1.H. Acharya et al., First Results on the Search
for Lepton Number Violating Neutrinoless Double Beta Decay with the
LEGEND-200 Experiment (2025).; Retrieved from https://arxiv.org/abs/2505.10440
2.M. Agostini et al., Measurement of the \(^{85}\)Kr specific activity in the GERDA
liquid argon, Eur. Phys. J. C85 (2025)
518.; DOI:10.1140/epjc/s10052-025-14135-8
3.A. Yu. Smirnov, Chiral interactions, chiral
states and ”chiral neutrino oscillations” (2025).; Retrieved from
https://arxiv.org/abs/2505.06116
4.T. Herbermann and M. Lindner, Improved
cosmological limits on \(Z^\prime\)
models with light right-handed neutrinos (2025).; Retrieved from
https://arxiv.org/abs/2505.04695
5.S. Bianco, P. F. Depta, J. Frerick, T. Hambye, M. Hufnagel and K.
Schmidt-Hoberg, Photo- and Hadrodisintegration
constraints on massive relics decaying into neutrinos (2025).;
Retrieved from https://arxiv.org/abs/2505.01492
8.A. Ahmed, J. P. Garcés and M. Lindner, Radiative
Symmetry Breaking with a Scale Invariant Seesaw (2025).;
Retrieved from https://arxiv.org/abs/2504.13243
9.L. Gráf, C. Hati, A. Martı́n-Galán and O. Scholer, Importance of Loop Effects in Probing Lepton Number
Violation (2025).; Retrieved from https://arxiv.org/abs/2504.00081
10.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(A_4\) Invariance, Springer Proc.
Phys.361 (2025) 303–312.; DOI:10.1007/978-981-97-7441-8_30
11.E. Aprile et al., WIMP Dark Matter Search using
a 3.1 tonne \(\times\) year Exposure of
the XENONnT Experiment (2025).; Retrieved from https://arxiv.org/abs/2502.18005
13.O. Scholer, Towards distinguishing different
mechanisms of \(0\nu\beta\beta\), AIP Conf.
Proc.3143 (2025) 020019.; DOI:10.1063/5.0235385
14.E. Aprile et al., Radon Removal in XENONnT down
to the Solar Neutrino Level (2025).; Retrieved from https://arxiv.org/abs/2502.04209
15.J. Kubo and J. Kuntz, Primordial Gravitational
Waves in Quadratic Gravity (2025).; Retrieved from https://arxiv.org/abs/2502.03543
16.M. Guida, Y.-T. Lin and H. Simgen, Improved and
automated krypton assay for low-background xenon detectors with
Auto-RGMS (2025).; Retrieved from https://arxiv.org/abs/2501.10993
17.N. Ackermann et al., First observation of
reactor antineutrinos by coherent scattering (2025).; Retrieved
from https://arxiv.org/abs/2501.05206
18.M. Sen, Testing nonstandard neutrino
properties, PoSNOW2024 (2025) 026.;
DOI:10.22323/1.473.0026
19.Y. Chung, A. Bally and F. Goertz, Looking for
the solution to the Hierarchy Problem in Top physics,
PoSICHEP2024 (2025) 343.; DOI:10.22323/1.476.0343
20.A. Ahmed, Z. Chacko, I. Flood, C. Kilic and S. Najjari, General Form of Effective Operators from Hidden
Sectors (2024).; Retrieved from https://arxiv.org/abs/2412.15067
21.E. Sanchez Garcia et al., Background
characterization of the CONUS+ experimental location, Eur.
Phys. J. C85 (2025) 465.; DOI:10.1140/epjc/s10052-025-14160-7
22.Á. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert and G. Ruisi, e+e-\(\mu\)+\(\mu\)- in the asymptotically safe standard
model, Phys. Rev. D111 (2025) 106005.;
DOI:10.1103/PhysRevD.111.106005
23.C. Buck, The CONUS+ experiment,
PoSICHEP2024 (2025) 164.; DOI:10.22323/1.476.0164
24.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Gauge-Fermion Cartography: from confinement and chiral
symmetry breaking to conformality (2024).; Retrieved from https://arxiv.org/abs/2412.12254
25.E. Aprile et al., Low-Energy Nuclear Recoil
Calibration of XENONnT with a \(^{88}\)YBe Photoneutron Source
(2024).; Retrieved from https://arxiv.org/abs/2412.10451
26.E. Aprile et al., The neutron veto of the
XENONnT experiment: Results with demineralized water (2024).;
Retrieved from https://arxiv.org/abs/2412.05264
27.Y. Chung, Generating the Dark Matter mass from
the QCD vacuum: A new approach to the Dark Matter-Baryon coincidence
problem (2024).; Retrieved from https://arxiv.org/abs/2411.18725
28.Y. Chung, Comparable Dark Matter and Baryon
energy densities from Dark Grand Unification (2024).; Retrieved
from https://arxiv.org/abs/2411.16860
29.E. Aprile et al., Search for Light Dark Matter
in Low-Energy Ionization Signals from XENONnT, Phys. Rev.
Lett.134 (2025) 161004.; DOI:10.1103/PhysRevLett.134.161004
30.G. Arcadi, D. Cabo-Almeida, S. Fabian and F. Goertz, Dark Particles at the LHC: LHC-Friendly Dark Matter
Characterization via Non-Linear EFT (2024).; Retrieved from https://arxiv.org/abs/2411.05914
32.L. Nies et al., Refining the nuclear mass
surface with the mass of Sn103, Phys. Rev. C111 (2025) 014315.; DOI:10.1103/PhysRevC.111.014315
33.J. Aalbers et al., Neutrinoless double beta
decay sensitivity of the XLZD rare event observatory, J.
Phys. G52 (2025) 045102.; DOI:10.1088/1361-6471/adb900
34.J. Aalbers et al., The XLZD Design Book: Towards
the Next-Generation Liquid Xenon Observatory for Dark Matter and
Neutrino Physics (2024).; Retrieved from https://arxiv.org/abs/2410.17137
35.E. Akhmedov, Non-relativistic neutrinos and the
question of Dirac vs. Majorana neutrino nature (2024).; Retrieved
from https://arxiv.org/abs/2410.11940
36.C. Döring and A. Trautner, Symmetries from outer
automorphisms and unorthodox group extensions (2024).; Retrieved
from https://arxiv.org/abs/2410.11052
37.J. Kuntz, Unitarity through PT symmetry in
Quantum Quadratic Gravity (2024).; Retrieved from https://arxiv.org/abs/2410.08278
38.J. Aalbers et al., Model-independent searches of
new physics in DARWIN with a semi-supervised deep learning
pipeline (2024).; Retrieved from https://arxiv.org/abs/2410.00755
39.A. M. Suliga, P. C.-K. Cheong, J. Froustey, G. M. Fuller, L. Gráf, K.
Kehrer, O. Scholer and S. Shalgar, Non-conservation
of Lepton Numbers in the Neutrino Sector Could Change the Prospects for
Core Collapse Supernova Explosions (2024).; Retrieved from https://arxiv.org/abs/2410.01080
40.S. Centelles Chuliá, R. Srivastava and S. Yadav, Comprehensive phenomenology of the Dirac Scotogenic
Model: Novel low-mass dark matter, JHEP04 (2025) 038.; DOI:10.1007/JHEP04(2025)038
41.E. Aprile et al., First Search for Light Dark
Matter in the Neutrino Fog with XENONnT, Phys. Rev.
