Publications of the division during the last three years
1.H. Acharya et al., First Results on the Search
for Lepton Number Violating Neutrinoless Double Beta Decay with the
LEGEND-200 Experiment (2025).; Retrieved from https://arxiv.org/abs/2505.10440
2.M. Agostini et al., Measurement of the \(^{85}\)Kr specific activity in the GERDA
liquid argon, Eur. Phys. J. C85 (2025)
518.; DOI:10.1140/epjc/s10052-025-14135-8
3.A. Yu. Smirnov, Chiral interactions, chiral
states and ”chiral neutrino oscillations” (2025).; Retrieved from
https://arxiv.org/abs/2505.06116
4.T. Herbermann and M. Lindner, Improved
cosmological limits on \(Z^\prime\)
models with light right-handed neutrinos (2025).; Retrieved from
https://arxiv.org/abs/2505.04695
5.S. Bianco, P. F. Depta, J. Frerick, T. Hambye, M. Hufnagel and K.
Schmidt-Hoberg, Photo- and Hadrodisintegration
constraints on massive relics decaying into neutrinos (2025).;
Retrieved from https://arxiv.org/abs/2505.01492
8.A. Ahmed, J. P. Garcés and M. Lindner, Radiative
Symmetry Breaking with a Scale Invariant Seesaw (2025).;
Retrieved from https://arxiv.org/abs/2504.13243
9.L. Gráf, C. Hati, A. Martı́n-Galán and O. Scholer, Importance of Loop Effects in Probing Lepton Number
Violation (2025).; Retrieved from https://arxiv.org/abs/2504.00081
10.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(A_4\) Invariance, Springer Proc.
Phys.361 (2025) 303–312.; DOI:10.1007/978-981-97-7441-8_30
11.E. Aprile et al., WIMP Dark Matter Search using
a 3.1 tonne \(\times\) year Exposure of
the XENONnT Experiment (2025).; Retrieved from https://arxiv.org/abs/2502.18005
13.O. Scholer, Towards distinguishing different
mechanisms of \(0\nu\beta\beta\), AIP Conf.
Proc.3143 (2025) 020019.; DOI:10.1063/5.0235385
14.E. Aprile et al., Radon Removal in XENONnT down
to the Solar Neutrino Level (2025).; Retrieved from https://arxiv.org/abs/2502.04209
15.J. Kubo and J. Kuntz, Primordial Gravitational
Waves in Quadratic Gravity (2025).; Retrieved from https://arxiv.org/abs/2502.03543
16.M. Guida, Y.-T. Lin and H. Simgen, Improved and
automated krypton assay for low-background xenon detectors with
Auto-RGMS (2025).; Retrieved from https://arxiv.org/abs/2501.10993
17.N. Ackermann et al., First observation of
reactor antineutrinos by coherent scattering (2025).; Retrieved
from https://arxiv.org/abs/2501.05206
18.M. Sen, Testing nonstandard neutrino
properties, PoSNOW2024 (2025) 026.;
DOI:10.22323/1.473.0026
19.Y. Chung, A. Bally and F. Goertz, Looking for
the solution to the Hierarchy Problem in Top physics,
PoSICHEP2024 (2025) 343.; DOI:10.22323/1.476.0343
20.A. Ahmed, Z. Chacko, I. Flood, C. Kilic and S. Najjari, General Form of Effective Operators from Hidden
Sectors (2024).; Retrieved from https://arxiv.org/abs/2412.15067
21.E. Sanchez Garcia et al., Background
characterization of the CONUS+ experimental location, Eur.
Phys. J. C85 (2025) 465.; DOI:10.1140/epjc/s10052-025-14160-7
22.Á. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert and G. Ruisi, e+e-\(\mu\)+\(\mu\)- in the asymptotically safe standard
model, Phys. Rev. D111 (2025) 106005.;
DOI:10.1103/PhysRevD.111.106005
23.C. Buck, The CONUS+ experiment,
PoSICHEP2024 (2025) 164.; DOI:10.22323/1.476.0164
24.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Gauge-Fermion Cartography: from confinement and chiral
symmetry breaking to conformality (2024).; Retrieved from https://arxiv.org/abs/2412.12254
25.E. Aprile et al., Low-Energy Nuclear Recoil
Calibration of XENONnT with a \(^{88}\)YBe Photoneutron Source
(2024).; Retrieved from https://arxiv.org/abs/2412.10451
26.E. Aprile et al., The neutron veto of the
XENONnT experiment: Results with demineralized water (2024).;
Retrieved from https://arxiv.org/abs/2412.05264
27.Y. Chung, Generating the Dark Matter mass from
the QCD vacuum: A new approach to the Dark Matter-Baryon coincidence
problem (2024).; Retrieved from https://arxiv.org/abs/2411.18725
28.Y. Chung, Comparable Dark Matter and Baryon
energy densities from Dark Grand Unification (2024).; Retrieved
from https://arxiv.org/abs/2411.16860
29.E. Aprile et al., Search for Light Dark Matter
in Low-Energy Ionization Signals from XENONnT, Phys. Rev.
