Division Particle & Astroparticle Physics
 
 

Publications of the division during the last three years

1.E. Aprile et al., Radon Removal in XENONnT down to the Solar Neutrino Level (2025).; Retrieved from https://arxiv.org/abs/2502.04209
2.J. Kubo and J. Kuntz, Primordial Gravitational Waves in Quadratic Gravity (2025).; Retrieved from https://arxiv.org/abs/2502.03543
3.M. Guida, Y.-T. Lin and H. Simgen, Improved and automated krypton assay for low-background xenon detectors with Auto-RGMS (2025).; Retrieved from https://arxiv.org/abs/2501.10993
4.N. Ackermann et al., First observation of reactor antineutrinos by coherent scattering (2025).; Retrieved from https://arxiv.org/abs/2501.05206
5.M. Sen, Testing non-standard neutrino properties, Neutrino Oscillation Workshop 2024.; Retrieved from https://arxiv.org/abs/2501.04309
6.A. Ahmed, Z. Chacko, I. Flood, C. Kilic and S. Najjari, General Form of Effective Operators from Hidden Sectors (2024).; Retrieved from https://arxiv.org/abs/2412.15067
7.E. Sanchez Garcia et al., Background characterization of the CONUS+ experimental location (2024).; Retrieved from https://arxiv.org/abs/2412.13707
8.Á. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert and G. Ruisi, \(e^+ e^- \to \mu^+ \mu^-\) in the Asymptotically Safe Standard Model (2024).; Retrieved from https://arxiv.org/abs/2412.13800
9.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Gauge-Fermion Cartography: from confinement and chiral symmetry breaking to conformality (2024).; Retrieved from https://arxiv.org/abs/2412.12254
10.E. Aprile et al., Low-Energy Nuclear Recoil Calibration of XENONnT with a \(^{88}\)YBe Photoneutron Source (2024).; Retrieved from https://arxiv.org/abs/2412.10451
11.E. Aprile et al., The neutron veto of the XENONnT experiment: Results with demineralized water (2024).; Retrieved from https://arxiv.org/abs/2412.05264
12.Y. Chung, Generating the Dark Matter mass from the QCD vacuum: A new approach to the Dark Matter-Baryon coincidence problem (2024).; Retrieved from https://arxiv.org/abs/2411.18725
13.Y. Chung, Comparable Dark Matter and Baryon energy densities from Dark Grand Unification (2024).; Retrieved from https://arxiv.org/abs/2411.16860
14.E. Aprile et al., Search for Light Dark Matter in Low-Energy Ionization Signals from XENONnT (2024).; Retrieved from https://arxiv.org/abs/2411.15289
15.G. Arcadi, D. Cabo-Almeida, S. Fabian and F. Goertz, Dark Particles at the LHC: LHC-Friendly Dark Matter Characterization via Non-Linear EFT (2024).; Retrieved from https://arxiv.org/abs/2411.05914
16.C. Accettura et al., MuCol Milestone Report No. 5: Preliminary Parameters (2024).; DOI:10.5281/zenodo.13970100
17.L. Nies et al., Refining the nuclear mass surface with the mass of Sn103, Phys. Rev. C 111 (2025) 014315.; DOI:10.1103/PhysRevC.111.014315
18.J. Aalbers et al., Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory (2024).; Retrieved from https://arxiv.org/abs/2410.19016
19.J. Aalbers et al., The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics (2024).; Retrieved from https://arxiv.org/abs/2410.17137
20.E. Akhmedov, Non-relativistic neutrinos and the question of Dirac vs. Majorana neutrino nature (2024).; Retrieved from https://arxiv.org/abs/2410.11940
21.C. Döring and A. Trautner, Symmetries from outer automorphisms and unorthodox group extensions (2024).; Retrieved from https://arxiv.org/abs/2410.11052
22.J. Kuntz, Unitarity through PT symmetry in Quantum Quadratic Gravity (2024).; Retrieved from https://arxiv.org/abs/2410.08278
23.J. Aalbers et al., Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline (2024).; Retrieved from https://arxiv.org/abs/2410.00755
24.A. M. Suliga, P. C.-K. Cheong, J. Froustey, G. M. Fuller, L. Gráf, K. Kehrer, O. Scholer and S. Shalgar, Non-conservation of Lepton Numbers in the Neutrino Sector Could Change the Prospects for Core Collapse Supernova Explosions (2024).; Retrieved from https://arxiv.org/abs/2410.01080
25.S. Centelles Chuliá, R. Srivastava and S. Yadav, Comprehensive Phenomenology of the Dirac Scotogenic Model: Novel Low Mass Dark Matter (2024).; Retrieved from https://arxiv.org/abs/2409.18513
