Division Particle & Astroparticle Physics
 
 

Publications of the division during the last three years

1.M. Agostini et al., An improved limit on the neutrinoless double-electron capture of \(^{36}\)Ar with GERDA (2023).; Retrieved from https://arxiv.org/abs/2311.02214
2.D. Basilico et al., Novel techniques for alpha/beta pulse shape discrimination in Borexino (2023).; Retrieved from https://arxiv.org/abs/2310.11826
3.M. Shaposhnikov and A. Y. Smirnov, Sterile Neutrino Dark Matter, Matter-Antimatter Separation, and the QCD Phase Transition (2023).; Retrieved from https://arxiv.org/abs/2309.13376
4.E. Aprile et al., Design and performance of the field cage for the XENONnT experiment (2023).; Retrieved from https://arxiv.org/abs/2309.11996
5.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring Naturalness via Conjugate Fermions (2023).; Retrieved from https://arxiv.org/abs/2309.05698
6.Y. Chung, A Naturalness motivated Top Yukawa Model for the Composite Higgs (2023).; Retrieved from https://arxiv.org/abs/2309.00072
7.F. Goertz and Á. Pastor-Gutiérrez, New Phases of the Standard Model Higgs Potential (2023).; Retrieved from https://arxiv.org/abs/2308.13594
8.H. Bonet et al., Pulse shape discrimination for the CONUS experiment in the keV and sub-keV regime (2023).; Retrieved from https://arxiv.org/abs/2308.12105
9.M. Agostini et al., Final Results of GERDA on the Two-Neutrino Double-\(\beta\) Decay Half-Life of Ge76, Phys. Rev. Lett. 131 (2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
10.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(\mathcal{A}_4\) Symmetry (2023).; Retrieved from https://arxiv.org/abs/2308.08981
11.J. Kubo and T. Kugo, Unitarity Violation in Field Theories of Lee-Wick’s Complex Ghost (2023).; Retrieved from https://arxiv.org/abs/2308.09006
12.S. Jana and S. Klett, Muonic Force and Neutrino Non-Standard Interactions at Muon Colliders (2023).; Retrieved from https://arxiv.org/abs/2308.07375
13.Y. F. Perez-Gonzalez and M. Sen, From Dirac to Majorana: the Cosmic Neutrino Background capture rate in the minimally extended Standard Model (2023).; Retrieved from https://arxiv.org/abs/2308.05147
14.A. de Gouvêa, J. Weill and M. Sen, Solar neutrinos and \(\nu_2\) visible decays to \(\nu_1\) (2023).; Retrieved from https://arxiv.org/abs/2308.03838
15.M. Agostini et al., Search for tri-nucleon decays of \(^{76}\)Ge in GERDA, Eur. Phys. J. C 83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
16.M. P. Bento, J. P. Silva and A. Trautner, The Basis Invariant Flavor Puzzle (2023).; Retrieved from https://arxiv.org/abs/2308.00019
17.J. Herms, S. Jana, V. P. K. and S. Saad, Light neutrinophilic dark matter from a scotogenic model, Phys. Lett. B 845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
18.G. Huang, Discovery potential of the Glashow resonance in an air shower neutrino telescope (2023).; Retrieved from https://arxiv.org/abs/2307.12153
19.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial compositeness, Phys. Rev. D 108 (2023) 095019.; DOI:10.1103/PhysRevD.108.095019
20.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous \(\gamma\) event, JCAP 11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
21.M. D. Astros, S. Fabian and F. Goertz, Minimal Inert Doublet Benchmark for Dark Matter and the Baryon Asymmetry (2023).; Retrieved from https://arxiv.org/abs/2307.01270
22.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Do pulsar timing arrays observe merging primordial black holes? (2023).; Retrieved from https://arxiv.org/abs/2306.17836
23.M. Adrover et al., Cosmogenic background simulations for the DARWIN observatory at different underground locations (2023).; Retrieved from https://arxiv.org/abs/2306.16340
24.M. Sen and A. Y. Smirnov, Refractive neutrino masses, ultralight dark matter and cosmology (2023).; Retrieved from https://arxiv.org/abs/2306.15718
25.E. Aprile et al., Search for events in XENON1T associated with gravitational waves, Phys. Rev. D 108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
26.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053.; DOI:10.1088/1475-7516/2023/11/053
27.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic recoil calibration of the XENONnT detector, JINST 18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
28.L. Angel et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 055030.; DOI:10.1103/PhysRevD.108.055030
29.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari, Composite Dark Matter and Neutrino Masses from a Light Hidden Sector (2023).; Retrieved from https://arxiv.org/abs/2305.09719
30.A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa, 57th Rencontres de Moriond on QCD and High Energy Interactions.; Retrieved from https://arxiv.org/abs/2304.11891
31.E. Aprile et al., Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Phys. Rev. Lett. 130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
32.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless double beta decay, JHEP 08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
33.E. Aprile et al., Detector signal characterization with a Bayesian network in XENONnT, Phys. Rev. D 108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
34.E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
35.S. Jana and Y. Porto, New Resonances of Supernova Neutrinos in Twisting Magnetic Fields (2023).; Retrieved from https://arxiv.org/abs/2303.13572
36.G. Huang, M. Lindner and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