Lett.134 (2025) 161004.; DOI:10.1103/PhysRevLett.134.161004
30.G. Arcadi, D. Cabo-Almeida, S. Fabian and F. Goertz, Dark Particles at the LHC: LHC-Friendly Dark Matter
Characterization via Non-Linear EFT (2024).; Retrieved from https://arxiv.org/abs/2411.05914
32.L. Nies et al., Refining the nuclear mass
surface with the mass of Sn103, Phys. Rev. C111 (2025) 014315.; DOI:10.1103/PhysRevC.111.014315
33.J. Aalbers et al., Neutrinoless double beta
decay sensitivity of the XLZD rare event observatory, J.
Phys. G52 (2025) 045102.; DOI:10.1088/1361-6471/adb900
34.J. Aalbers et al., The XLZD Design Book: Towards
the Next-Generation Liquid Xenon Observatory for Dark Matter and
Neutrino Physics (2024).; Retrieved from https://arxiv.org/abs/2410.17137
35.E. Akhmedov, Non-relativistic neutrinos and the
question of Dirac vs. Majorana neutrino nature (2024).; Retrieved
from https://arxiv.org/abs/2410.11940
36.C. Döring and A. Trautner, Symmetries from outer
automorphisms and unorthodox group extensions (2024).; Retrieved
from https://arxiv.org/abs/2410.11052
37.J. Kuntz, Unitarity through PT symmetry in
Quantum Quadratic Gravity (2024).; Retrieved from https://arxiv.org/abs/2410.08278
38.J. Aalbers et al., Model-independent searches of
new physics in DARWIN with a semi-supervised deep learning
pipeline (2024).; Retrieved from https://arxiv.org/abs/2410.00755
39.A. M. Suliga, P. C.-K. Cheong, J. Froustey, G. M. Fuller, L. Gráf, K.
Kehrer, O. Scholer and S. Shalgar, Non-conservation
of Lepton Numbers in the Neutrino Sector Could Change the Prospects for
Core Collapse Supernova Explosions (2024).; Retrieved from https://arxiv.org/abs/2410.01080
40.S. Centelles Chuliá, R. Srivastava and S. Yadav, Comprehensive phenomenology of the Dirac Scotogenic
Model: Novel low-mass dark matter, JHEP04 (2025) 038.; DOI:10.1007/JHEP04(2025)038
41.E. Aprile et al., First Search for Light Dark
Matter in the Neutrino Fog with XENONnT, Phys. Rev.
Lett.134 (2025) 111802.; DOI:10.1103/PhysRevLett.134.111802
43.E. Aprile et al., XENONnT analysis: Signal
reconstruction, calibration, and event selection, Phys. Rev.
D111 (2025) 062006.; DOI:10.1103/PhysRevD.111.062006
44.S. Jana, S. Klett, M. Lindner and R. N. Mohapatra, Radiative origin of fermion mass hierarchy in left-right
symmetric theory, JHEP01 (2025) 082.;
DOI:10.1007/JHEP01(2025)082
45.G. Arcadi, M. Lindner, J. P. Neto and F. S. Queiroz, Ultraheavy Dark Matter and WIMPs Production aided by
Primordial Black Holes (2024).; Retrieved from https://arxiv.org/abs/2408.13313
46.L. Baudis et al., Search for Pauli Exclusion
Principle violations with Gator at LNGS, Eur. Phys. J. C84 (2024) 1137.; DOI:10.1140/epjc/s10052-024-13510-1
47.T. Herbermann, M. Lindner and M. Sen, Attenuation of cosmic ray electron boosted dark
matter, Phys. Rev. D110 (2024)
123023.; DOI:10.1103/PhysRevD.110.123023
48.E. Aprile et al., First Indication of Solar B8
Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with
XENONnT, Phys. Rev. Lett.133 (2024)
191002.; DOI:10.1103/PhysRevLett.133.191002
49.S. Jana, L. Puetter and A. Yu. Smirnov, Restricting sterile neutrinos by neutrinoless double beta