26.E. Aprile et al., First Search for Light Dark Matter in the Neutrino Fog with XENONnT (2024).; Retrieved from https://arxiv.org/abs/2409.17868
27.O. Scholer, Automating neutrinoless double beta decay with Python, AIP Conf. Proc. 3138 (2024) 020016.; DOI:10.1063/5.0205393
28.E. Aprile et al., XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection (2024).; Retrieved from https://arxiv.org/abs/2409.08778
29.S. Jana, S. Klett, M. Lindner and R. N. Mohapatra, Radiative origin of fermion mass hierarchy in left-right symmetric theory, JHEP 01 (2025) 082.; DOI:10.1007/JHEP01(2025)082
30.G. Arcadi, M. Lindner, J. P. Neto and F. S. Queiroz, Ultraheavy Dark Matter and WIMPs Production aided by Primordial Black Holes (2024).; Retrieved from https://arxiv.org/abs/2408.13313
31.L. Baudis et al., Search for Pauli Exclusion Principle violations with Gator at LNGS, Eur. Phys. J. C 84 (2024) 1137.; DOI:10.1140/epjc/s10052-024-13510-1
32.T. Herbermann, M. Lindner and M. Sen, Attenuation of cosmic ray electron boosted dark matter, Phys. Rev. D 110 (2024) 123023.; DOI:10.1103/PhysRevD.110.123023
33.E. Aprile et al., First Indication of Solar B8 Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT, Phys. Rev. Lett. 133 (2024) 191002.; DOI:10.1103/PhysRevLett.133.191002
34.S. Jana, L. Puetter and A. Yu. Smirnov, Restricting sterile neutrinos by neutrinoless double beta decay, Phys. Rev. D 111 (2025) 015011.; DOI:10.1103/PhysRevD.111.015011
35.T. de Boer, M. Lindner and A. Trautner, Electroweak hierarchy from conformal and custodial symmetry, Phys. Lett. B 861 (2025) 139241.; DOI:10.1016/j.physletb.2025.139241
36.P. F. Depta, V. Domcke, G. Franciolini and M. Pieroni, Pulsar timing array sensitivity to anisotropies in the gravitational wave background (2024).; Retrieved from https://arxiv.org/abs/2407.14460
37.C. Accettura et al., Interim report for the International Muon Collider Collaboration (IMCC) 2/2024 (2024).; DOI:10.23731/CYRM-2024-002
38.S. Centelles Chulia, R. Srivastava and S. Yadav, CDF-II W Boson Mass in the Dirac Scotogenic Model, Springer Proc. Phys. 304 (2024) 946–948.; DOI:10.1007/978-981-97-0289-3_249
39.N. Ackermann et al., CONUS+ Experiment, Eur. Phys. J. C 84 (2024) 1265.; DOI:10.1140/epjc/s10052-024-13551-6
40.S. Bhattacharya, S. Fabian, J. Herms and S. Jana, Flavor-specific dark matter signatures through the lens of neutrino oscillations, JCAP 01 (2025) 110.; DOI:10.1088/1475-7516/2025/01/110
41.S. Jana and Y. Porto, Non-Standard Interactions of Supernova Neutrinos and Mass Ordering Ambiguity at DUNE (2024).; Retrieved from https://arxiv.org/abs/2407.06251
42.F. Goertz, M. Hager, G. Laverda and J. Rubio, Phasing out of Darkness: From Sterile Neutrino Dark Matter to Neutrino Masses via Time-Dependent Mixing (2024).; Retrieved from https://arxiv.org/abs/2407.04778
43.M. Sen and A. Y. Smirnov, Neutrinos with refractive masses and the DESI BAO results (2024).; Retrieved from https://arxiv.org/abs/2407.02462
44.S. Jana, M. Klasen, V. P. K. and L. P. Wiggering, Neutrino masses and mixing from milli-charged dark matter, JCAP 02 (2025) 011.; DOI:10.1088/1475-7516/2025/02/011
45.E. Aprile et al., XENONnT WIMP Search: Signal & Background Modeling and Statistical Inference (2024).; Retrieved from https://arxiv.org/abs/2406.13638
46.P. Martı́nez-Miravé, Y. F. Perez-Gonzalez and M. Sen, Effects of neutrino-ultralight dark matter interaction on the cosmic neutrino background, Phys. Rev. D 110 (2024) 055005.; DOI:10.1103/PhysRevD.110.055005
47.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The eclectic flavor symmetries of \(\mathbb{T}^2/\mathbb{Z}_K\) orbifolds, JHEP 09 (2024) 159.; DOI:10.1007/JHEP09(2024)159
48.M. Sen, Supernova Neutrinos: Flavour Conversion Mechanisms and New Physics Scenarios, Universe 10 (2024) 238.; DOI:10.3390/universe10060238
49.M. Agostini et al., Searches for new physics below twice the electron mass with GERDA, Eur. Phys. J. C 84 (2024) 940.; DOI:10.1140/epjc/s10052-024-13020-0
50.E. Akhmedov and M. Pospelov, BBN catalysis by doubly charged particles, JCAP 08 (2024) 028.; DOI:10.1088/1475-7516/2024/08/028