37.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán Undagoitia, First time-resolved measurement of infrared scintillation light in gaseous xenon, Eur. Phys. J. C 83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
38.C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83 (2023) 864.; DOI:10.1140/epjc/s10052-023-11889-x
39.A. Trautner, Modular Flavor Symmetries and CP from the top down, 8th Symposium on Prospects in the Physics of Discrete Symmetries.; Retrieved from https://arxiv.org/abs/2302.12626
40.C. Bonilla, J. Herms, O. Medina and E. Peinado, Neutrino mass hierarchy from the discrete dark matter model, 8th Symposium on Prospects in the Physics of Discrete Symmetries.; Retrieved from https://arxiv.org/abs/2302.08514
41.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino mass scales, JHEP 06 (2023) 078.; DOI:10.1007/JHEP06(2023)078
42.N. Ackermann et al., Monte Carlo simulation of background components in low level Germanium spectrometry, Appl. Radiat. Isot. 194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
43.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector for the CONUS experiment, Appl. Radiat. Isot. 194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
44.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F. Meggendorfer and S. Skambraks, Operation of the Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware Perspective, J. Phys. Conf. Ser. 2438 (2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
45.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of neutrino magnetic moments from a galactic supernova burst at upcoming detectors, PoS ICHEP2022 (2022) 597.; DOI:10.22323/1.414.0597
46.E. Aprile et al., The triggerless data acquisition system of the XENONnT experiment, JINST 18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
47.S. Blasi, J. Bollig and F. Goertz, Holographic composite Higgs model building: soft breaking, maximal symmetry, and the Higgs mass, JHEP 07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
48.I. Bischer, C. Döring and A. Trautner, Telling compositeness at a distance with outer automorphisms and CP, J. Phys. A 56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
49.M. Agostini et al., Liquid argon light collection and veto modeling in GERDA Phase II, Eur. Phys. J. C 83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
50.A. Bally, Y. Chung and F. Goertz, Hierarchy problem and the top Yukawa coupling: An alternative to top partner solutions, Phys. Rev. D 108 (2023) 055008.; DOI:10.1103/PhysRevD.108.055008
51.T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068 (2022).; Retrieved from https://arxiv.org/abs/2211.16520
52.E. Aprile et al., Low-energy calibration of XENON1T with an internal \(^{{\textbf {37}}}\)Ar source, Eur. Phys. J. C 83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
53.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev. Lett. 131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
54.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with Gauged \(U(1)_{L(-R)}\) (2022).; Retrieved from https://arxiv.org/abs/2210.13402
55.T. Cheng, M. Lindner and M. Sen, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, Phys. Lett. B 844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
56.H. Almazán et al., STEREO neutrino spectrum of \(^{235}\)U fission rejects sterile neutrino hypothesis, Nature 613 (2023) 257–261.; DOI:10.1038/s41586-022-05568-2
57.E. Aprile et al., Effective Field Theory and Inelastic Dark Matter Results from XENON1T (2022).; Retrieved from https://arxiv.org/abs/2210.07591
58.E. Aprile et al., An approximate likelihood for nuclear recoil searches with XENON1T data, Eur. Phys. J. C 82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
59.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment on ”Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
60.J. Herms, S. Jana, V. P. K. and S. Saad, Light thermal relics enabled by a second Higgs, SciPost Phys. Proc. 12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
61.I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106 (2022) 106007.; DOI:10.1103/PhysRevD.106.106007
62.A. de Gouvêa et al., Theory of Neutrino Physics – Snowmass TF11 (aka NF08) Topical Group Report (2022).; Retrieved from https://arxiv.org/abs/2209.07983
63.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, Moscow Univ. Phys. Bull. 77 (2022) 371–374.; DOI:10.3103/S0027134922020461
64.M. Agostini et al., Search for exotic physics in double-\(\beta\) decays with GERDA Phase II, JCAP 12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
65.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable models and flavor, JHEP 04 (2023) 012.; DOI:10.1007/JHEP04(2023)012
66.J. Kubo and J. Kuntz, Spontaneous conformal symmetry breaking and quantum quadratic gravity, Phys. Rev. D 106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
67.A. N. Khan, Extra dimensions with light and heavy neutral leptons: an application to CE\(\nu\)NS, JHEP 01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
68.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of heavy-ion collisions and their impact on particle correlations, Phys. Rev. C 108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
69.E. Akhmedov and A. Y. Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, JHEP 11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
70.A. N. Khan, Light new physics and neutrino electromagnetic interactions in XENONnT, Phys. Lett. B 837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
71.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts, JCAP 11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