Lett.134 (2025) 111802.; DOI:10.1103/PhysRevLett.134.111802
43.E. Aprile et al., XENONnT analysis: Signal
reconstruction, calibration, and event selection, Phys. Rev.
D111 (2025) 062006.; DOI:10.1103/PhysRevD.111.062006
44.S. Jana, S. Klett, M. Lindner and R. N. Mohapatra, Radiative origin of fermion mass hierarchy in left-right
symmetric theory, JHEP01 (2025) 082.;
DOI:10.1007/JHEP01(2025)082
45.G. Arcadi, M. Lindner, J. P. Neto and F. S. Queiroz, Ultraheavy Dark Matter and WIMPs Production aided by
Primordial Black Holes (2024).; Retrieved from https://arxiv.org/abs/2408.13313
46.L. Baudis et al., Search for Pauli Exclusion
Principle violations with Gator at LNGS, Eur. Phys. J. C84 (2024) 1137.; DOI:10.1140/epjc/s10052-024-13510-1
47.T. Herbermann, M. Lindner and M. Sen, Attenuation of cosmic ray electron boosted dark
matter, Phys. Rev. D110 (2024)
123023.; DOI:10.1103/PhysRevD.110.123023
48.E. Aprile et al., First Indication of Solar B8
Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with
XENONnT, Phys. Rev. Lett.133 (2024)
191002.; DOI:10.1103/PhysRevLett.133.191002
49.S. Jana, L. Puetter and A. Yu. Smirnov, Restricting sterile neutrinos by neutrinoless double beta
decay, Phys. Rev. D111 (2025) 015011.;
DOI:10.1103/PhysRevD.111.015011
50.T. de Boer, M. Lindner and A. Trautner, Electroweak hierarchy from conformal and custodial
symmetry, Phys. Lett. B861 (2025)
139241.; DOI:10.1016/j.physletb.2025.139241
51.P. F. Depta, V. Domcke, G. Franciolini and M. Pieroni, Pulsar timing array sensitivity to anisotropies in the
gravitational wave background, Phys. Rev. D111 (2025) 083039.; DOI:10.1103/PhysRevD.111.083039
52.C. Accettura et al., Interim report for the
International Muon Collider Collaboration (IMCC), CERN Yellow
Rep. Monogr.2/2024 (2024) 176.; DOI:10.23731/CYRM-2024-002
53.S. Centelles Chulia, R. Srivastava and S. Yadav, CDF-II W Boson Mass in the Dirac Scotogenic Model,
Springer Proc. Phys.304 (2024) 946–948.;
DOI:10.1007/978-981-97-0289-3_249
55.S. Bhattacharya, S. Fabian, J. Herms and S. Jana, Flavor-specific dark matter signatures through the lens
of neutrino oscillations, JCAP01
(2025) 110.; DOI:10.1088/1475-7516/2025/01/110
56.S. Jana and Y. Porto, Non-standard interactions
of supernova neutrinos and mass ordering ambiguity at DUNE,
JCAP03 (2025) 046.; DOI:10.1088/1475-7516/2025/03/046
57.F. Goertz, M. Hager, G. Laverda and J. Rubio, Phasing out of darkness: from sterile neutrino dark
matter to neutrino masses via time-dependent mixing,
JHEP02 (2025) 213.; DOI:10.1007/JHEP02(2025)213
58.M. Sen and A. Y. Smirnov, Neutrinos with
refractive masses and the DESI BAO results (2024).; Retrieved
from https://arxiv.org/abs/2407.02462
59.S. Jana, M. Klasen, V. P. K. and L. P. Wiggering, Neutrino masses and mixing from milli-charged dark
matter, JCAP02 (2025) 011.; DOI:10.1088/1475-7516/2025/02/011
60.E. Aprile et al., XENONnT WIMP Search: Signal
& Background Modeling and Statistical Inference (2024).;
Retrieved from https://arxiv.org/abs/2406.13638
61.P. Martı́nez-Miravé, Y. F. Perez-Gonzalez and M. Sen, Effects of neutrino-ultralight dark matter interaction on
the cosmic neutrino background, Phys. Rev. D110 (2024) 055005.; DOI:10.1103/PhysRevD.110.055005
62.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The eclectic flavor symmetries of
\(\mathbb{T}^2/\mathbb{Z}_K\)
orbifolds, JHEP09 (2024) 159.; DOI:10.1007/JHEP09(2024)159
63.M. Sen, Supernova Neutrinos: Flavour Conversion
Mechanisms and New Physics Scenarios, Universe10 (2024) 238.; DOI:10.3390/universe10060238
64.M. Agostini et al., Searches for new physics
below twice the electron mass with GERDA, Eur. Phys. J.
C84 (2024) 940.; DOI:10.1140/epjc/s10052-024-13020-0
65.E. Akhmedov and M. Pospelov, BBN catalysis by
doubly charged particles, JCAP08
(2024) 028.; DOI:10.1088/1475-7516/2024/08/028
66.S.-F. Ge, C.-F. Kong and A. Y. Smirnov, Testing
the Origins of Neutrino Mass with Supernova-Neutrino Time Delay,
Phys. Rev. Lett.133 (2024) 121802.; DOI:10.1103/PhysRevLett.133.121802
67.S. Centelles Chuliá, A. Herrero-Brocal and A. Vicente, The Type-I Seesaw family, JHEP07 (2024) 060.; DOI:10.1007/JHEP07(2024)060
68.G. Arcadi, D. Cabo-Almeida, M. Dutra, P. Ghosh, M. Lindner, Y.
Mambrini, J. P. Neto, M. Pierre, S. Profumo and F. S. Queiroz, The Waning of the WIMP: Endgame?, Eur. Phys.