51.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing the Origins of Neutrino Mass with Supernova-Neutrino Time Delay, Phys. Rev. Lett. 133 (2024) 121802.; DOI:10.1103/PhysRevLett.133.121802
52.S. Centelles Chuliá, A. Herrero-Brocal and A. Vicente, The Type-I Seesaw family, JHEP 07 (2024) 060.; DOI:10.1007/JHEP07(2024)060
53.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame? (2024).; Retrieved from https://arxiv.org/abs/2403.15860
54.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted dark matter from diffuse supernova neutrino background, JCAP 07 (2024) 045.; DOI:10.1088/1475-7516/2024/07/045
55.E. Aprile et al., Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon time projection chambers, Phys. Rev. D 110 (2024) 012011.; DOI:10.1103/PhysRevD.110.012011
56.J. Kubo and T. Kugo, Anti-Instability of Complex Ghost, PTEP 2024 (2024) 053B01.; DOI:10.1093/ptep/ptae053
57.E. Aprile et al., The XENONnT dark matter experiment, Eur. Phys. J. C 84 (2024) 784.; DOI:10.1140/epjc/s10052-024-12982-5
58.S. Jana, Electromagnetic Properties of Neutrinos, PoS TAUP2023 (2024) 184.; DOI:10.22323/1.441.0184
59.E. Akhmedov and A. Trautner, Can quantum statistics help distinguish Dirac from Majorana neutrinos?, JHEP 05 (2024) 156.; DOI:10.1007/JHEP05(2024)156
60.S. Centelles Chuliá, O. G. Miranda and J. W. F. Valle, Leptonic neutral-current probes in a short-distance DUNE-like setup, Phys. Rev. D 109 (2024) 115007.; DOI:10.1103/PhysRevD.109.115007
61.T. Cheng, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, PoS DISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
62.R. Deckert et al., The LEGEND-200 Liquid Argon Instrumentation: From a simple veto to a full-fledged detector, PoS TAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
63.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right symmetric model: Catalyzed nuclear fusion and collider implications, Phys. Lett. B 852 (2024) 138616.; DOI:10.1016/j.physletb.2024.138616
64.M. Lindner, T. Rink and M. Sen, Light vector bosons and the weak mixing angle in the light of future germanium-based reactor CE\(\nu\)NS experiments, JHEP 08 (2024) 171.; DOI:10.1007/JHEP08(2024)171
65.M. Aoki, J. Kubo and J. Yang, Scale invariant extension of the Standard Model: a nightmare scenario in cosmology, JCAP 05 (2024) 096.; DOI:10.1088/1475-7516/2024/05/096
66.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia, Investigating the slow component of the infrared scintillation time response in gaseous xenon, JINST 19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
67.N. Ackermann et al., Final CONUS Results on Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf Reactor, Phys. Rev. Lett. 133 (2024) 251802.; DOI:10.1103/PhysRevLett.133.251802
68.Á. Pastor-Gutiérrez and M. Yamada, Phase structure of extra-dimensional gauge theories with fermions, Phys. Rev. D 109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
69.G. Huang, Neutrino-antineutrino asymmetry of C\(\nu\)B on the surface of the round Earth, JHEP 11 (2024) 153.; DOI:10.1007/JHEP11(2024)153
70.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and Implications for LEGEND-1000, PoS TAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
71.N. Volmer, On neutrino telescopes and their ability to infer astrophysical neutrino sources via the Glashow resonance (2024).; DOI:10.1393/ncc/i2024-24380-8
72.P. S. B. Dev, S. Jana and Y. Porto, Flavor Matters, but Matter Flavors: Matter Effects on Flavor Composition of Astrophysical Neutrinos (2023).; Retrieved from https://arxiv.org/abs/2312.17315
73.L. Gráf, S. Jana, O. Scholer and N. Volmer, Neutrinoless double beta decay without vacuum Majorana neutrino mass, Phys. Lett. B 859 (2024) 139111.; DOI:10.1016/j.physletb.2024.139111
74.V. Brdar, T. Cheng, H.-J. Kuan and Y.-Y. Li, Magnetar-powered neutrinos and magnetic moment signatures at IceCube, JCAP 07 (2024) 026.; DOI:10.1088/1475-7516/2024/07/026
75.J. Kuntz and A. Trautner, Extra Dimensions Beyond the Horizon (2023).; Retrieved from https://arxiv.org/abs/2312.09853
76.Y. Chung, Dynamical origin of Type-I Seesaw with large mixing (2023).; Retrieved from https://arxiv.org/abs/2311.17183