72.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of sterile neutrino dark matter via neutrino self-interactions, JCAP 11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
73.A. Ahmed, B. Grzadkowski and A. Socha, Higgs boson induced reheating and ultraviolet frozen-in dark matter, JHEP 02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
74.H. Almazan et al., Improved FIFRELIN de-excitation model for neutrino applications, Eur. Phys. J. A 59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
75.E. Aprile et al., Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
76.C. Jaramillo, Reviving keV sterile neutrino dark matter, JCAP 10 (2022) 093.; DOI:10.1088/1475-7516/2022/10/093
77.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The first string-derived eclectic flavor model with realistic phenomenology, JHEP 09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
78.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking, SciPost Phys. 15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
79.B. Batell et al., Dark Sector Studies with Neutrino Beams, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.06898
80.M. Aker et al., Search for Lorentz-invariance violation with the first KATRIN data, Phys. Rev. D 107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
81.M. Aker et al., Search for keV-scale sterile neutrinos with the first KATRIN data, Eur. Phys. J. C 83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
82.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting bounds on neutrino magnetic moments and solar magnetic field, JHEP 10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
83.S. Richers and M. Sen, Fast Flavor Transformations, In I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).; DOI:10.1007/978-981-15-8818-1_125-1
84.J. Berger et al., Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.02882
85.G. Huang, Double and multiple bangs at tau neutrino telescopes, Eur. Phys. J. C 82 (2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
86.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, Search for leptophilic dark matter at the LHeC, J. Phys. G 50 (2023) 065001.; DOI:10.1088/1361-6471/accc4a
87.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model, Mod. Phys. Lett. A 38 (2023).; DOI:10.1142/S0217732323500499
88.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman and K. Schmidt-Hoberg, Minimal sterile neutrino dark matter, Phys. Rev. D 107 (2023) L071702.; DOI:10.1103/PhysRevD.107.L071702
89.G. Huang and N. Nath, Inference of neutrino nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with inverted mass ordering, Eur. Phys. J. C 82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
90.S. Jana, Horizontal Symmetry and Large Neutrino Magnetic Moments, PoS DISCRETE2020-2021 (2022) 037.; DOI:10.22323/1.405.0037
91.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S. de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian synchrotron, Eur. Phys. J. C 83 (2023) 514.; DOI:10.1140/epjc/s10052-023-11603-x
92.A. Schneider et al., Direct measurement of the \(^{3}\)He\(^{+}\) magnetic moments, Nature 606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
93.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale detectors, JINST 17 (2022) P11025.; DOI:10.1088/1748-0221/17/11/P11025
94.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark condensation, SciPost Phys. 14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
95.Á. Pastor-Gutiérrez and M. Yamada, UV completion of extradimensional Yang-Mills theory for Gauge-Higgs unification, SciPost Phys. 15 (2023) 101.; DOI:10.21468/SciPostPhys.15.3.101
96.M. Sen, Constraining pseudo-Dirac neutrinos from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
97.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Phys. Rev. D 106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
98.T. Rink, Coherent elastic neutrino-nucleus scattering – First constraints/observations and future potential, 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
99.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos, Phys. Rev. D 106 (2022) 083011.; DOI:10.1103/PhysRevD.106.083011
100.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT Experiments, Phys. Rev. C 106 (2022) 024328.; DOI:10.1103/PhysRevC.106.024328
101.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, Diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Phys. Rev. D 106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
102.S. Weber, Quantum Field Theory and Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand Unification (Master’s thesis). Heidelberg U.
103.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability from flavour symmetry, JHEP 10 (2022) 080.; DOI:10.1007/JHEP10(2022)080
104.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the cosmic neutrino background, Phys. Rev. D 106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
105.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111.; DOI:10.1007/JHEP08(2022)111
106.L. Gráf, M. Lindner and O. Scholer, Unraveling the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys. Rev. D 106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
107.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes via the dipole portal, Phys. Lett. B 840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
108.A. Trautner, Anatomy of a top-down approach to discrete and modular flavor symmetry, PoS DISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
109.K. S. Babu, S. Jana and V. P. K., Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