J. C85 (2025) 152.; DOI:10.1140/epjc/s10052-024-13672-y
69.A. Das, T. Herbermann, M. Sen and V. Takhistov, Energy-dependent boosted dark matter from diffuse
supernova neutrino background, JCAP07
(2024) 045.; DOI:10.1088/1475-7516/2024/07/045
70.E. Aprile et al., Offline tagging of
radon-induced backgrounds in XENON1T and applicability to other liquid
xenon time projection chambers, Phys. Rev. D110 (2024) 012011.; DOI:10.1103/PhysRevD.110.012011
71.J. Kubo and T. Kugo, Anti-Instability of Complex
Ghost, PTEP2024 (2024) 053B01.; DOI:10.1093/ptep/ptae053
73.S. Jana, Electromagnetic Properties of
Neutrinos, PoSTAUP2023 (2024) 184.;
DOI:10.22323/1.441.0184
74.E. Akhmedov and A. Trautner, Can quantum
statistics help distinguish Dirac from Majorana neutrinos?,
JHEP05 (2024) 156.; DOI:10.1007/JHEP05(2024)156
75.S. Centelles Chuliá, O. G. Miranda and J. W. F. Valle, Leptonic neutral-current probes in a short-distance
DUNE-like setup, Phys. Rev. D109
(2024) 115007.; DOI:10.1103/PhysRevD.109.115007
76.T. Cheng, Implications of a matter-antimatter
mass asymmetry in Penning-trap experiments, PoSDISCRETE2022 (2024) 048.; DOI:10.22323/1.431.0048
77.R. Deckert et al., The LEGEND-200 Liquid Argon
Instrumentation: From a simple veto to a full-fledged detector,
PoSTAUP2023 (2024) 256.; DOI:10.22323/1.441.0256
78.E. Akhmedov, P. S. B. Dev, S. Jana and R. N. Mohapatra, Long-lived doubly charged scalars in the left-right
symmetric model: Catalyzed nuclear fusion and collider
implications, Phys. Lett. B852 (2024)
138616.; DOI:10.1016/j.physletb.2024.138616
79.M. Lindner, T. Rink and M. Sen, Light vector
bosons and the weak mixing angle in the light of future germanium-based
reactor CE\(\nu\)NS experiments,
JHEP08 (2024) 171.; DOI:10.1007/JHEP08(2024)171
80.M. Aoki, J. Kubo and J. Yang, Scale invariant
extension of the Standard Model: a nightmare scenario in
cosmology, JCAP05 (2024) 096.; DOI:10.1088/1475-7516/2024/05/096
82.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia,
Investigating the slow component of the infrared
scintillation time response in gaseous xenon, JINST19 (2024) C02080.; DOI:10.1088/1748-0221/19/02/C02080
83.N. Ackermann et al., Final CONUS Results on
Coherent Elastic Neutrino-Nucleus Scattering at the Brokdorf
Reactor, Phys. Rev. Lett.133 (2024)
251802.; DOI:10.1103/PhysRevLett.133.251802
84.Á. Pastor-Gutiérrez and M. Yamada, Phase
structure of extra-dimensional gauge theories with fermions,
Phys. Rev. D109 (2024) 076018.; DOI:10.1103/PhysRevD.109.076018
85.G. Huang, Neutrino-antineutrino asymmetry of
C\(\nu\)B on the surface of the round
Earth, JHEP11 (2024) 153.; DOI:10.1007/JHEP11(2024)153
86.M. Neuberger, L. Pertoldi, S. Schönert and C. Wiesinger, Constraining the \(^{77(m)}\)Ge Production with GERDA Data and
Implications for LEGEND-1000, PoSTAUP2023 (2024) 278.; DOI:10.22323/1.441.0278
87.N. Volmer, On neutrino telescopes and their
ability to infer astrophysical neutrino sources via the Glashow
resonance (2024).; DOI:10.1393/ncc/i2024-24380-8
88.P. S. B. Dev, S. Jana and Y. Porto, Flavor
Matters, but Matter Flavors: Matter Effects on Flavor Composition of
Astrophysical Neutrinos (2023).; Retrieved from https://arxiv.org/abs/2312.17315
89.L. Gráf, S. Jana, O. Scholer and N. Volmer, Neutrinoless double beta decay without vacuum Majorana
neutrino mass, Phys. Lett. B859 (2024)
139111.; DOI:10.1016/j.physletb.2024.139111
90.V. Brdar, T. Cheng, H.-J. Kuan and Y.-Y. Li, Magnetar-powered neutrinos and magnetic moment signatures
at IceCube, JCAP07 (2024) 026.; DOI:10.1088/1475-7516/2024/07/026
93.Y. Chung and F. Goertz, Third-generation-philic
hidden naturalness, Phys. Rev. D110
(2024) 115019.; DOI:10.1103/PhysRevD.110.115019
94.M. Agostini et al., An improved limit on the
neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys.
J. C84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
95.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor Hierarchies in Fundamental Partial
Compositeness, PoSEPS-HEP2023 (2024)
369.; DOI:10.22323/1.449.0369
96.D. Basilico et al., Optimized \(\alpha\)/\(\beta\) pulse shape discrimination in
Borexino, Phys. Rev. D109 (2024)
112014.; DOI:10.1103/PhysRevD.109.112014
97.M. Mukhopadhyay and M. Sen, On probing
turbulence in core-collapse supernovae in upcoming neutrino
detectors, JCAP03 (2024) 040.; DOI:10.1088/1475-7516/2024/03/040
98.M. Shaposhnikov and A. Y. Smirnov, Sterile
neutrino dark matter, matter-antimatter separation, and the QCD phase
transition, Phys. Rev. D110 (2024)
063520.; DOI:10.1103/PhysRevD.110.063520
99.E. Aprile et al., Design and performance of the
field cage for the XENONnT experiment, Eur. Phys. J. C84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
100.A. Ahmed, M. Lindner and P. Saake, Conformal
little Higgs models, Phys. Rev. D109
(2024) 075041.; DOI:10.1103/PhysRevD.109.075041
101.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring naturalness via conjugate fermions,
Phys. Rev. D110 (2024) 115023.; DOI:10.1103/PhysRevD.110.115023
102.Y. Chung, Naturalness-motivated composite Higgs
model for generating the top Yukawa coupling, Phys. Rev.
D109 (2024) 095021.; DOI:10.1103/PhysRevD.109.095021
103.F. Goertz and Á. Pastor-Gutiérrez, Unveiling
new phases of the Standard Model Higgs potential, Eur. Phys.
J. C85 (2025) 116.; DOI:10.1140/epjc/s10052-025-13842-6
104.H. Bonet et al., Pulse shape discrimination for
the CONUS experiment in the keV and sub-keV regime, Eur.
Phys. J. C84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
105.M. Agostini et al., Final Results of GERDA on
the Two-Neutrino Double-\(\beta\) Decay
Half-Life of Ge76, Phys. Rev. Lett.131
(2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
106.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from modular A4 symmetry,
Phys. Rev. D109 (2024) 035016.; DOI:10.1103/PhysRevD.109.035016
107.J. Kubo and T. Kugo, Unitarity violation in
field theories of LeeWick’s complex ghost, PTEP2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
108.S. Jana and S. Klett, Muonic force and
nonstandard neutrino interactions at muon colliders, Phys.
Rev. D110 (2024) 095011.; DOI:10.1103/PhysRevD.110.095011
109.Y. F. Perez-Gonzalez and M. Sen, From Dirac to
Majorana: The cosmic neutrino background capture rate in the minimally
extended Standard Model, Phys. Rev. D109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
110.A. de Gouvêa, J. Weill and M. Sen, Solar
neutrinos and \(\nu\)2 visible decays
to \(\nu\)1, Phys. Rev.
D109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
111.M. Agostini et al., Search for tri-nucleon
decays of \(^{76}\)Ge in GERDA,
Eur. Phys. J. C83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
112.M. P. Bento, J. P. Silva and A. Trautner, The
basis invariant flavor puzzle, JHEP01
(2024) 024.; DOI:10.1007/JHEP01(2024)024
113.J. Herms, S. Jana, V. P. K. and S. Saad, Light
neutrinophilic dark matter from a scotogenic model, Phys.
Lett. B845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
114.G. Huang, Discovery potential of the Glashow
resonance in an air shower neutrino telescope*, Chin. Phys.