77.Y. Chung and F. Goertz, Third-generation-philic hidden naturalness, Phys. Rev. D 110 (2024) 115019.; DOI:10.1103/PhysRevD.110.115019
78.M. Agostini et al., An improved limit on the neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys. J. C 84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
79.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial Compositeness, PoS EPS-HEP2023 (2024) 369.; DOI:10.22323/1.449.0369
80.D. Basilico et al., Optimized \(\alpha\)/\(\beta\) pulse shape discrimination in Borexino, Phys. Rev. D 109 (2024) 112014.; DOI:10.1103/PhysRevD.109.112014
81.M. Mukhopadhyay and M. Sen, On probing turbulence in core-collapse supernovae in upcoming neutrino detectors, JCAP 03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
82.M. Shaposhnikov and A. Y. Smirnov, Sterile neutrino dark matter, matter-antimatter separation, and the QCD phase transition, Phys. Rev. D 110 (2024) 063520.; DOI:10.1103/PhysRevD.110.063520
83.E. Aprile et al., Design and performance of the field cage for the XENONnT experiment, Eur. Phys. J. C 84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
84.A. Ahmed, M. Lindner and P. Saake, Conformal little Higgs models, Phys. Rev. D 109 (2024) 075041.; DOI:10.1103/PhysRevD.109.075041
85.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring naturalness via conjugate fermions, Phys. Rev. D 110 (2024) 115023.; DOI:10.1103/PhysRevD.110.115023
86.Y. Chung, Naturalness-motivated composite Higgs model for generating the top Yukawa coupling, Phys. Rev. D 109 (2024) 095021.; DOI:10.1103/PhysRevD.109.095021
87.F. Goertz and Á. Pastor-Gutiérrez, Unveiling new phases of the Standard Model Higgs potential, Eur. Phys. J. C 85 (2025) 116.; DOI:10.1140/epjc/s10052-025-13842-6
88.H. Bonet et al., Pulse shape discrimination for the CONUS experiment in the keV and sub-keV regime, Eur. Phys. J. C 84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
89.M. Agostini et al., Final Results of GERDA on the Two-Neutrino Double-\(\beta\) Decay Half-Life of Ge76, Phys. Rev. Lett. 131 (2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
90.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry, Phys. Rev. D 109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
91.J. Kubo and T. Kugo, Unitarity violation in field theories of LeeWick’s complex ghost, PTEP 2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
92.S. Jana and S. Klett, Muonic force and nonstandard neutrino interactions at muon colliders, Phys. Rev. D 110 (2024) 095011.; DOI:10.1103/PhysRevD.110.095011
93.Y. F. Perez-Gonzalez and M. Sen, From Dirac to Majorana: The cosmic neutrino background capture rate in the minimally extended Standard Model, Phys. Rev. D 109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
94.A. de Gouvêa, J. Weill and M. Sen, Solar neutrinos and \(\nu\)2 visible decays to \(\nu\)1, Phys. Rev. D 109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
95.M. Agostini et al., Search for tri-nucleon decays of \(^{76}\)Ge in GERDA, Eur. Phys. J. C 83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
96.M. P. Bento, J. P. Silva and A. Trautner, The basis invariant flavor puzzle, JHEP 01 (2024) 024.; DOI:10.1007/JHEP01(2024)024
97.J. Herms, S. Jana, V. P. K. and S. Saad, Light neutrinophilic dark matter from a scotogenic model, Phys. Lett. B 845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
98.G. Huang, Discovery potential of the Glashow resonance in an air shower neutrino telescope*, Chin. Phys. C 48 (2024) 085107.; DOI:10.1088/1674-1137/ad4c5c
99.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial compositeness, Phys. Rev. D 108 (2023) 095019.; DOI:10.1103/PhysRevD.108.095019
100.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous \(\gamma\) event, JCAP 11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
101.M. D. Astros, S. Fabian and F. Goertz, Minimal Inert Doublet benchmark for dark matter and the baryon asymmetry, JCAP 02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
102.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Do pulsar timing arrays observe merging primordial black holes? (2023).; Retrieved from https://arxiv.org/abs/2306.17836