110.J. Hakenmüller and W. Maneschg, Identification of radiopure tungsten for low background applications, J. Phys. G 49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
111.A. de Gouvêa, M. Sen and J. Weill, Visible neutrino decays and the impact of the daughter-neutrino mass, Phys. Rev. D 106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
112.L. Althueser et al., GPU-based optical simulation of the DARWIN detector, JINST 17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
113.A. N. Khan, \(\sin^2\theta_W\) and neutrino electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
114.M. Aker et al., KATRIN: status and prospects for the neutrino mass and beyond, J. Phys. G 49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
115.N. Bartosik et al., Simulated Detector Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
116.D. Stratakis et al., A Muon Collider Facility for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
117.S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
118.C. Awe et al., High Energy Physics Opportunities Using Reactor Antineutrinos (2022).; Retrieved from https://arxiv.org/abs/2203.07214
119.C. Aime et al., Muon Collider Physics Summary (2022).; Retrieved from https://arxiv.org/abs/2203.07256
120.J. de Blas et al., The physics case of a 3 TeV muon collider stage (2022).; Retrieved from https://arxiv.org/abs/2203.07261
121.M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
122.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
123.R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
124.J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, J. Phys. G 50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
125.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\) Anomaly with Neutrino Magnetic Moments, PoS EPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
126.J. Aalbers et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G 50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
127.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino magnetic moments, JCAP 09 (2022) 079.; DOI:10.1088/1475-7516/2022/09/079
128.J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
129.G. Busoni, Capture of DM in Compact Stars, PoS PANIC2021 (2022) 046.; DOI:10.22323/1.380.0046
130.M. Agostini et al., Pulse shape analysis in Gerda Phase II, Eur. Phys. J. C 82 (2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
131.J. Kubo and J. Kuntz, Analysis of unitarity in conformal quantum gravity, Class. Quant. Grav. 39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
132.K. S. Babu, P. S. B. Dev and S. Jana, Probing neutrino mass models through resonances at neutrino telescopes, Int. J. Mod. Phys. A 37 (2022) 2230003.; DOI:10.1142/S0217751X22300034
133.M. Aker et al., New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, Phys. Rev. Lett. 129 (2022) 011806.; DOI:10.1103/PhysRevLett.129.011806
134.A. Bonhomme et al., Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the keV energy range, Eur. Phys. J. C 82 (2022) 815.; DOI:10.1140/epjc/s10052-022-10768-1
135.A. Ahmed, B. Grzadkowski and A. Socha, Higgs Boson-Induced Reheating and Dark Matter Production, Symmetry 14 (2022) 306.; DOI:10.3390/sym14020306
136.H. de Kerret et al., The Double Chooz antineutrino detectors, Eur. Phys. J. C 82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
137.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoS EPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
138.H. Bonet et al., First upper limits on neutrino electromagnetic properties from the CONUS experiment, Eur. Phys. J. C 82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
139.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles and electrons in liquid xenon, Rev. Sci. Instrum. 93 (2022) 113302.; DOI:10.1063/5.0087216
140.M. Aker et al., Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign, Phys. Rev. D 105 (2022) 072004.; DOI:10.1103/PhysRevD.105.072004
141.A. N. Khan, Neutrino millicharge and other electromagnetic interactions with COHERENT-2021 data, Nucl. Phys. B 986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
142.I. Brivio et al., Truncation, validity, uncertainties (2022).; Retrieved from https://arxiv.org/abs/2201.04974
143.A. Yu. Smirnov and X.-J. Xu, Neutrino bound states and bound systems, JHEP 08 (2022) 170.; DOI:10.1007/JHEP08(2022)170
144.L. Šerkšnytė et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105 (2022) 083021.; DOI:10.1103/PhysRevD.105.083021
145.G. Busoni, Capture of Dark Matter in Neutron Stars, Moscow Univ. Phys. Bull. 77 (2022) 301–305.; DOI:10.3103/S0027134922020205
146.A. Ahmed and S. Najjari, Ultraviolet freeze-in dark matter through the dilaton portal, Phys. Rev. D 107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
147.K. S. Babu, S. Jana and A. Thapa, Vector boson dark matter from trinification, JHEP 02 (2022) 051.; DOI:10.1007/JHEP02(2022)051
148.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang, Searching for new physics from SMEFT and leptoquarks at the P2 experiment, Phys. Rev. D 105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
149.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model with minimal Higgs sector, JCAP 05 (2022) 003.; DOI:10.1088/1475-7516/2022/05/003
150.E. Aprile et al., Emission of single and few electrons in XENON1T and limits on light dark matter, Phys. Rev. D 106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
151.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs: singlet-assisted baryogenesis w/o topological defects, JHEP 10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