C48 (2024) 085107.; DOI:10.1088/1674-1137/ad4c5c
115.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial
compositeness, Phys. Rev. D108 (2023)
095019.; DOI:10.1103/PhysRevD.108.095019
116.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining
LHAASO anomalous \(\gamma\)
event, JCAP11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
117.M. D. Astros, S. Fabian and F. Goertz, Minimal
Inert Doublet benchmark for dark matter and the baryon asymmetry,
JCAP02 (2024) 052.; DOI:10.1088/1475-7516/2024/02/052
118.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Signals of merging supermassive black holes in pulsar
timing arrays, Phys. Rev. Res.7 (2025)
013196.; DOI:10.1103/PhysRevResearch.7.013196
119.M. Adrover et al., Cosmogenic background
simulations for neutrinoless double beta decay with the DARWIN
observatory at various underground sites, Eur. Phys. J.
C84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
120.M. Sen and A. Y. Smirnov, Refractive neutrino
masses, ultralight dark matter and cosmology, JCAP01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
121.E. Aprile et al., Search for events in XENON1T
associated with gravitational waves, Phys. Rev. D108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
122.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C.
Tasillo, Does NANOGrav observe a dark sector phase
transition?, JCAP11 (2023) 053.;
DOI:10.1088/1475-7516/2023/11/053
123.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic
recoil calibration of the XENONnT detector, JINST18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
124.L. Angel et al., Toward a search for axionlike
particles at the LNLS, Phys. Rev. D108
(2023) 055030.; DOI:10.1103/PhysRevD.108.055030
125.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari,
Composite dark matter and neutrino masses from a
light hidden sector, JHEP07 (2024)
260.; DOI:10.1007/JHEP07(2024)260
126.A. Bally, Y. Chung and F. Goertz, The Hierarchy
Problem and the Top Yukawa, 57th
Rencontres de Moriond on QCD and High Energy Interactions.;
Retrieved from https://arxiv.org/abs/2304.11891
127.E. Aprile et al., Searching for Heavy Dark
Matter near the Planck Mass with XENON1T, Phys. Rev.
Lett.130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
128.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless
double beta decay, JHEP08 (2023) 043.;
DOI:10.1007/JHEP08(2023)043
129.E. Aprile et al., Detector signal
characterization with a Bayesian network in XENONnT, Phys.
Rev. D108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
130.E. Aprile et al., First Dark Matter Search with
Nuclear Recoils from the XENONnT Experiment, Phys. Rev.
Lett.131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
131.S. Jana and Y. Porto, Resonances of Supernova
Neutrinos in Twisting Magnetic Fields, Phys. Rev. Lett.132 (2024) 101005.; DOI:10.1103/PhysRevLett.132.101005
132.G. Huang, M. Lindner and N. Volmer, Inferring
astrophysical neutrino sources from the Glashow resonance,
JHEP11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
133.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T.
Marrodán Undagoitia, First time-resolved
measurement of infrared scintillation light in gaseous xenon,
Eur. Phys. J. C83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
135.A. Trautner, Modular Flavor Symmetries and CP
from the top down, PoSDISCRETE2022
(2024) 013.; DOI:10.22323/1.431.0013
136.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter
model, PoSDISCRETE2022 (2024) 076.;
DOI:10.22323/1.431.0076
137.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino
mass scales, JHEP06 (2023) 078.;
DOI:10.1007/JHEP06(2023)078
138.N. Ackermann et al., Monte Carlo simulation of
background components in low level Germanium spectrometry,
Appl. Radiat. Isot.194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
139.J. Hakenmüller and G. Heusser, CONRADA low
level germanium test detector for the CONUS experiment, Appl.
Radiat. Isot.194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
140.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F.
Meggendorfer and S. Skambraks, Operation of the
Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware
Perspective, J. Phys. Conf. Ser.2438
(2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
141.S. Jana, Y. P. Porto-Silva and M. Sen, Signal
of neutrino magnetic moments from a galactic supernova burst at upcoming
detectors, PoSICHEP2022 (2022) 597.;
DOI:10.22323/1.414.0597
142.E. Aprile et al., The triggerless data
acquisition system of the XENONnT experiment, JINST18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
143.S. Blasi, J. Bollig and F. Goertz, Holographic
composite Higgs model building: soft breaking, maximal symmetry, and the
Higgs mass, JHEP07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
144.I. Bischer, C. Döring and A. Trautner, Telling
compositeness at a distance with outer automorphisms and CP,
J. Phys. A56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
145.M. Agostini et al., Liquid argon light
collection and veto modeling in GERDA Phase II, Eur. Phys. J.
C83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
146.A. Bally, Y. Chung and F. Goertz, Hierarchy
problem and the top Yukawa coupling: An alternative to top partner
solutions, Phys. Rev. D108 (2023)
055008.; DOI:10.1103/PhysRevD.108.055008
147.T. Rink and M. Sen, Constraints on pseudo-Dirac
neutrinos using high-energy neutrinos from NGC 1068, Phys.
Lett. B851 (2024) 138558.; DOI:10.1016/j.physletb.2024.138558
148.E. Aprile et al., Low-energy calibration of
XENON1T with an internal \(^{{\textbf
{37}}}\)Ar source, Eur. Phys. J. C83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
149.A. Y. Smirnov and A. Trautner, GRB 221009A
Gamma Rays from the Radiative Decay of Heavy Neutrinos?,
Phys. Rev. Lett.131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
150.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with
Gauged \(U(1)_{L(-R)}\) (2022).;
Retrieved from https://arxiv.org/abs/2210.13402
151.T. Cheng, M. Lindner and M. Sen, Implications
of a matter-antimatter mass asymmetry in Penning-trap
experiments, Phys. Lett. B844 (2023)
138068.; DOI:10.1016/j.physletb.2023.138068
152.H. Almazán et al., STEREO neutrino spectrum of
\(^{235}\)U fission rejects sterile
neutrino hypothesis, Nature613 (2023)
257–261.; DOI:10.1038/s41586-022-05568-2
153.E. Aprile et al., Effective field theory and
inelastic dark matter results from XENON1T, Phys. Rev. D109 (2024) 112017.; DOI:10.1103/PhysRevD.109.112017
154.E. Aprile et al., An approximate likelihood for
nuclear recoil searches with XENON1T data, Eur. Phys. J.
C82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
155.E. Akhmedov and A. Y. Smirnov, Reply to
”Comment on ”Damping of neutrino oscillations, decoherence and the
lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
156.J. Herms, S. Jana, V. P. K. and S. Saad, Light
thermal relics enabled by a second Higgs, SciPost Phys.
Proc.12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
157.I. Oda and P. Saake, BRST formalism of Weyl
conformal gravity, Phys. Rev. D106
(2022) 106007.; DOI:10.1103/PhysRevD.106.106007
158.A. de Gouvêa et al., Theory of Neutrino Physics
– Snowmass TF11 (aka NF08) Topical Group Report (2022).;
Retrieved from https://arxiv.org/abs/2209.07983
159.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, Moscow Univ. Phys. Bull.77 (2022) 371–374.; DOI:10.3103/S0027134922020461
160.M. Agostini et al., Search for exotic physics
in double-\(\beta\) decays with GERDA
Phase II, JCAP12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
161.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable
models and flavor, JHEP04 (2023) 012.;
DOI:10.1007/JHEP04(2023)012
162.J. Kubo and J. Kuntz, Spontaneous conformal
symmetry breaking and quantum quadratic gravity, Phys. Rev.