103.M. Adrover et al., Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites, Eur. Phys. J. C 84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
104.M. Sen and A. Y. Smirnov, Refractive neutrino masses, ultralight dark matter and cosmology, JCAP 01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
105.E. Aprile et al., Search for events in XENON1T associated with gravitational waves, Phys. Rev. D 108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
106.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053.; DOI:10.1088/1475-7516/2023/11/053
107.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic recoil calibration of the XENONnT detector, JINST 18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
108.L. Angel et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 055030.; DOI:10.1103/PhysRevD.108.055030
109.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari, Composite dark matter and neutrino masses from a light hidden sector, JHEP 07 (2024) 260.; DOI:10.1007/JHEP07(2024)260
110.A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa, 57th Rencontres de Moriond on QCD and High Energy Interactions.; Retrieved from https://arxiv.org/abs/2304.11891
111.E. Aprile et al., Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Phys. Rev. Lett. 130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
112.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless double beta decay, JHEP 08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
113.E. Aprile et al., Detector signal characterization with a Bayesian network in XENONnT, Phys. Rev. D 108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
114.E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
115.S. Jana and Y. Porto, Resonances of Supernova Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett. 132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
116.G. Huang, M. Lindner and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
117.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán Undagoitia, First time-resolved measurement of infrared scintillation light in gaseous xenon, Eur. Phys. J. C 83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
118.C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83 (2023) 864.; DOI:10.1140/epjc/s10052-023-11889-x
119.A. Trautner, Modular Flavor Symmetries and CP from the top down, PoS DISCRETE2022 (2024) 013.; DOI:10.22323/1.431.0013
120.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter model, PoS DISCRETE2022 (2024) 076.; DOI:10.22323/1.431.0076
121.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino mass scales, JHEP 06 (2023) 078.; DOI:10.1007/JHEP06(2023)078
122.N. Ackermann et al., Monte Carlo simulation of background components in low level Germanium spectrometry, Appl. Radiat. Isot. 194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
123.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector for the CONUS experiment, Appl. Radiat. Isot. 194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
124.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F. Meggendorfer and S. Skambraks, Operation of the Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware Perspective, J. Phys. Conf. Ser. 2438 (2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
125.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of neutrino magnetic moments from a galactic supernova burst at upcoming detectors, PoS ICHEP2022 (2022) 597.; DOI:10.22323/1.414.0597
126.E. Aprile et al., The triggerless data acquisition system of the XENONnT experiment, JINST 18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
127.S. Blasi, J. Bollig and F. Goertz, Holographic composite Higgs model building: soft breaking, maximal symmetry, and the Higgs mass, JHEP 07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
128.I. Bischer, C. Döring and A. Trautner, Telling compositeness at a distance with outer automorphisms and CP, J. Phys. A 56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