decay, Phys. Rev. D111 (2025) 015011.;
DOI:10.1103/PhysRevD.111.015011
50.T. de Boer, M. Lindner and A. Trautner, Electroweak hierarchy from conformal and custodial
symmetry, Phys. Lett. B861 (2025)
139241.; DOI:10.1016/j.physletb.2025.139241
51.P. F. Depta, V. Domcke, G. Franciolini and M. Pieroni, Pulsar timing array sensitivity to anisotropies in the
gravitational wave background, Phys. Rev. D111 (2025) 083039.; DOI:10.1103/PhysRevD.111.083039
52.C. Accettura et al., Interim report for the
International Muon Collider Collaboration (IMCC), CERN Yellow
Rep. Monogr.2/2024 (2024) 176.; DOI:10.23731/CYRM-2024-002
53.S. Centelles Chulia, R. Srivastava and S. Yadav, CDF-II W Boson Mass in the Dirac Scotogenic Model,
Springer Proc. Phys.304 (2024) 946–948.;
DOI:10.1007/978-981-97-0289-3_249
55.S. Bhattacharya, S. Fabian, J. Herms and S. Jana, Flavor-specific dark matter signatures through the lens
of neutrino oscillations, JCAP01
(2025) 110.; DOI:10.1088/1475-7516/2025/01/110
56.S. Jana and Y. Porto, Non-standard interactions
of supernova neutrinos and mass ordering ambiguity at DUNE,
JCAP03 (2025) 046.; DOI:10.1088/1475-7516/2025/03/046
57.F. Goertz, M. Hager, G. Laverda and J. Rubio, Phasing out of darkness: from sterile neutrino dark
matter to neutrino masses via time-dependent mixing,
JHEP02 (2025) 213.; DOI:10.1007/JHEP02(2025)213
58.M. Sen and A. Y. Smirnov, Neutrinos with
refractive masses and the DESI BAO results (2024).; Retrieved
from https://arxiv.org/abs/2407.02462
59.S. Jana, M. Klasen, V. P. K. and L. P. Wiggering, Neutrino masses and mixing from milli-charged dark
matter, JCAP02 (2025) 011.; DOI:10.1088/1475-7516/2025/02/011
60.E. Aprile et al., XENONnT WIMP Search: Signal
& Background Modeling and Statistical Inference (2024).;
Retrieved from https://arxiv.org/abs/2406.13638
61.P. Martı́nez-Miravé, Y. F. Perez-Gonzalez and M. Sen, Effects of neutrino-ultralight dark matter interaction on
the cosmic neutrino background, Phys. Rev. D110 (2024) 055005.; DOI:10.1103/PhysRevD.110.055005
62.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The eclectic flavor symmetries of
\(\mathbb{T}^2/\mathbb{Z}_K\)
orbifolds, JHEP09 (2024) 159.; DOI:10.1007/JHEP09(2024)159
63.M. Sen, Supernova Neutrinos: Flavour Conversion
Mechanisms and New Physics Scenarios, Universe10 (2024) 238.; DOI:10.3390/universe10060238
64.M. Agostini et al., Searches for new physics
below twice the electron mass with GERDA, Eur. Phys. J.
C84 (2024) 940.; DOI:10.1140/epjc/s10052-024-13020-0
65.E. Akhmedov and M. Pospelov, BBN catalysis by
doubly charged particles, JCAP08
(2024) 028.; DOI:10.1088/1475-7516/2024/08/028
66.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing
the Origins of Neutrino Mass with Supernova-Neutrino Time Delay,
Phys. Rev. Lett.133 (2024) 121802.; DOI:10.1103/PhysRevLett.133.121802
67.S. Centelles Chuliá, A. Herrero-Brocal and A. Vicente, The Type-I Seesaw family, JHEP07 (2024) 060.; DOI:10.1007/JHEP07(2024)060
68.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y.
Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame?, Eur. Phys.