152.E. Aprile et al., Application and modeling of an online distillation method to reduce krypton and argon in XENON1T, PTEP 2022 (2022) 053H01.; DOI:10.1093/ptep/ptac074
153.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino telescopes, JCAP 02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
154.S. Jana, S. Klett and M. Lindner, Flavor seesaw mechanism, Phys. Rev. D 105 (2022) 115015.; DOI:10.1103/PhysRevD.105.115015
155.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Top-down anatomy of flavor symmetry breakdown, Phys. Rev. D 105 (2022) 055018.; DOI:10.1103/PhysRevD.105.055018
156.E. Aprile et al., Material radiopurity control in the XENONnT experiment, Eur. Phys. J. C 82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
157.F. Goertz, Lepton Flavor in Composite Higgs Models, PoS PANIC2021 (2022) 149.; DOI:10.22323/1.380.0149
158.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of nonstandard neutrino self-interactions: An EFT approach, Phys. Rev. D 105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
159.G. Huang and N. Nath, Neutrino meets ultralight dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology, JCAP 05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
160.M. Sajjad Athar et al., Status and perspectives of neutrino physics, Prog. Part. Nucl. Phys. 124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
161.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on reheating and dark matter production, Phys. Lett. B 831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
162.H. Almazán et al., Searching for Hidden Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO Experiment, Phys. Rev. Lett. 128 (2022) 061801.; DOI:10.1103/PhysRevLett.128.061801
163.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar extensions, JHEP 05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
164.M. Sen, Sterile neutrino dark matter, neutrino secret self-interactions and extra radiation, J. Phys. Conf. Ser. 2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
165.G. Huang and W. Rodejohann, Tritium beta decay with modified neutrino dispersion relations: KATRIN in the dark sea, Nucl. Phys. B 993 (2023) 116262.; DOI:10.1016/j.nuclphysb.2023.116262
166.H. Bonet et al., Novel constraints on neutrino physics beyond the standard model from the CONUS experiment, JHEP 05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
167.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their breaking, PoS EPS-HEP2021 (2022) 698.; DOI:10.22323/1.398.0698
168.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and N. Rupp, Characterization of alpha and beta interactions in liquid xenon, Eur. Phys. J. C 82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
169.E. Akhmedov, Nuclear fusion catalyzed by doubly charged scalars: Implications for energy production, Phys. Rev. D 106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
170.L. A. Anchordoqui et al., The Forward Physics Facility: Sites, experiments, and physics potential, Phys. Rept. 968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
171.M. Aoki, J. Kubo and J. Yang, Inflation and dark matter after spontaneous Planck scale generation by hidden chiral symmetry breaking, JCAP 01 (2022) 005.; DOI:10.1088/1475-7516/2022/01/005
172.A. Ismail, S. Jana and R. M. Abraham, Neutrino up-scattering via the dipole portal at forward LHC detectors, Phys. Rev. D 105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
173.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M. Virgato, Improved treatment of dark matter capture in neutron stars III: nucleon and exotic targets, JCAP 11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
174.F. Goertz, Flavour observables and composite dynamics: leptons, Eur. Phys. J. ST 231 (2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
175.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M. Bartelmann, Gravitational wave induced baryon acoustic oscillations, SciPost Phys. 12 (2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
176.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei, Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background, Phys. Rev. D 105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
177.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark matter particles, PTEP 2022 (2022) 013F01.; DOI:10.1093/ptep/ptab139
178.H. Almazán et al., Joint Measurement of the \(^{235}\)U Antineutrino Spectrum by Prospect and Stereo, Phys. Rev. Lett. 128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
179.A. Y. Smirnov and V. B. Valera, Resonance refraction and neutrino oscillations, JHEP 09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
180.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of same-sign diboson+\(+{E\!\!\!\!/}_{T}\), Phys. Rev. D 105 (2022) 055014.; DOI:10.1103/PhysRevD.105.055014
181.M. Aker et al., Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys. 18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
182.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Orbifolds from Sp(4,Z) and their modular symmetries, Nucl. Phys. B 971 (2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
183.M. Aker et al., Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment, Eur. Phys. J. C 81 (2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
184.A. Trautner, Living on the Fermi edge: On baryon transport and Fermi condensation, Phys. Lett. B 833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
185.V. C. Antochi et al., Improved quality tests of R11410-21 photomultiplier tubes for the XENONnT experiment, JINST 16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
