.1088/1748-0221/15/09/P09010
260.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and \(N_{{\rm eff}}\),
JCAP06 (2020) 058.; DOI:10.1088/1475-7516/2020/06/058
261.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars, JCAP09 (2020) 028.; DOI:10.1088/1475-7516/2020/09/028
262.C. Jaramillo, M. Lindner and W. Rodejohann, Seesaw neutrino dark matter by freeze-out,
JCAP04 (2021) 023.; DOI:10.1088/1475-7516/2021/04/023
263.M. Berbig, S. Jana and A. Trautner, The Hubble
tension and a renormalizable model of gauged neutrino
self-interactions, Phys. Rev. D102
(2020) 115008.; DOI:10.1103/PhysRevD.102.115008
264.F. F. Deppisch, L. Graf, W. Rodejohann and X.-J. Xu, Neutrino Self-Interactions and Double Beta Decay,
Phys. Rev. D102 (2020) 051701.; DOI:10.1103/PhysRevD.102.051701
265.S. Blasi, C. Csaki and F. Goertz, A natural
composite Higgs via universal boundary conditions, SciPost
Phys.10 (2021) 121.; DOI:10.21468/SciPostPhys.10.5.121
266.H. Almazán et al., Accurate Measurement of the
Electron Antineutrino Yield of \(^{235}\)U Fissions from the STEREO
Experiment with 119 Days of Reactor-On Data, Phys. Rev.
Lett.125 (2020) 201801.; DOI:10.1103/PhysRevLett.125.201801
267.S. Blasi, V. Brdar and K. Schmitz, Fingerprint
of low-scale leptogenesis in the primordial gravitational-wave
spectrum, Phys. Rev. Res.2 (2020)
043321.; DOI:10.1103/PhysRevResearch.2.043321
268.S. Jana, N. Okada and D. Raut, Displaced vertex
and disappearing track signatures in type-III seesaw, Eur.
Phys. J. C82 (2022) 927.; DOI:10.1140/epjc/s10052-022-10855-3
269.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S.
Hannestad, MeV-scale reheating temperature and
cosmological production of light sterile neutrinos, JCAP08 (2020) 015.; DOI:10.1088/1475-7516/2020/08/015
270.F. F. Deppisch, L. Graf and F. Šimkovic, Searching for New Physics in Two-Neutrino Double Beta
Decay, Phys. Rev. Lett.125 (2020)
171801.; DOI:10.1103/PhysRevLett.125.171801
271.F. Agostini et al., Sensitivity of the DARWIN
observatory to the neutrinoless double beta decay of \(^{136}\)Xe, Eur. Phys. J. C80 (2020) 808.; DOI:10.1140/epjc/s10052-020-8196-z
272.V. Brdar, M. Lindner, S. Vogl and X.-J. Xu, Revisiting neutrino self-interaction constraints from
\(Z\) and \(\tau\) decays, Phys. Rev. D101 (2020) 115001.; DOI:10.1103/PhysRevD.101.115001
273.E. Aprile et al., Energy resolution and
linearity of XENON1T in the MeV energy range, Eur. Phys. J.
C80 (2020) 785.; DOI:10.1140/epjc/s10052-020-8284-0
274.K. S. Babu, D. Gonçalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
Between LHC and Oscillation Experiments, Phys. Lett. B815 (2021) 136131.; DOI:10.1016/j.physletb.2021.136131
275.S. Jana, V. P. K. and S. Saad, Resolving
electron and muon \(g-2\) within the
2HDM, Phys. Rev. D101 (2020) 115037.;
DOI:10.1103/PhysRevD.101.115037
276.Y. P. Porto-Silva, S. Prakash, O. L. G. Peres, H. Nunokawa and H.
Minakata, Constraining visible neutrino decay at
KamLAND and JUNO, Eur. Phys. J. C80
(2020) 999.; DOI:10.1140/epjc/s10052-020-08573-9
277.A. Trautner, On the systematic construction of
basis invariants, (E. Widmann, J. Marton, A. Pichler, M. Simon,
& D. Murtagh, Eds.)J. Phys. Conf. Ser.1586 (2020) 012005.; DOI:10.1088/1742-6596/1586/1/012005
278.Y. P. Porto-Silva and M. C. de Oliveira, Theory
of Neutrino Detection – Flavor Oscillations and Weak Values,
Eur. Phys. J. C81 (2021) 330.; DOI:10.1140/epjc/s10052-021-09108-6
279.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, MUonE sensitivity to new physics explanations of the muon
anomalous magnetic moment, JHEP05
(2020) 053.; DOI:10.1007/JHEP05(2020)053
280.G. Arcadi, G. Busoni, T. Hugle and V. T. Tenorth, Comparing 2HDM \(+\)
Scalar and Pseudoscalar Simplified Models at LHC, JHEP06 (2020) 098.; DOI:10.1007/JHEP06(2020)098
281.P. Bakhti and A. Yu. Smirnov, Oscillation
tomography of the Earth with solar neutrinos and future
experiments, Phys. Rev. D101 (2020)
123031.; DOI:10.1103/PhysRevD.101.123031
282.A. E. Cárcamo Hernández, C. O. Dib and U. J. Saldaña-Salazar, When \(\tan \beta\)
meets all the mixing angles, Phys. Lett. B809 (2020) 135750.; DOI:10.1016/j.physletb.2020.135750
283.C. Buck et al., A novel experiment for coherent
elastic neutrino nucleus scattering: CONUS, (K. Clark, C.
Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf.
Ser.1342 (2020) 012094.; DOI:10.1088/1742-6596/1342/1/012094