J. C85 (2025) 152.; DOI:10.1140/epjc/s10052-024-13672-y
69.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted dark matter from diffuse
supernova neutrino background, JCAP07
(2024) 045.; DOI:10.1088/1475-7516/2024/07/045
70.E. Aprile et al., Offline tagging of
radon-induced backgrounds in XENON1T and applicability to other liquid
xenon time projection chambers, Phys. Rev. D110 (2024) 012011.; DOI:10.1103/PhysRevD.110.012011
71.J. Kubo and T. Kugo, Anti-Instability of Complex
Ghost, PTEP2024 (2024) 053B01.; DOI:10.1093/ptep/ptae053
73.S. Jana, Electromagnetic Properties of
Neutrinos, PoSTAUP2023 (2024) 184.;
DOI:10.22323/1.441.0184
74.E. Akhmedov and A. Trautner, Can quantum
statistics help distinguish Dirac from Majorana neutrinos?,
JHEP05 (2024) 156.; DOI:10.1007/JHEP05(2024)156
75.S. Centelles Chuliá, O. G. Miranda and J. W. F. Valle, Leptonic neutral-current probes in a short-distance
DUNE-like setup, Phys. Rev. D109
(2024) 115007.; DOI:10.1103/PhysRevD.109.115007
76.T. Cheng, Implications of a matter-antimatter
mass asymmetry in Penning-trap experiments, PoSDISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
77.R. Deckert et al., The LEGEND-200 Liquid Argon
Instrumentation: From a simple veto to a full-fledged detector,
PoSTAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
78.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right
symmetric model: Catalyzed nuclear fusion and collider
implications, Phys. Lett. B852 (2024)
138616.; DOI:10.1016/j.physletb.2024.138616
79.M. Lindner, T. Rink and M. Sen, Light vector
bosons and the weak mixing angle in the light of future germanium-based
reactor CE\(\nu\)NS experiments,
JHEP08 (2024) 171.; DOI:10.1007/JHEP08(2024)171
80.M. Aoki, J. Kubo and J. Yang, Scale invariant
extension of the Standard Model: a nightmare scenario in
cosmology, JCAP05 (2024) 096.; DOI:10.1088/1475-7516/2024/05/096
82.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia,
Investigating the slow component of the infrared
scintillation time response in gaseous xenon, JINST19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
83.N. Ackermann et al., Final CONUS Results on
Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf
Reactor, Phys. Rev. Lett.133 (2024)
251802.; DOI:10.1103/PhysRevLett.133.251802
84.Á. Pastor-Gutiérrez and M. Yamada, Phase
structure of extra-dimensional gauge theories with fermions,
Phys. Rev. D109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
85.G. Huang, Neutrino-antineutrino asymmetry of
C\(\nu\)B on the surface of the round
Earth, JHEP11 (2024) 153.; DOI:10.1007/JHEP11(2024)153
86.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and
Implications for LEGEND-1000, PoSTAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
87.N. Volmer, On neutrino telescopes and their
ability to infer astrophysical neutrino sources via the Glashow
resonance (2024).; DOI:10.1393/ncc/i2024-24380-8
88.P. S. B. Dev, S. Jana and Y. Porto, Flavor
Matters, but Matter Flavors: Matter Effects on Flavor Composition of
Astrophysical Neutrinos (2023).; Retrieved from https://arxiv.org/abs/2312.17315
89.L. Gráf, S. Jana, O. Scholer and N. Volmer, Neutrinoless double beta decay without vacuum Majorana
neutrino mass, Phys. Lett. B859 (2024)
139111.; DOI:10.1016/j.physletb.2024.139111
90.V. Brdar, T. Cheng, H.-J. Kuan and Y.-Y. Li, Magnetar-powered neutrinos and magnetic moment signatures
at IceCube, JCAP07 (2024) 026.; DOI:10.1088/1475-7516/2024/07/026
93.Y. Chung and F. Goertz, Third-generation-philic
hidden naturalness, Phys. Rev. D110
(2024) 115019.; DOI:10.1103/PhysRevD.110.115019
94.M. Agostini et al., An improved limit on the
neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys.
J. C84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
95.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial
Compositeness, PoSEPS-HEP2023 (2024)
369.; DOI:10.22323/1.449.0369
96.D. Basilico et al., Optimized \(\alpha\)/\(\beta\) pulse shape discrimination in
Borexino, Phys. Rev. D109 (2024)
112014.; DOI:10.1103/PhysRevD.109.112014
97.M. Mukhopadhyay and M. Sen, On probing
turbulence in core-collapse supernovae in upcoming neutrino
detectors, JCAP03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
98.M. Shaposhnikov and A. Y. Smirnov, Sterile
neutrino dark matter, matter-antimatter separation, and the QCD phase
transition, Phys. Rev. D110 (2024)
063520.; DOI:10.1103/PhysRevD.110.063520
99.E. Aprile et al., Design and performance of the
field cage for the XENONnT experiment, Eur. Phys. J. C84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
100.A. Ahmed, M. Lindner and P. Saake, Conformal
little Higgs models, Phys. Rev. D109
(2024) 075041.; DOI:10.1103/PhysRevD.109.075041
101.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring naturalness via conjugate fermions,
Phys. Rev. D110 (2024) 115023.; DOI:10.1103/PhysRevD.110.115023
102.Y. Chung, Naturalness-motivated composite Higgs
model for generating the top Yukawa coupling, Phys. Rev.
D109 (2024) 095021.; DOI:10.1103/PhysRevD.109.095021
103.F. Goertz and Á. Pastor-Gutiérrez, Unveiling
new phases of the Standard Model Higgs potential, Eur. Phys.
J. C85 (2025) 116.; DOI:10.1140/epjc/s10052-025-13842-6
104.H. Bonet et al., Pulse shape discrimination for
the CONUS experiment in the keV and sub-keV regime, Eur.