D106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
163.A. N. Khan, Extra dimensions with light and
heavy neutral leptons: an application to CE\(\nu\)NS, JHEP01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
164.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of
heavy-ion collisions and their impact on particle correlations,
Phys. Rev. C108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
165.E. Akhmedov and A. Y. Smirnov, Damping of
neutrino oscillations, decoherence and the lengths of neutrino wave
packets, JHEP11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
166.A. N. Khan, Light new physics and neutrino
electromagnetic interactions in XENONnT, Phys. Lett. B837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
167.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts,
JCAP11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
168.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of
sterile neutrino dark matter via neutrino self-interactions,
JCAP11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
169.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
boson induced reheating and ultraviolet frozen-in dark matter,
JHEP02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
170.H. Almazan et al., Improved FIFRELIN
de-excitation model for neutrino applications, Eur. Phys. J.
A59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
171.E. Aprile et al., Search for New Physics in
Electronic Recoil Data from XENONnT, Phys. Rev. Lett.129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
173.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, The first string-derived eclectic
flavor model with realistic phenomenology, JHEP09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
174.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum
gravity to dynamical chiral symmetry breaking, SciPost
Phys.15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
176.M. Aker et al., Search for Lorentz-invariance
violation with the first KATRIN data, Phys. Rev. D107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
177.M. Aker et al., Search for keV-scale sterile
neutrinos with the first KATRIN data, Eur. Phys. J. C83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
178.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting
bounds on neutrino magnetic moments and solar magnetic field,
JHEP10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
179.S. Richers and M. Sen, Fast Flavor Transformations, In
I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).;
DOI:10.1007/978-981-15-8818-1_125-1
180.J. Berger et al., Snowmass 2021 White Paper:
Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino
Experiments, Snowmass 2021.; Retrieved from
https://arxiv.org/abs/2207.02882
181.G. Huang, Double and multiple bangs at tau
neutrino telescopes, Eur. Phys. J. C82
(2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
182.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann,
Search for leptophilic dark matter at the
LHeC, J. Phys. G50 (2023) 065001.;
DOI:10.1088/1361-6471/accc4a
183.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model,
Mod. Phys. Lett. A38 (2023).; DOI:10.1142/S0217732323500499
184.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman
and K. Schmidt-Hoberg, Minimal sterile neutrino
dark matter, Phys. Rev. D107 (2023)
L071702.; DOI:10.1103/PhysRevD.107.L071702
185.G. Huang and N. Nath, Inference of neutrino
nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with
inverted mass ordering, Eur. Phys. J. C82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
186.S. Jana, Horizontal Symmetry and Large Neutrino
Magnetic Moments, PoSDISCRETE2020-2021
(2022) 037.; DOI:10.22323/1.405.0037
187.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S.
de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian
synchrotron, Eur. Phys. J. C83 (2023)
514.; DOI:10.1140/epjc/s10052-023-11603-x
188.A. Schneider et al., Direct measurement of the
\(^{3}\)He\(^{+}\) magnetic moments,
Nature606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
189.F. Jörg, G. Eurin and H. Simgen, Production and
characterization of a 222Rn-emanating stainless steel source,
Appl. Radiat. Isot.194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
190.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale
detectors, JINST17 (2022) P11025.;
DOI:10.1088/1748-0221/17/11/P11025
191.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark
condensation, SciPost Phys.14 (2023)
076.; DOI:10.21468/SciPostPhys.14.4.076
192.Á. Pastor-Gutiérrez and M. Yamada, UV
completion of extradimensional Yang-Mills theory for Gauge-Higgs
unification, SciPost Phys.15 (2023)
101.; DOI:10.21468/SciPostPhys.15.3.101
193.M. Sen, Constraining pseudo-Dirac neutrinos
from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
194.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the
sterile neutrino portal, Phys. Rev. D106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
195.T. Rink, Coherent elastic neutrino-nucleus
scattering – First constraints/observations and future potential,
56th Rencontres de Moriond on Electroweak
Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
196.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of
mu-tau neutrinos, Phys. Rev. D106
(2022) 083011.; DOI:10.1103/PhysRevD.106.083011
197.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT
Experiments, Phys. Rev. C106 (2022)
024328.; DOI:10.1103/PhysRevC.106.024328
198.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen,
Diffuse supernova neutrino background as a probe of
late-time neutrino mass generation, Phys. Rev. D106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
199.S. Weber, Quantum Field Theory and
Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand
Unification (Master’s thesis). Heidelberg U.
200.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability
from flavour symmetry, JHEP10 (2022)
080.; DOI:10.1007/JHEP10(2022)080
201.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the
cosmic neutrino background, Phys. Rev. D106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
202.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of
neutrino oscillations, JHEP08 (2022)
111.; DOI:10.1007/JHEP08(2022)111
203.L. Gráf, M. Lindner and O. Scholer, Unraveling
the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys.
Rev. D106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
204.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes
via the dipole portal, Phys. Lett. B840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
205.A. Trautner, Anatomy of a top-down approach to
discrete and modular flavor symmetry, PoSDISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
206.K. S. Babu, S. Jana and V. P. K., Correlating
W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model,
Phys. Rev. Lett.129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
207.J. Hakenmüller and W. Maneschg, Identification
of radiopure tungsten for low background applications, J.
Phys. G49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
208.A. de Gouvêa, M. Sen and J. Weill, Visible
neutrino decays and the impact of the daughter-neutrino mass,
Phys. Rev. D106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
209.L. Althueser et al., GPU-based optical
simulation of the DARWIN detector, JINST17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
210.L. A. Ruso et al., Theoretical tools for
neutrino scattering: interplay between lattice QCD, EFTs, nuclear
physics, phenomenology, and neutrino event generators, J.
Phys. G52 (2025) 043001.; DOI:10.1088/1361-6471/adae26
211.A. N. Khan, \(\sin^2\theta_W\) and neutrino
electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching
factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
212.M. Aker et al., KATRIN: status and prospects
for the neutrino mass and beyond, J. Phys. G49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
213.N. Bartosik et al., Simulated Detector
Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
214.D. Stratakis et al., A Muon Collider Facility
for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
215.S. Jindariani et al., Promising Technologies
and R&D Directions for the Future Muon Collider Detectors
(2022).; Retrieved from https://arxiv.org/abs/2203.07224
216.C. Awe et al., Particle physics using reactor
antineutrinos, (O. A. Akindele et al., Eds.)J. Phys. G51 (2024) 080501.; DOI:10.1088/1361-6471/ad3a84
219.M. Abdullah et al., Coherent elastic
neutrino-nucleus scattering: Terrestrial and astrophysical
applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
220.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter,
Phys. Rev. Lett.129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
221.R. Mammen Abraham et al., Tau neutrinos in the
next decade: from GeV to EeV, J. Phys. G49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
222.J. L. Feng et al., The Forward Physics Facility
at the High-Luminosity LHC, J. Phys. G50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
223.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\)
Anomaly with Neutrino Magnetic Moments, PoSEPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
224.J. Aalbers et al., A next-generation liquid
xenon observatory for dark matter and neutrino physics, J.