186.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M. Virgato, Improved treatment of dark matter capture in white dwarfs, JCAP 10 (2021) 083.; DOI:10.1088/1475-7516/2021/10/083
187.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M. Schmelling, Sub-TeV hadronic interaction model differences and their impact on air showers, Eur. Phys. J. C 81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
188.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification, Phys. Rev. D 105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
189.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly and neutrino magnetic moments, JHEP 10 (2021) 240.; DOI:10.1007/JHEP10(2021)240
190.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an explanation of Fermilab muon g \(-\) 2 measurement, Phys. Lett. B 820 (2021) 136529.; DOI:10.1016/j.physletb.2021.136529
191.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard interactions in CE\(\nu\)NS, Phys. Rev. D 104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
192.M. Agostini et al., Characterization of inverted coaxial \(^{76}\)Ge detectors in GERDA for future double-\(\beta\) decay experiments, Eur. Phys. J. C 81 (2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
193.M. Agostini et al., Calibration of the Gerda experiment, Eur. Phys. J. C 81 (2021) 682.; DOI:10.1140/epjc/s10052-021-09403-2
194.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O. Sumensari, Single leptoquark solutions to the B-physics anomalies, Phys. Rev. D 104 (2021) 055017.; DOI:10.1103/PhysRevD.104.055017
195.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence of oscillations in matter and supernova neutrinos, JCAP 06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
196.J. Herms and A. Ibarra, Production and signatures of multi-flavour dark matter scenarios with t-channel mediators, JCAP 10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
197.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment, JHEP 06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
198.M. Aker et al., The design, construction, and commissioning of the KATRIN experiment, JINST 16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
199.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider, Phys. Rev. D 105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
200.G. Huang and W. Rodejohann, Solving the Hubble tension without spoiling Big Bang Nucleosynthesis, Phys. Rev. D 103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
201.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon collider, Phys. Rev. D 103 (2021) 095005.; DOI:10.1103/PhysRevD.103.095005
202.K. S. Babu, D. Goncalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity between LHC and Oscillation Experiments, Beyond Standard Model: From Theory to Experiment.; DOI:10.31526/ACP.BSM-2021.28
203.S. Jana, V. P. K. and S. Saad, Light Scalar and Lepton Anomalous Magnetic Moments, Beyond Standard Model: From Theory to Experiment.; DOI:10.31526/ACP.BSM-2021.23
204.M. Schmelling, Á. Pastor Gutiérrez, H. Schoorlemmer and R. D. Parsons, Sub-TeV hadronic interaction model differences and their impact on air-showers, PoS ICRC2021 (2021) 476.; DOI:10.22323/1.395.0476
205.I. Bischer, C. Döring and A. Trautner, Simultaneous Block Diagonalization of Matrices of Finite Order, J. Phys. A 54 (2021) 085203.; DOI:10.1088/1751-8121/abd979
206.S. Fabian, F. Goertz and Y. Jiang, Dark matter and nature of electroweak phase transition with an inert doublet, JCAP 09 (2021) 011.; DOI:10.1088/1475-7516/2021/09/011
207.P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F. Keilbach, T. Plehn, G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost Phys. 13 (2022) 064.; DOI:10.21468/SciPostPhys.13.3.064
208.C. Bonilla, J. Herms, A. Ibarra and P. Strobl, Neutrino parameters in the Planck-scale lepton number breaking scenario with extended scalar sectors, Phys. Rev. D 103 (2021) 035010.; DOI:10.1103/PhysRevD.103.035010
209.J. Kubo, J. Kuntz, M. Lindner, J. Rezacek, P. Saake and A. Trautner, Unified emergence of energy scales and cosmic inflation, JHEP 08 (2021) 016.; DOI:10.1007/JHEP08(2021)016
210.N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M. Virgato, Nucleon Structure and Strong Interactions in Dark Matter Capture in Neutron Stars, Phys. Rev. Lett. 127 (2021) 111803.; DOI:10.1103/PhysRevLett.127.111803
211.O. Fischer, M. Reininghaus and R. Ulrich, Avenues to new-physics searches in cosmic ray air showers, PoS ICHEP2020 (2021) 602.; DOI:10.22323/1.390.0602
212.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, PoS ICHEP2020 (2021) 143.; DOI:10.22323/1.390.0143
213.E. Aprile et al., Search for Coherent Elastic Scattering of Solar \(^8\)B Neutrinos in the XENON1T Dark Matter Experiment, Phys. Rev. Lett. 126 (2021) 091301.; DOI:10.1103/PhysRevLett.126.091301
214.P. D. Bolton, F. F. Deppisch, L. Gráf and F. Šimkovic, Two-Neutrino Double Beta Decay with Sterile Neutrinos, Phys. Rev. D 103 (2021) 055019.; DOI:10.1103/PhysRevD.103.055019
215.X. Luo, W. Rodejohann and X.-J. Xu, Dirac neutrinos and N\(_{eff}\). Part II. The freeze-in case, JCAP 03 (2021) 082.; DOI:10.1088/1475-7516/2021/03/082
216.E. Aprile et al., Search for inelastic scattering of WIMP dark matter in XENON1T, Phys. Rev. D 103 (2021) 063028.; DOI:10.1103/PhysRevD.103.063028
217.H. Bonet et al., Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment, Phys. Rev. Lett. 126 (2021) 041804.; DOI:10.1103/PhysRevLett.126.041804
218.G. Huang and S. Zhou, Tentative sensitivity of future \(0\nu \beta\beta\)-decay experiments to neutrino masses and Majorana CP phases, JHEP 03 (2021) 084.; DOI:10.1007/JHEP03(2021)084