Phys. J. C84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
105.M. Agostini et al., Final Results of GERDA on
the Two-Neutrino Double-\(\beta\) Decay
Half-Life of Ge76, Phys. Rev. Lett.131
(2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
106.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry,
Phys. Rev. D109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
107.J. Kubo and T. Kugo, Unitarity violation in
field theories of LeeWick’s complex ghost, PTEP2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
108.S. Jana and S. Klett, Muonic force and
nonstandard neutrino interactions at muon colliders, Phys.
Rev. D110 (2024) 095011.; DOI:10.1103/PhysRevD.110.095011
109.Y. F. Perez-Gonzalez and M. Sen, From Dirac to
Majorana: The cosmic neutrino background capture rate in the minimally
extended Standard Model, Phys. Rev. D109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
110.A. de Gouvêa, J. Weill and M. Sen, Solar
neutrinos and \(\nu\)2 visible decays
to \(\nu\)1, Phys. Rev.
D109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
111.M. Agostini et al., Search for tri-nucleon
decays of \(^{76}\)Ge in GERDA,
Eur. Phys. J. C83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
112.M. P. Bento, J. P. Silva and A. Trautner, The
basis invariant flavor puzzle, JHEP01
(2024) 024.; DOI:10.1007/JHEP01(2024)024
113.J. Herms, S. Jana, V. P. K. and S. Saad, Light
neutrinophilic dark matter from a scotogenic model, Phys.
Lett. B845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
114.G. Huang, Discovery potential of the Glashow
resonance in an air shower neutrino telescope*, Chin. Phys.
C48 (2024) 085107.; DOI:10.1088/1674-1137/ad4c5c
115.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial
compositeness, Phys. Rev. D108 (2023)
095019.; DOI:10.1103/PhysRevD.108.095019
116.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining
LHAASO anomalous \(\gamma\)
event, JCAP11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
117.M. D. Astros, S. Fabian and F. Goertz, Minimal
Inert Doublet benchmark for dark matter and the baryon asymmetry,
JCAP02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
118.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Signals of merging supermassive black holes in pulsar
timing arrays, Phys. Rev. Res.7 (2025)
013196.; DOI:10.1103/PhysRevResearch.7.013196
119.M. Adrover et al., Cosmogenic background
simulations for neutrinoless double beta decay with the DARWIN
observatory at various underground sites, Eur. Phys. J.
C84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
120.M. Sen and A. Y. Smirnov, Refractive neutrino
masses, ultralight dark matter and cosmology, JCAP01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
121.E. Aprile et al., Search for events in XENON1T
associated with gravitational waves, Phys. Rev. D108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
122.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C.
Tasillo, Does NANOGrav observe a dark sector phase
transition?, JCAP11 (2023) 053.;
DOI:10.1088/1475-7516/2023/11/053
123.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic
recoil calibration of the XENONnT detector, JINST18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
124.L. Angel et al., Toward a search for axionlike
particles at the LNLS, Phys. Rev. D108
(2023) 055030.; DOI:10.1103/PhysRevD.108.055030
125.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari,
Composite dark matter and neutrino masses from a
light hidden sector, JHEP07 (2024)
260.; DOI:10.1007/JHEP07(2024)260
126.A. Bally, Y. Chung and F. Goertz, The Hierarchy
Problem and the Top Yukawa, 57th
Rencontres de Moriond on QCD and High Energy Interactions.;
Retrieved from https://arxiv.org/abs/2304.11891
127.E. Aprile et al., Searching for Heavy Dark
Matter near the Planck Mass with XENON1T, Phys. Rev.
Lett.130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
128.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless
double beta decay, JHEP08 (2023) 043.;
DOI:10.1007/JHEP08(2023)043
129.E. Aprile et al., Detector signal
characterization with a Bayesian network in XENONnT, Phys.
Rev. D108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
130.E. Aprile et al., First Dark Matter Search with
Nuclear Recoils from the XENONnT Experiment, Phys. Rev.
Lett.131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
131.S. Jana and Y. Porto, Resonances of Supernova
Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett.132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
132.G. Huang, M. Lindner and N. Volmer, Inferring
astrophysical neutrino sources from the Glashow resonance,
JHEP11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
133.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T.
Marrodán Undagoitia, First time-resolved
measurement of infrared scintillation light in gaseous xenon,
Eur. Phys. J. C83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
135.A. Trautner, Modular Flavor Symmetries and CP
from the top down, PoSDISCRETE2022
(2024) 013.; DOI:10.22323/1.431.0013
136.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter
model, PoSDISCRETE2022 (2024) 076.;
DOI:10.22323/1.431.0076
137.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino
mass scales, JHEP06 (2023) 078.;
DOI:10.1007/JHEP06(2023)078
138.N. Ackermann et al., Monte Carlo simulation of
background components in low level Germanium spectrometry,
Appl. Radiat. Isot.194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
139.J. Hakenmüller and G. Heusser, CONRADA low
level germanium test detector for the CONUS experiment, Appl.