Phys. G50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
225.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino
magnetic moments, JCAP09 (2022) 079.;
DOI:10.1088/1475-7516/2022/09/079
226.J. M. Berryman et al., Neutrino
self-interactions: A white paper, Phys. Dark Univ.42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
227.G. Busoni, Capture of DM in Compact
Stars, PoSPANIC2021 (2022) 046.;
DOI:10.22323/1.380.0046
228.M. Agostini et al., Pulse shape analysis in
Gerda Phase II, Eur. Phys. J. C82
(2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
229.J. Kubo and J. Kuntz, Analysis of unitarity in
conformal quantum gravity, Class. Quant. Grav.39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
230.K. S. Babu, P. S. B. Dev and S. Jana, Probing
neutrino mass models through resonances at neutrino telescopes,
Int. J. Mod. Phys. A37 (2022) 2230003.;
DOI:10.1142/S0217751X22300034
231.M. Aker et al., New Constraint on the Local
Relic Neutrino Background Overdensity with the First KATRIN Data
Runs, Phys. Rev. Lett.129 (2022)
011806.; DOI:10.1103/PhysRevLett.129.011806
232.A. Bonhomme et al., Direct measurement of the
ionization quenching factor of nuclear recoils in germanium in the keV
energy range, Eur. Phys. J. C82 (2022)
815.; DOI:10.1140/epjc/s10052-022-10768-1
233.A. Ahmed, B. Grzadkowski and A. Socha, Higgs
Boson-Induced Reheating and Dark Matter Production,
Symmetry14 (2022) 306.; DOI:10.3390/sym14020306
234.H. de Kerret et al., The Double Chooz
antineutrino detectors, Eur. Phys. J. C82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
235.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoSEPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
236.H. Bonet et al., First upper limits on neutrino
electromagnetic properties from the CONUS experiment, Eur.
Phys. J. C82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
237.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles
and electrons in liquid xenon, Rev. Sci. Instrum.93 (2022) 113302.; DOI:10.1063/5.0087216
238.M. Aker et al., Improved eV-scale
sterile-neutrino constraints from the second KATRIN measurement
campaign, Phys. Rev. D105 (2022)
072004.; DOI:10.1103/PhysRevD.105.072004
239.A. N. Khan, Neutrino millicharge and other
electromagnetic interactions with COHERENT-2021 data, Nucl.
Phys. B986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
241.A. Yu. Smirnov and X.-J. Xu, Neutrino bound
states and bound systems, JHEP08
(2022) 170.; DOI:10.1007/JHEP08(2022)170
242.L. Šerkšnytė et al., Reevaluation of the cosmic
antideuteron flux from cosmic-ray interactions and from exotic
sources, Phys. Rev. D105 (2022)
083021.; DOI:10.1103/PhysRevD.105.083021
243.G. Busoni, Capture of Dark Matter in Neutron
Stars, Moscow Univ. Phys. Bull.77
(2022) 301–305.; DOI:10.3103/S0027134922020205
244.A. Ahmed and S. Najjari, Ultraviolet freeze-in
dark matter through the dilaton portal, Phys. Rev. D107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
245.K. S. Babu, S. Jana and A. Thapa, Vector boson
dark matter from trinification, JHEP02
(2022) 051.; DOI:10.1007/JHEP02(2022)051
246.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang,
Searching for new physics from SMEFT and
leptoquarks at the P2 experiment, Phys. Rev. D105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
247.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model
with minimal Higgs sector, JCAP05
(2022) 003.; DOI:10.1088/1475-7516/2022/05/003
248.E. Aprile et al., Emission of single and few
electrons in XENON1T and limits on light dark matter, Phys.
Rev. D106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
249.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs:
singlet-assisted baryogenesis w/o topological defects,
JHEP10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
250.E. Aprile et al., Application and modeling of
an online distillation method to reduce krypton and argon in
XENON1T, PTEP2022 (2022) 053H01.;
DOI:10.1093/ptep/ptac074
251.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino
telescopes, JCAP02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
252.S. Jana, S. Klett and M. Lindner, Flavor seesaw
mechanism, Phys. Rev. D105 (2022)
115015.; DOI:10.1103/PhysRevD.105.115015
253.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Top-down anatomy of flavor symmetry
breakdown, Phys. Rev. D105 (2022)
055018.; DOI:10.1103/PhysRevD.105.055018
254.E. Aprile et al., Material radiopurity control
in the XENONnT experiment, Eur. Phys. J. C82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
256.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of
nonstandard neutrino self-interactions: An EFT approach,
Phys. Rev. D105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
257.G. Huang and N. Nath, Neutrino meets ultralight
dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology,
JCAP05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
258.M. Sajjad Athar et al., Status and perspectives
of neutrino physics, Prog. Part. Nucl. Phys.124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
259.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on
reheating and dark matter production, Phys. Lett. B831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
260.H. Almazán et al., Searching for Hidden
Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO
Experiment, Phys. Rev. Lett.128 (2022)
061801.; DOI:10.1103/PhysRevLett.128.061801
261.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar
extensions, JHEP05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
262.M. Sen, Sterile neutrino dark matter, neutrino
secret self-interactions and extra radiation, J. Phys. Conf.
Ser.2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
263.G. Huang and W. Rodejohann, Tritium beta decay
with modified neutrino dispersion relations: KATRIN in the dark
sea, Nucl. Phys. B993 (2023) 116262.;
DOI:10.1016/j.nuclphysb.2023.116262
264.H. Bonet et al., Novel constraints on neutrino
physics beyond the standard model from the CONUS experiment,
JHEP05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
265.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their
breaking, PoSEPS-HEP2021 (2022) 698.;
DOI:10.22323/1.398.0698
266.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and
N. Rupp, Characterization of alpha and beta
interactions in liquid xenon, Eur. Phys. J. C82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
267.E. Akhmedov, Nuclear fusion catalyzed by doubly
charged scalars: Implications for energy production, Phys.
Rev. D106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
268.L. A. Anchordoqui et al., The Forward Physics
Facility: Sites, experiments, and physics potential, Phys.
Rept.968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
269.M. Aoki, J. Kubo and J. Yang, Inflation and
dark matter after spontaneous Planck scale generation by hidden chiral
symmetry breaking, JCAP01 (2022) 005.;
DOI:10.1088/1475-7516/2022/01/005
270.A. Ismail, S. Jana and R. M. Abraham, Neutrino
up-scattering via the dipole portal at forward LHC detectors,
Phys. Rev. D105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
271.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W.
Thomas and M. Virgato, Improved treatment of dark
matter capture in neutron stars III: nucleon and exotic targets,
JCAP11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
272.F. Goertz, Flavour observables and composite
dynamics: leptons, Eur. Phys. J. ST231
(2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
273.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M.
Bartelmann, Gravitational wave induced baryon
acoustic oscillations, SciPost Phys.12
(2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
274.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei,
Science with the TianQin Observatory: Preliminary
results on stochastic gravitational-wave background, Phys.
Rev. D105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
275.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark
matter particles, PTEP2022 (2022)
013F01.; DOI:10.1093/ptep/ptab139
276.H. Almazán et al., Joint Measurement of the
\(^{235}\)U Antineutrino Spectrum by
Prospect and Stereo, Phys. Rev. Lett.128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
277.A. Y. Smirnov and V. B. Valera, Resonance
refraction and neutrino oscillations, JHEP09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
278.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of
same-sign diboson+\(+{E\!\!\!\!/}_{T}\), Phys. Rev.