129.M. Agostini et al., Liquid argon light collection and veto modeling in GERDA Phase II, Eur. Phys. J. C 83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
130.A. Bally, Y. Chung and F. Goertz, Hierarchy problem and the top Yukawa coupling: An alternative to top partner solutions, Phys. Rev. D 108 (2023) 055008.; DOI:10.1103/PhysRevD.108.055008
131.T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068, Phys. Lett. B 851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
132.E. Aprile et al., Low-energy calibration of XENON1T with an internal \(^{{\textbf {37}}}\)Ar source, Eur. Phys. J. C 83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
133.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev. Lett. 131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
134.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with Gauged \(U(1)_{L(-R)}\) (2022).; Retrieved from https://arxiv.org/abs/2210.13402
135.T. Cheng, M. Lindner and M. Sen, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, Phys. Lett. B 844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
136.H. Almazán et al., STEREO neutrino spectrum of \(^{235}\)U fission rejects sterile neutrino hypothesis, Nature 613 (2023) 257–261.; DOI:10.1038/s41586-022-05568-2
137.E. Aprile et al., Effective field theory and inelastic dark matter results from XENON1T, Phys. Rev. D 109 (2024) 112017.; DOI:10.1103/PhysRevD.109.112017
138.E. Aprile et al., An approximate likelihood for nuclear recoil searches with XENON1T data, Eur. Phys. J. C 82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
139.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment on ”Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
140.J. Herms, S. Jana, V. P. K. and S. Saad, Light thermal relics enabled by a second Higgs, SciPost Phys. Proc. 12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
141.I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106 (2022) 106007.; DOI:10.1103/PhysRevD.106.106007
142.A. de Gouvêa et al., Theory of Neutrino Physics – Snowmass TF11 (aka NF08) Topical Group Report (2022).; Retrieved from https://arxiv.org/abs/2209.07983
143.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, Moscow Univ. Phys. Bull. 77 (2022) 371–374.; DOI:10.3103/S0027134922020461
144.M. Agostini et al., Search for exotic physics in double-\(\beta\) decays with GERDA Phase II, JCAP 12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
145.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable models and flavor, JHEP 04 (2023) 012.; DOI:10.1007/JHEP04(2023)012
146.J. Kubo and J. Kuntz, Spontaneous conformal symmetry breaking and quantum quadratic gravity, Phys. Rev. D 106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
147.A. N. Khan, Extra dimensions with light and heavy neutral leptons: an application to CE\(\nu\)NS, JHEP 01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
148.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of heavy-ion collisions and their impact on particle correlations, Phys. Rev. C 108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
149.E. Akhmedov and A. Y. Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, JHEP 11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
150.A. N. Khan, Light new physics and neutrino electromagnetic interactions in XENONnT, Phys. Lett. B 837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
151.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts, JCAP 11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
152.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of sterile neutrino dark matter via neutrino self-interactions, JCAP 11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
153.A. Ahmed, B. Grzadkowski and A. Socha, Higgs boson induced reheating and ultraviolet frozen-in dark matter, JHEP 02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
154.H. Almazan et al., Improved FIFRELIN de-excitation model for neutrino applications, Eur. Phys. J. A 59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
155.E. Aprile et al., Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
156.C. Jaramillo, Reviving keV sterile neutrino dark matter, JCAP 10 (2022) 093.; DOI:10.1088/1475-7516/2022/10/093