219.S. Al Kharusi et al., SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy, New J. Phys. 23 (2021) 031201.; DOI:10.1088/1367-2630/abde33
220.L. Graf, S. Jana, M. Lindner, W. Rodejohann and X.-J. Xu, Flavored neutrinoless double beta decay, Phys. Rev. D 103 (2021) 055007.; DOI:10.1103/PhysRevD.103.055007
221.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars II: Leptonic Targets, JCAP 03 (2021) 086.; DOI:10.1088/1475-7516/2021/03/086
222.H. Bonet et al., Large-size sub-keV sensitive germanium detectors for the CONUS experiment, Eur. Phys. J. C 81 (2021) 267.; DOI:10.1140/epjc/s10052-021-09038-3
223.E. Akhmedov, Neutrino oscillations in matter: from microscopic to macroscopic description, JHEP 02 (2021) 107.; DOI:10.1007/JHEP02(2021)107
224.J. L. Diaz-Cruz, U. J. Saldana-Salazar, K. M. Tame-Narvaez and V. T. Tenorth, Natural 2HDMs without FCNCs, Phys. Rev. D 104 (2021) 035018.; DOI:10.1103/PhysRevD.104.035018
225.H. Almazán et al., First antineutrino energy spectrum from \(^{235}\)U fissions with the STEREO detector at ILL, J. Phys. G 48 (2021) 075107.; DOI:10.1088/1361-6471/abd37a
226.E. Aprile et al., \(^{222}\)Rn emanation measurements for the XENON1T experiment, Eur. Phys. J. C 81 (2021) 337.; DOI:10.1140/epjc/s10052-020-08777-z
227.F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range mechanisms in \(0\nu\beta\beta\) decay, Phys. Rev. D 102 (2020) 095016.; DOI:10.1103/PhysRevD.102.095016
228.S. Bruenner, D. Cichon, G. Eurin, P. Herrero Gómez, F. Jörg, T. Marrodán Undagoitia, H. Simgen and N. Rupp, Radon daughter removal from PTFE surfaces and its application in liquid xenon detectors, Eur. Phys. J. C 81 (2021) 343.; DOI:10.1140/epjc/s10052-021-09047-2
229.K. S. Babu, P. S. B. Dev, S. Jana and A. Thapa, Unified framework for \(B\)-anomalies, muon \(g − 2\) and neutrino masses, JHEP 03 (2021) 179.; DOI:10.1007/JHEP03(2021)179
230.S. Blasi, V. Brdar and K. Schmitz, Has NANOGrav found first evidence for cosmic strings?, Phys. Rev. Lett. 126 (2021) 041305.; DOI:10.1103/PhysRevLett.126.041305
231.M. Agostini et al., Final Results of GERDA on the Search for Neutrinoless Double-\(\beta\) Decay, Phys. Rev. Lett. 125 (2020) 252502.; DOI:10.1103/PhysRevLett.125.252502
232.T. Abrahão et al., Search for signatures of sterile neutrinos with Double Chooz, Eur. Phys. J. C 81 (2021) 775.; DOI:10.1140/epjc/s10052-021-09459-0
233.L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, : a Hilbert series for the QCD chiral Lagrangian, JHEP 01 (2021) 142.; DOI:10.1007/JHEP01(2021)142
234.M. P. Bento, R. Boto, J. P. Silva and A. Trautner, A fully basis invariant Symmetry Map of the 2HDM, JHEP 21 (2020) 229.; DOI:10.1007/JHEP02(2021)220
235.A. N. Khan, Constraints on general light mediators from PandaX-II electron recoil data, Phys. Lett. B 819 (2021) 136415.; DOI:10.1016/j.physletb.2021.136415
236.T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus, N. Koivunen and K. Tuominen, Pseudo-Goldstone dark matter: gravitational waves and direct-detection blind spots, JHEP 10 (2020) 080.; DOI:10.1007/JHEP10(2020)080
237.K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, Exotic Higgs decays into displaced jets at the LHeC, JHEP 02 (2021) 161.; DOI:10.1007/JHEP02(2021)161
238.I. Bischer, T. Plehn and W. Rodejohann, Dark Matter EFT, the Third – Neutrino WIMPs, SciPost Phys. 10 (2021) 039.; DOI:10.21468/SciPostPhys.10.2.039
239.S. Jana, P. K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments and neutrino masses, Phys. Rev. D 102 (2020) 075003.; DOI:10.1103/PhysRevD.102.075003
240.V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, JCAP 01 (2021) 039.; DOI:10.1088/1475-7516/2021/01/039
241.V. Brdar, O. Fischer and A. Yu. Smirnov, Model-independent bounds on the nonoscillatory explanations of the MiniBooNE excess, Phys. Rev. D 103 (2021) 075008.; DOI:10.1103/PhysRevD.103.075008
242.P. Agostini et al., The Large HadronElectron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501.; DOI:10.1088/1361-6471/abf3ba
243.T. Abrahão et al., Reactor rate modulation oscillation analysis with two detectors in Double Chooz, JHEP 01 (2021) 190.; DOI:10.1007/JHEP01(2021)190
244.E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031.; DOI:10.1088/1475-7516/2020/11/031
245.G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S. Vogl, EFT interpretation of XENON1T electron recoil excess: Neutrinos and dark matter, Phys. Rev. D 103 (2021) 023024.; DOI:10.1103/PhysRevD.103.023024
246.K. S. Babu, S. Jana and M. Lindner, Large Neutrino Magnetic Moments in the Light of Recent Experiments, JHEP 10 (2020) 040.; DOI:10.1007/JHEP10(2020)040
247.M. Aoki, V. Brdar and J. Kubo, Heavy dark matter, neutrino masses, and Higgs naturalness from a strongly interacting hidden sector, Phys. Rev. D 102 (2020) 035026.; DOI:10.1103/PhysRevD.102.035026
248.M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, XENON1T anomaly: A light Z’ from a Two Higgs Doublet Model, Phys. Lett. B 811 (2020) 135972.; DOI:10.1016/j.physletb.2020.135972
249.M. Andriamirado et al., Note on arXiv:2005.05301, ’Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements’ (2020).; Retrieved from https://arxiv.org/abs/2006.13147
250.A. N. Khan, Can Nonstandard Neutrino Interactions explain the XENON1T spectral excess?, Phys. Lett. B 809 (2020) 135782.; DOI:10.1016/j.physletb.2020.135782
251.A. Bally, S. Jana and A. Trautner, Neutrino self-interactions and XENON1T electron recoil excess, Phys. Rev. Lett. 125 (2020) 161802.; DOI:10.1103/PhysRevLett.125.161802