Radiat. Isot.194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
140.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F.
Meggendorfer and S. Skambraks, Operation of the
Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware
Perspective, J. Phys. Conf. Ser.2438
(2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
141.S. Jana, Y. P. Porto-Silva and M. Sen, Signal
of neutrino magnetic moments from a galactic supernova burst at upcoming
detectors, PoSICHEP2022 (2022) 597.;
DOI:10.22323/1.414.0597
142.E. Aprile et al., The triggerless data
acquisition system of the XENONnT experiment, JINST18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
143.S. Blasi, J. Bollig and F. Goertz, Holographic
composite Higgs model building: soft breaking, maximal symmetry, and the
Higgs mass, JHEP07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
144.I. Bischer, C. Döring and A. Trautner, Telling
compositeness at a distance with outer automorphisms and CP,
J. Phys. A56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
145.M. Agostini et al., Liquid argon light
collection and veto modeling in GERDA Phase II, Eur. Phys. J.
C83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
146.A. Bally, Y. Chung and F. Goertz, Hierarchy
problem and the top Yukawa coupling: An alternative to top partner
solutions, Phys. Rev. D108 (2023)
055008.; DOI:10.1103/PhysRevD.108.055008
147.T. Rink and M. Sen, Constraints on pseudo-Dirac
neutrinos using high-energy neutrinos from NGC 1068, Phys.
Lett. B851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
148.E. Aprile et al., Low-energy calibration of
XENON1T with an internal \(^{{\textbf
{37}}}\)Ar source, Eur. Phys. J. C83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
149.A. Y. Smirnov and A. Trautner, GRB 221009A
Gamma Rays from the Radiative Decay of Heavy Neutrinos?,
Phys. Rev. Lett.131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
150.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with
Gauged \(U(1)_{L(-R)}\) (2022).;
Retrieved from https://arxiv.org/abs/2210.13402
151.T. Cheng, M. Lindner and M. Sen, Implications
of a matter-antimatter mass asymmetry in Penning-trap
experiments, Phys. Lett. B844 (2023)
138068.; DOI:10.1016/j.physletb.2023.138068
152.H. Almazán et al., STEREO neutrino spectrum of
\(^{235}\)U fission rejects sterile
neutrino hypothesis, Nature613 (2023)
257–261.; DOI:10.1038/s41586-022-05568-2
153.E. Aprile et al., Effective field theory and
inelastic dark matter results from XENON1T, Phys. Rev. D109 (2024) 112017.; DOI:10.1103/PhysRevD.109.112017
154.E. Aprile et al., An approximate likelihood for
nuclear recoil searches with XENON1T data, Eur. Phys. J.
C82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
155.E. Akhmedov and A. Y. Smirnov, Reply to
”Comment on ”Damping of neutrino oscillations, decoherence and the
lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
156.J. Herms, S. Jana, V. P. K. and S. Saad, Light
thermal relics enabled by a second Higgs, SciPost Phys.
Proc.12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
157.I. Oda and P. Saake, BRST formalism of Weyl
conformal gravity, Phys. Rev. D106
(2022) 106007.; DOI:10.1103/PhysRevD.106.106007
158.A. de Gouvêa et al., Theory of Neutrino Physics
– Snowmass TF11 (aka NF08) Topical Group Report (2022).;
Retrieved from https://arxiv.org/abs/2209.07983
159.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, Moscow Univ. Phys. Bull.77 (2022) 371–374.; DOI:10.3103/S0027134922020461
160.M. Agostini et al., Search for exotic physics
in double-\(\beta\) decays with GERDA
Phase II, JCAP12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
161.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable
models and flavor, JHEP04 (2023) 012.;
DOI:10.1007/JHEP04(2023)012
162.J. Kubo and J. Kuntz, Spontaneous conformal
symmetry breaking and quantum quadratic gravity, Phys. Rev.
D106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
163.A. N. Khan, Extra dimensions with light and
heavy neutral leptons: an application to CE\(\nu\)NS, JHEP01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
164.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of
heavy-ion collisions and their impact on particle correlations,
Phys. Rev. C108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
165.E. Akhmedov and A. Y. Smirnov, Damping of
neutrino oscillations, decoherence and the lengths of neutrino wave
packets, JHEP11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
166.A. N. Khan, Light new physics and neutrino
electromagnetic interactions in XENONnT, Phys. Lett. B837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
167.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts,
JCAP11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
168.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of
sterile neutrino dark matter via neutrino self-interactions,
JCAP11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
169.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
boson induced reheating and ultraviolet frozen-in dark matter,
JHEP02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
170.H. Almazan et al., Improved FIFRELIN
de-excitation model for neutrino applications, Eur. Phys. J.