157.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The first string-derived eclectic flavor model with realistic phenomenology, JHEP 09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
158.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking, SciPost Phys. 15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
159.B. Batell et al., Dark Sector Studies with Neutrino Beams, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.06898
160.M. Aker et al., Search for Lorentz-invariance violation with the first KATRIN data, Phys. Rev. D 107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
161.M. Aker et al., Search for keV-scale sterile neutrinos with the first KATRIN data, Eur. Phys. J. C 83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
162.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting bounds on neutrino magnetic moments and solar magnetic field, JHEP 10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
163.S. Richers and M. Sen, Fast Flavor Transformations, In I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).; DOI:10.1007/978-981-15-8818-1_125-1
164.J. Berger et al., Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.02882
165.G. Huang, Double and multiple bangs at tau neutrino telescopes, Eur. Phys. J. C 82 (2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
166.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, Search for leptophilic dark matter at the LHeC, J. Phys. G 50 (2023) 065001.; DOI:10.1088/1361-6471/accc4a
167.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model, Mod. Phys. Lett. A 38 (2023).; DOI:10.1142/S0217732323500499
168.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman and K. Schmidt-Hoberg, Minimal sterile neutrino dark matter, Phys. Rev. D 107 (2023) L071702.; DOI:10.1103/PhysRevD.107.L071702
169.G. Huang and N. Nath, Inference of neutrino nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with inverted mass ordering, Eur. Phys. J. C 82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
170.S. Jana, Horizontal Symmetry and Large Neutrino Magnetic Moments, PoS DISCRETE2020-2021 (2022) 037.; DOI:10.22323/1.405.0037
171.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S. de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian synchrotron, Eur. Phys. J. C 83 (2023) 514.; DOI:10.1140/epjc/s10052-023-11603-x
172.A. Schneider et al., Direct measurement of the \(^{3}\)He\(^{+}\) magnetic moments, Nature 606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
173.F. Jörg, G. Eurin and H. Simgen, Production and characterization of a 222Rn-emanating stainless steel source, Appl. Radiat. Isot. 194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
174.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale detectors, JINST 17 (2022) P11025.; DOI:10.1088/1748-0221/17/11/P11025
175.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark condensation, SciPost Phys. 14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
176.Á. Pastor-Gutiérrez and M. Yamada, UV completion of extradimensional Yang-Mills theory for Gauge-Higgs unification, SciPost Phys. 15 (2023) 101.; DOI:10.21468/SciPostPhys.15.3.101
177.M. Sen, Constraining pseudo-Dirac neutrinos from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
178.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Phys. Rev. D 106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
179.T. Rink, Coherent elastic neutrino-nucleus scattering – First constraints/observations and future potential, 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
180.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos, Phys. Rev. D 106 (2022) 083011.; DOI:10.1103/PhysRevD.106.083011
181.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT Experiments, Phys. Rev. C 106 (2022) 024328.; DOI:10.1103/PhysRevC.106.024328
182.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, Diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Phys. Rev. D 106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
183.S. Weber, Quantum Field Theory and Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand Unification (Master’s thesis). Heidelberg U.