252.E. Aprile et al., Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004.; DOI:10.1103/PhysRevD.102.072004
253.T. Alanne, G. Arcadi, F. Goertz, V. Tenorth and S. Vogl, Model-independent constraints with extended dark matter EFT, JHEP 10 (2020) 172.; DOI:10.1007/JHEP10(2020)172
254.T. Rink, W. Rodejohann and K. Schmitz, Leptogenesis and low-energy CP violation in a type-II-dominated left-right seesaw model, Nucl. Phys. B 972 (2021) 115552.; DOI:10.1016/j.nuclphysb.2021.115552
255.J. Aalbers et al., Solar neutrino detection sensitivity in DARWIN via electron scattering, Eur. Phys. J. C 80 (2020) 1133.; DOI:10.1140/epjc/s10052-020-08602-7
256.M. Agostini et al., First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/\(c^2\) with GERDA, Phys. Rev. Lett. 125 (2020) 011801.; DOI:10.1103/PhysRevLett.125.011801
257.S. Centelles Chuliá, C. Döring, W. Rodejohann and U. J. Saldaña-Salazar, Natural axion model from flavour, JHEP 09 (2020) 137.; DOI:10.1007/JHEP09(2020)137
258.M. J. Zurowski, E. Barberio and G. Busoni, Inelastic Dark Matter and the SABRE Experiment, JCAP 12 (2020) 014.; DOI:10.1088/1475-7516/2020/12/014
259.D. Cichon, G. Eurin, F. Jörg, T. Marrodán Undagoitia and N. Rupp, Transmission of xenon scintillation light through PTFE, JINST 15 (2020) P09010.; DOI:10.1088/1748-0221/15/09/P09010
260.X. Luo, W. Rodejohann and X.-J. Xu, Dirac neutrinos and \(N_{{\rm eff}}\), JCAP 06 (2020) 058.; DOI:10.1088/1475-7516/2020/06/058
261.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars, JCAP 09 (2020) 028.; DOI:10.1088/1475-7516/2020/09/028
262.C. Jaramillo, M. Lindner and W. Rodejohann, Seesaw neutrino dark matter by freeze-out, JCAP 04 (2021) 023.; DOI:10.1088/1475-7516/2021/04/023
263.M. Berbig, S. Jana and A. Trautner, The Hubble tension and a renormalizable model of gauged neutrino self-interactions, Phys. Rev. D 102 (2020) 115008.; DOI:10.1103/PhysRevD.102.115008
264.F. F. Deppisch, L. Graf, W. Rodejohann and X.-J. Xu, Neutrino Self-Interactions and Double Beta Decay, Phys. Rev. D 102 (2020) 051701.; DOI:10.1103/PhysRevD.102.051701
265.S. Blasi, C. Csaki and F. Goertz, A natural composite Higgs via universal boundary conditions, SciPost Phys. 10 (2021) 121.; DOI:10.21468/SciPostPhys.10.5.121
266.H. Almazán et al., Accurate Measurement of the Electron Antineutrino Yield of \(^{235}\)U Fissions from the STEREO Experiment with 119 Days of Reactor-On Data, Phys. Rev. Lett. 125 (2020) 201801.; DOI:10.1103/PhysRevLett.125.201801
267.S. Blasi, V. Brdar and K. Schmitz, Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum, Phys. Rev. Res. 2 (2020) 043321.; DOI:10.1103/PhysRevResearch.2.043321
268.S. Jana, N. Okada and D. Raut, Displaced vertex and disappearing track signatures in type-III seesaw, Eur. Phys. J. C 82 (2022) 927.; DOI:10.1140/epjc/s10052-022-10855-3
269.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and cosmological production of light sterile neutrinos, JCAP 08 (2020) 015.; DOI:10.1088/1475-7516/2020/08/015
270.F. F. Deppisch, L. Graf and F. Šimkovic, Searching for New Physics in Two-Neutrino Double Beta Decay, Phys. Rev. Lett. 125 (2020) 171801.; DOI:10.1103/PhysRevLett.125.171801
271.F. Agostini et al., Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of \(^{136}\)Xe, Eur. Phys. J. C 80 (2020) 808.; DOI:10.1140/epjc/s10052-020-8196-z
272.V. Brdar, M. Lindner, S. Vogl and X.-J. Xu, Revisiting neutrino self-interaction constraints from \(Z\) and \(\tau\) decays, Phys. Rev. D 101 (2020) 115001.; DOI:10.1103/PhysRevD.101.115001
273.E. Aprile et al., Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C 80 (2020) 785.; DOI:10.1140/epjc/s10052-020-8284-0
274.K. S. Babu, D. Gonçalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments, Phys. Lett. B 815 (2021) 136131.; DOI:10.1016/j.physletb.2021.136131
275.S. Jana, V. P. K. and S. Saad, Resolving electron and muon \(g-2\) within the 2HDM, Phys. Rev. D 101 (2020) 115037.; DOI:10.1103/PhysRevD.101.115037
276.Y. P. Porto-Silva, S. Prakash, O. L. G. Peres, H. Nunokawa and H. Minakata, Constraining visible neutrino decay at KamLAND and JUNO, Eur. Phys. J. C 80 (2020) 999.; DOI:10.1140/epjc/s10052-020-08573-9
277.A. Trautner, On the systematic construction of basis invariants, (E. Widmann, J. Marton, A. Pichler, M. Simon, & D. Murtagh, Eds.)J. Phys. Conf. Ser. 1586 (2020) 012005.; DOI:10.1088/1742-6596/1586/1/012005
278.Y. P. Porto-Silva and M. C. de Oliveira, Theory of Neutrino Detection – Flavor Oscillations and Weak Values, Eur. Phys. J. C 81 (2021) 330.; DOI:10.1140/epjc/s10052-021-09108-6
279.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, MUonE sensitivity to new physics explanations of the muon anomalous magnetic moment, JHEP 05 (2020) 053.; DOI:10.1007/JHEP05(2020)053
280.G. Arcadi, G. Busoni, T. Hugle and V. T. Tenorth, Comparing 2HDM \(+\) Scalar and Pseudoscalar Simplified Models at LHC, JHEP 06 (2020) 098.; DOI:10.1007/JHEP06(2020)098
281.P. Bakhti and A. Yu. Smirnov, Oscillation tomography of the Earth with solar neutrinos and future experiments, Phys. Rev. D 101 (2020) 123031.; DOI:10.1103/PhysRevD.101.123031
282.A. E. Cárcamo Hernández, C. O. Dib and U. J. Saldaña-Salazar, When \(\tan \beta\) meets all the mixing angles, Phys. Lett. B 809 (2020) 135750.; DOI:10.1016/j.physletb.2020.135750
283.C. Buck et al., A novel experiment for coherent elastic neutrino nucleus scattering: CONUS, (K. Clark, C. Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser. 1342 (2020) 012094.; DOI:10.1088/1742-6596/1342/1/012094
 
 


Last modified: Tue 28. November 2023 at 14:14:42 , Impressum , Datenschutzhinweis