A59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
171.E. Aprile et al., Search for New Physics in
Electronic Recoil Data from XENONnT, Phys. Rev. Lett.129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
173.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The first string-derived eclectic
flavor model with realistic phenomenology, JHEP09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
174.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum
gravity to dynamical chiral symmetry breaking, SciPost
Phys.15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
176.M. Aker et al., Search for Lorentz-invariance
violation with the first KATRIN data, Phys. Rev. D107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
177.M. Aker et al., Search for keV-scale sterile
neutrinos with the first KATRIN data, Eur. Phys. J. C83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
178.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting
bounds on neutrino magnetic moments and solar magnetic field,
JHEP10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
179.S. Richers and M. Sen, Fast Flavor Transformations, In
I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).;
DOI:10.1007/978-981-15-8818-1_125-1
180.J. Berger et al., Snowmass 2021 White Paper:
Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino
Experiments, Snowmass 2021.; Retrieved from
https://arxiv.org/abs/2207.02882
181.G. Huang, Double and multiple bangs at tau
neutrino telescopes, Eur. Phys. J. C82
(2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
182.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann,
Search for leptophilic dark matter at the
LHeC, J. Phys. G50 (2023) 065001.;
DOI:10.1088/1361-6471/accc4a
183.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model,
Mod. Phys. Lett. A38 (2023).; DOI:10.1142/S0217732323500499
184.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman
and K. Schmidt-Hoberg, Minimal sterile neutrino
dark matter, Phys. Rev. D107 (2023)
L071702.; DOI:10.1103/PhysRevD.107.L071702
185.G. Huang and N. Nath, Inference of neutrino
nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with
inverted mass ordering, Eur. Phys. J. C82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
186.S. Jana, Horizontal Symmetry and Large Neutrino
Magnetic Moments, PoSDISCRETE2020-2021
(2022) 037.; DOI:10.22323/1.405.0037
187.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S.
de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian
synchrotron, Eur. Phys. J. C83 (2023)
514.; DOI:10.1140/epjc/s10052-023-11603-x
188.A. Schneider et al., Direct measurement of the
\(^{3}\)He\(^{+}\) magnetic moments,
Nature606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
189.F. Jörg, G. Eurin and H. Simgen, Production and
characterization of a 222Rn-emanating stainless steel source,
Appl. Radiat. Isot.194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
190.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale
detectors, JINST17 (2022) P11025.;
DOI:10.1088/1748-0221/17/11/P11025
191.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark
condensation, SciPost Phys.14 (2023)
076.; DOI:10.21468/SciPostPhys.14.4.076
192.Á. Pastor-Gutiérrez and M. Yamada, UV
completion of extradimensional Yang-Mills theory for Gauge-Higgs
unification, SciPost Phys.15 (2023)
101.; DOI:10.21468/SciPostPhys.15.3.101
193.M. Sen, Constraining pseudo-Dirac neutrinos
from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
194.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the
sterile neutrino portal, Phys. Rev. D106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
195.T. Rink, Coherent elastic neutrino-nucleus
scattering – First constraints/observations and future potential,
56th Rencontres de Moriond on Electroweak
Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
196.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of
mu-tau neutrinos, Phys. Rev. D106
(2022) 083011.; DOI:10.1103/PhysRevD.106.083011
197.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT
Experiments, Phys. Rev. C106 (2022)
024328.; DOI:10.1103/PhysRevC.106.024328
198.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen,
Diffuse supernova neutrino background as a probe of
late-time neutrino mass generation, Phys. Rev. D106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
199.S. Weber, Quantum Field Theory and
Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand
Unification (Master’s thesis). Heidelberg U.
200.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability
from flavour symmetry, JHEP10 (2022)
080.; DOI:10.1007/JHEP10(2022)080
201.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the
cosmic neutrino background, Phys. Rev. D106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
202.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of
neutrino oscillations, JHEP08 (2022)
111.; DOI:10.1007/JHEP08(2022)111
203.L. Gráf, M. Lindner and O. Scholer, Unraveling
the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys.
Rev. D106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
204.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes
via the dipole portal, Phys. Lett. B840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
205.A. Trautner, Anatomy of a top-down approach to
discrete and modular flavor symmetry, PoSDISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
206.K. S. Babu, S. Jana and V. P. K., Correlating
W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model,
Phys. Rev. Lett.129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
207.J. Hakenmüller and W. Maneschg, Identification
of radiopure tungsten for low background applications, J.