184.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability from flavour symmetry, JHEP 10 (2022) 080.; DOI:10.1007/JHEP10(2022)080
185.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the cosmic neutrino background, Phys. Rev. D 106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
186.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111.; DOI:10.1007/JHEP08(2022)111
187.L. Gráf, M. Lindner and O. Scholer, Unraveling the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys. Rev. D 106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
188.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes via the dipole portal, Phys. Lett. B 840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
189.A. Trautner, Anatomy of a top-down approach to discrete and modular flavor symmetry, PoS DISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
190.K. S. Babu, S. Jana and V. P. K., Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
191.J. Hakenmüller and W. Maneschg, Identification of radiopure tungsten for low background applications, J. Phys. G 49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
192.A. de Gouvêa, M. Sen and J. Weill, Visible neutrino decays and the impact of the daughter-neutrino mass, Phys. Rev. D 106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
193.L. Althueser et al., GPU-based optical simulation of the DARWIN detector, JINST 17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
194.A. N. Khan, \(\sin^2\theta_W\) and neutrino electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
195.M. Aker et al., KATRIN: status and prospects for the neutrino mass and beyond, J. Phys. G 49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
196.N. Bartosik et al., Simulated Detector Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
197.D. Stratakis et al., A Muon Collider Facility for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
198.S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
199.C. Awe et al., Particle physics using reactor antineutrinos, (O. A. Akindele et al., Eds.)J. Phys. G 51 (2024) 080501.; DOI:10.1088/1361-6471/ad3a84
200.C. Aime et al., Muon Collider Physics Summary (2022).; Retrieved from https://arxiv.org/abs/2203.07256
201.J. de Blas et al., The physics case of a 3 TeV muon collider stage (2022).; Retrieved from https://arxiv.org/abs/2203.07261
202.M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
203.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
204.R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
205.J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, J. Phys. G 50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
206.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\) Anomaly with Neutrino Magnetic Moments, PoS EPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
207.J. Aalbers et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G 50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
208.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino magnetic moments, JCAP 09 (2022) 079.; DOI:10.1088/1475-7516/2022/09/079
209.J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
210.G. Busoni, Capture of DM in Compact Stars, PoS PANIC2021 (2022) 046.; DOI:10.22323/1.380.0046
211.M. Agostini et al., Pulse shape analysis in Gerda Phase II, Eur. Phys. J. C 82 (2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
212.J. Kubo and J. Kuntz, Analysis of unitarity in conformal quantum gravity, Class. Quant. Grav. 39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
213.K. S. Babu, P. S. B. Dev and S. Jana, Probing neutrino mass models through resonances at neutrino telescopes, Int. J. Mod. Phys. A 37 (2022) 2230003.; DOI:10.1142/S0217751X22300034
214.M. Aker et al., New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, Phys. Rev. Lett. 129 (2022) 011806.; DOI:10.1103/PhysRevLett.129.011806
215.A. Bonhomme et al., Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the keV energy range, Eur. Phys. J. C 82 (2022) 815.; DOI:10.1140/epjc/s10052-022-10768-1
216.A. Ahmed, B. Grzadkowski and A. Socha, Higgs Boson-Induced Reheating and Dark Matter Production, Symmetry 14 (2022) 306.; DOI:10.3390/sym14020306
217.H. de Kerret et al., The Double Chooz antineutrino detectors, Eur. Phys. J. C 82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
218.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoS EPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
219.H. Bonet et al., First upper limits on neutrino electromagnetic properties from the CONUS experiment, Eur. Phys. J. C 82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
220.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles and electrons in liquid xenon, Rev. Sci. Instrum. 93 (2022) 113302.; DOI:10.1063/5.0087216
221.M. Aker et al., Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign, Phys. Rev. D 105 (2022) 072004.; DOI:10.1103/PhysRevD.105.072004
222.A. N. Khan, Neutrino millicharge and other electromagnetic interactions with COHERENT-2021 data, Nucl. Phys. B 986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
223.I. Brivio et al., Truncation, validity, uncertainties (2022).; Retrieved from https://arxiv.org/abs/2201.04974
224.A. Yu. Smirnov and X.-J. Xu, Neutrino bound states and bound systems, JHEP 08 (2022) 170.; DOI:10.1007/JHEP08(2022)170
225.L. Šerkšnytė et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105 (2022) 083021.; DOI:10.1103/PhysRevD.105.083021
 
 


Last modified: Wed 12. February 2025 at 00:59:46 , Impressum , Datenschutzhinweis