D105 (2022) 055014.; DOI:10.1103/PhysRevD.105.055014
279.M. Aker et al., Direct neutrino-mass
measurement with sub-electronvolt sensitivity, Nature
Phys.18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
280.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S.
Vaudrevange, Orbifolds from Sp(4,Z) and their
modular symmetries, Nucl. Phys. B971
(2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
281.M. Aker et al., Precision measurement of the
electron energy-loss function in tritium and deuterium gas for the
KATRIN experiment, Eur. Phys. J. C81
(2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
282.A. Trautner, Living on the Fermi edge: On
baryon transport and Fermi condensation, Phys. Lett. B833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
283.V. C. Antochi et al., Improved quality tests of
R11410-21 photomultiplier tubes for the XENONnT experiment,
JINST16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
284.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M.
Virgato, Improved treatment of dark matter capture
in white dwarfs, JCAP10 (2021) 083.;
DOI:10.1088/1475-7516/2021/10/083
285.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M.
Schmelling, Sub-TeV hadronic interaction model
differences and their impact on air showers, Eur. Phys. J.
C81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
286.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification,
Phys. Rev. D105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
287.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly
and neutrino magnetic moments, JHEP10
(2021) 240.; DOI:10.1007/JHEP10(2021)240
288.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an
explanation of Fermilab muon g \(-\) 2
measurement, Phys. Lett. B820 (2021)
136529.; DOI:10.1016/j.physletb.2021.136529
289.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard
interactions in CE\(\nu\)NS,
Phys. Rev. D104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
290.M. Agostini et al., Characterization of
inverted coaxial \(^{76}\)Ge detectors
in GERDA for future double-\(\beta\)
decay experiments, Eur. Phys. J. C81
(2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
291.M. Agostini et al., Calibration of the Gerda
experiment, Eur. Phys. J. C81 (2021)
682.; DOI:10.1140/epjc/s10052-021-09403-2
292.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O.
Sumensari, Single leptoquark solutions to the
B-physics anomalies, Phys. Rev. D104
(2021) 055017.; DOI:10.1103/PhysRevD.104.055017
293.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence
of oscillations in matter and supernova neutrinos, JCAP06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
294.J. Herms and A. Ibarra, Production and
signatures of multi-flavour dark matter scenarios with t-channel
mediators, JCAP10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
295.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment,
JHEP06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
296.M. Aker et al., The design, construction, and
commissioning of the KATRIN experiment, JINST16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
297.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider,
Phys. Rev. D105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
298.G. Huang and W. Rodejohann, Solving the Hubble
tension without spoiling Big Bang Nucleosynthesis, Phys. Rev.
D103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
299.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon
collider, Phys. Rev. D103 (2021)
095005.; DOI:10.1103/PhysRevD.103.095005
300.K. S. Babu, D. Goncalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
between LHC and Oscillation Experiments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.28
301.S. Jana, V. P. K. and S. Saad, Light Scalar and
Lepton Anomalous Magnetic Moments, Beyond Standard Model: From Theory to
Experiment.; DOI:10.31526/ACP.BSM-2021.23
302.M. Schmelling, Á. Pastor-Gutiérrez, H. Schorlemmer and R. D.
Parsons, Sub-TeV hadronic interaction model
differences and their impact on air showers, PoSICRC2021 (2021) 476.; DOI:10.21468/SciPostPhysProc.15.015
303.I. Bischer, C. Döring and A. Trautner, Simultaneous Block Diagonalization of Matrices of Finite
Order, J. Phys. A54 (2021) 085203.;
DOI:10.1088/1751-8121/abd979
304.S. Fabian, F. Goertz and Y. Jiang, Dark matter
and nature of electroweak phase transition with an inert doublet,
JCAP09 (2021) 011.; DOI:10.1088/1475-7516/2021/09/011
305.P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F.
Keilbach, T. Plehn, G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost
Phys.13 (2022) 064.; DOI:10.21468/SciPostPhys.13.3.064
306.C. Bonilla, J. Herms, A. Ibarra and P. Strobl, Neutrino parameters in the Planck-scale lepton number
breaking scenario with extended scalar sectors, Phys. Rev.
D103 (2021) 035010.; DOI:10.1103/PhysRevD.103.035010
307.J. Kubo, J. Kuntz, M. Lindner, J. Rezacek, P. Saake and A. Trautner,
Unified emergence of energy scales and cosmic
inflation, JHEP08 (2021) 016.; DOI:10.1007/JHEP08(2021)016
308.N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M.
Virgato, Nucleon Structure and Strong Interactions
in Dark Matter Capture in Neutron Stars, Phys. Rev.
Lett.127 (2021) 111803.; DOI:10.1103/PhysRevLett.127.111803
309.O. Fischer, M. Reininghaus and R. Ulrich, Avenues to new-physics searches in cosmic ray air
showers, PoSICHEP2020 (2021) 602.;
DOI:10.22323/1.390.0602
310.S. Jana, Non-Standard Interactions in Radiative
Neutrino Mass Models, PoSICHEP2020
(2021) 143.; DOI:10.22323/1.390.0143
311.E. Aprile et al., Search for Coherent Elastic
Scattering of Solar \(^8\)B Neutrinos
in the XENON1T Dark Matter Experiment, Phys. Rev. Lett.126 (2021) 091301.; DOI:10.1103/PhysRevLett.126.091301
312.P. D. Bolton, F. F. Deppisch, L. Gráf and F. Šimkovic, Two-Neutrino Double Beta Decay with Sterile
Neutrinos, Phys. Rev. D103 (2021)
055019.; DOI:10.1103/PhysRevD.103.055019
313.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and N\(_{eff}\). Part II. The
freeze-in case, JCAP03 (2021) 082.;
DOI:10.1088/1475-7516/2021/03/082
314.E. Aprile et al., Search for inelastic
scattering of WIMP dark matter in XENON1T, Phys. Rev. D103 (2021) 063028.; DOI:10.1103/PhysRevD.103.063028
315.H. Bonet et al., Constraints on elastic
neutrino nucleus scattering in the fully coherent regime from the CONUS
experiment, Phys. Rev. Lett.126 (2021)
041804.; DOI:10.1103/PhysRevLett.126.041804
316.G. Huang and S. Zhou, Tentative sensitivity of
future \(0\nu \beta\beta\)-decay
experiments to neutrino masses and Majorana CP phases,
JHEP03 (2021) 084.; DOI:10.1007/JHEP03(2021)084
317.S. Al Kharusi et al., SNEWS 2.0: a
next-generation supernova early warning system for multi-messenger
astronomy, New J. Phys.23 (2021)
031201.; DOI:10.1088/1367-2630/abde33
318.L. Graf, S. Jana, M. Lindner, W. Rodejohann and X.-J. Xu, Flavored neutrinoless double beta decay, Phys.
Rev. D103 (2021) 055007.; DOI:10.1103/PhysRevD.103.055007
319.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars II: Leptonic Targets, JCAP03
(2021) 086.; DOI:10.1088/1475-7516/2021/03/086
320.H. Bonet et al., Large-size sub-keV sensitive
germanium detectors for the CONUS experiment, Eur. Phys. J.