Phys. G49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
208.A. de Gouvêa, M. Sen and J. Weill, Visible
neutrino decays and the impact of the daughter-neutrino mass,
Phys. Rev. D106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
209.L. Althueser et al., GPU-based optical
simulation of the DARWIN detector, JINST17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
210.L. A. Ruso et al., Theoretical tools for
neutrino scattering: interplay between lattice QCD, EFTs, nuclear
physics, phenomenology, and neutrino event generators, J.
Phys. G52 (2025) 043001.; DOI:10.1088/1361-6471/adae26
211.A. N. Khan, \(\sin^2\theta_W\) and neutrino
electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching
factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
212.M. Aker et al., KATRIN: status and prospects
for the neutrino mass and beyond, J. Phys. G49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
213.N. Bartosik et al., Simulated Detector
Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
214.D. Stratakis et al., A Muon Collider Facility
for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
215.S. Jindariani et al., Promising Technologies
and R&D Directions for the Future Muon Collider Detectors
(2022).; Retrieved from https://arxiv.org/abs/2203.07224
216.C. Awe et al., Particle physics using reactor
antineutrinos, (O. A. Akindele et al., Eds.)J. Phys. G51 (2024) 080501.; DOI:10.1088/1361-6471/ad3a84
219.M. Abdullah et al., Coherent elastic
neutrino-nucleus scattering: Terrestrial and astrophysical
applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
220.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter,
Phys. Rev. Lett.129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
221.R. Mammen Abraham et al., Tau neutrinos in the
next decade: from GeV to EeV, J. Phys. G49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
222.J. L. Feng et al., The Forward Physics Facility
at the High-Luminosity LHC, J. Phys. G50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
223.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\)
Anomaly with Neutrino Magnetic Moments, PoSEPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
224.J. Aalbers et al., A next-generation liquid
xenon observatory for dark matter and neutrino physics, J.
Phys. G50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
225.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino
magnetic moments, JCAP09 (2022) 079.;
DOI:10.1088/1475-7516/2022/09/079
226.J. M. Berryman et al., Neutrino
self-interactions: A white paper, Phys. Dark Univ.42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
227.G. Busoni, Capture of DM in Compact
Stars, PoSPANIC2021 (2022) 046.;
DOI:10.22323/1.380.0046
228.M. Agostini et al., Pulse shape analysis in
Gerda Phase II, Eur. Phys. J. C82
(2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
229.J. Kubo and J. Kuntz, Analysis of unitarity in
conformal quantum gravity, Class. Quant. Grav.39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
230.K. S. Babu, P. S. B. Dev and S. Jana, Probing
neutrino mass models through resonances at neutrino telescopes,
Int. J. Mod. Phys. A37 (2022) 2230003.;
DOI:10.1142/S0217751X22300034
231.M. Aker et al., New Constraint on the Local
Relic Neutrino Background Overdensity with the First KATRIN Data
Runs, Phys. Rev. Lett.129 (2022)
011806.; DOI:10.1103/PhysRevLett.129.011806
232.A. Bonhomme et al., Direct measurement of the
ionization quenching factor of nuclear recoils in germanium in the keV
energy range, Eur. Phys. J. C82 (2022)
815.; DOI:10.1140/epjc/s10052-022-10768-1
233.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
Boson-Induced Reheating and Dark Matter Production,
Symmetry14 (2022) 306.; DOI:10.3390/sym14020306
234.H. de Kerret et al., The Double Chooz
antineutrino detectors, Eur. Phys. J. C82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
235.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoSEPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
236.H. Bonet et al., First upper limits on neutrino
electromagnetic properties from the CONUS experiment, Eur.
Phys. J. C82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
237.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles
and electrons in liquid xenon, Rev. Sci. Instrum.93 (2022) 113302.; DOI:10.1063/5.0087216
238.M. Aker et al., Improved eV-scale
sterile-neutrino constraints from the second KATRIN measurement
campaign, Phys. Rev. D105 (2022)
072004.; DOI:10.1103/PhysRevD.105.072004
239.A. N. Khan, Neutrino millicharge and other
electromagnetic interactions with COHERENT-2021 data, Nucl.
Phys. B986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
241.A. Yu. Smirnov and X.-J. Xu, Neutrino bound
states and bound systems, JHEP08
(2022) 170.; DOI:10.1007/JHEP08(2022)170
242.L. Šerkšnytė et al., Reevaluation of the cosmic
antideuteron flux from cosmic-ray interactions and from exotic
sources, Phys. Rev. D105 (2022)
083021.; DOI:10.1103/PhysRevD.105.083021