C81 (2021) 267.; DOI:10.1140/epjc/s10052-021-09038-3
321.E. Akhmedov, Neutrino oscillations in matter:
from microscopic to macroscopic description, JHEP02 (2021) 107.; DOI:10.1007/JHEP02(2021)107
322.J. L. Diaz-Cruz, U. J. Saldana-Salazar, K. M. Tame-Narvaez and V. T.
Tenorth, Natural 2HDMs without FCNCs,
Phys. Rev. D104 (2021) 035018.; DOI:10.1103/PhysRevD.104.035018
323.H. Almazán et al., First antineutrino energy
spectrum from \(^{235}\)U fissions with
the STEREO detector at ILL, J. Phys. G48 (2021) 075107.; DOI:10.1088/1361-6471/abd37a
324.E. Aprile et al., \(^{222}\)Rn emanation measurements for the
XENON1T experiment, Eur. Phys. J. C81
(2021) 337.; DOI:10.1140/epjc/s10052-020-08777-z
325.F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range
mechanisms in \(0\nu\beta\beta\)
decay, Phys. Rev. D102 (2020) 095016.;
DOI:10.1103/PhysRevD.102.095016
326.S. Bruenner, D. Cichon, G. Eurin, P. Herrero Gómez, F. Jörg, T.
Marrodán Undagoitia, H. Simgen and N. Rupp, Radon
daughter removal from PTFE surfaces and its application in liquid xenon
detectors, Eur. Phys. J. C81 (2021)
343.; DOI:10.1140/epjc/s10052-021-09047-2
327.K. S. Babu, P. S. B. Dev, S. Jana and A. Thapa, Unified framework for \(B\)-anomalies, muon \(g − 2\) and neutrino masses,
JHEP03 (2021) 179.; DOI:10.1007/JHEP03(2021)179
328.S. Blasi, V. Brdar and K. Schmitz, Has NANOGrav
found first evidence for cosmic strings?, Phys. Rev.
Lett.126 (2021) 041305.; DOI:10.1103/PhysRevLett.126.041305
329.M. Agostini et al., Final Results of GERDA on
the Search for Neutrinoless Double-\(\beta\) Decay, Phys. Rev.
Lett.125 (2020) 252502.; DOI:10.1103/PhysRevLett.125.252502
330.T. Abrahão et al., Search for signatures of
sterile neutrinos with Double Chooz, Eur. Phys. J. C81 (2021) 775.; DOI:10.1140/epjc/s10052-021-09459-0
331.L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, : a Hilbert series for
the QCD chiral Lagrangian, JHEP01
(2021) 142.; DOI:10.1007/JHEP01(2021)142
332.M. P. Bento, R. Boto, J. P. Silva and A. Trautner, A fully basis invariant Symmetry Map of the 2HDM,
JHEP21 (2020) 229.; DOI:10.1007/JHEP02(2021)220
333.A. N. Khan, Constraints on general light
mediators from PandaX-II electron recoil data, Phys. Lett.
B819 (2021) 136415.; DOI:10.1016/j.physletb.2021.136415
334.T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus, N.
Koivunen and K. Tuominen, Pseudo-Goldstone dark
matter: gravitational waves and direct-detection blind spots,
JHEP10 (2020) 080.; DOI:10.1007/JHEP10(2020)080
335.K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, Exotic Higgs decays into displaced jets at the
LHeC, JHEP02 (2021) 161.; DOI:10.1007/JHEP02(2021)161
336.I. Bischer, T. Plehn and W. Rodejohann, Dark
Matter EFT, the Third – Neutrino WIMPs, SciPost Phys.10 (2021) 039.; DOI:10.21468/SciPostPhys.10.2.039
337.S. Jana, P. K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments
and neutrino masses, Phys. Rev. D102
(2020) 075003.; DOI:10.1103/PhysRevD.102.075003
338.V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology,
Astrophysics, and Direct Detection, JCAP01 (2021) 039.; DOI:10.1088/1475-7516/2021/01/039
339.V. Brdar, O. Fischer and A. Yu. Smirnov, Model-independent bounds on the nonoscillatory
explanations of the MiniBooNE excess, Phys. Rev. D103 (2021) 075008.; DOI:10.1103/PhysRevD.103.075008
340.P. Agostini et al., The Large HadronElectron
Collider at the HL-LHC, J. Phys. G48
(2021) 110501.; DOI:10.1088/1361-6471/abf3ba
341.T. Abrahão et al., Reactor rate modulation
oscillation analysis with two detectors in Double Chooz,
JHEP01 (2021) 190.; DOI:10.1007/JHEP01(2021)190
342.E. Aprile et al., Projected WIMP sensitivity of
the XENONnT dark matter experiment, JCAP11 (2020) 031.; DOI:10.1088/1475-7516/2020/11/031
343.G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S.
Vogl, EFT interpretation of XENON1T electron recoil
excess: Neutrinos and dark matter, Phys. Rev. D103 (2021) 023024.; DOI:10.1103/PhysRevD.103.023024
344.K. S. Babu, S. Jana and M. Lindner, Large
Neutrino Magnetic Moments in the Light of Recent Experiments,
JHEP10 (2020) 040.; DOI:10.1007/JHEP10(2020)040
345.M. Aoki, V. Brdar and J. Kubo, Heavy dark
matter, neutrino masses, and Higgs naturalness from a strongly
interacting hidden sector, Phys. Rev. D102 (2020) 035026.; DOI:10.1103/PhysRevD.102.035026
346.M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, XENON1T anomaly: A light Z’ from a Two Higgs Doublet
Model, Phys. Lett. B811 (2020)
135972.; DOI:10.1016/j.physletb.2020.135972
347.M. Andriamirado et al., Note on
arXiv:2005.05301, ’Preparation of the Neutrino-4 experiment on search
for sterile neutrino and the obtained results of measurements’
(2020).; Retrieved from https://arxiv.org/abs/2006.13147
348.A. N. Khan, Can Nonstandard Neutrino
Interactions explain the XENON1T spectral excess?, Phys.
Lett. B809 (2020) 135782.; DOI:10.1016/j.physletb.2020.135782
349.A. Bally, S. Jana and A. Trautner, Neutrino
self-interactions and XENON1T electron recoil excess, Phys.
Rev. Lett.125 (2020) 161802.; DOI:10.1103/PhysRevLett.125.161802
350.E. Aprile et al., Excess electronic recoil
events in XENON1T, Phys. Rev. D102
(2020) 072004.; DOI:10.1103/PhysRevD.102.072004
351.T. Alanne, G. Arcadi, F. Goertz, V. Tenorth and S. Vogl, Model-independent constraints with extended dark matter
EFT, JHEP10 (2020) 172.; DOI:10.1007/JHEP10(2020)172
352.T. Rink, W. Rodejohann and K. Schmitz, Leptogenesis and low-energy CP violation in a
type-II-dominated left-right seesaw model, Nucl. Phys. B972 (2021) 115552.; DOI:10.1016/j.nuclphysb.2021.115552
353.J. Aalbers et al., Solar neutrino detection
sensitivity in DARWIN via electron scattering, Eur. Phys. J.
C80 (2020) 1133.; DOI:10.1140/epjc/s10052-020-08602-7
354.M. Agostini et al., First Search for Bosonic
Superweakly Interacting Massive Particles with Masses up to 1 MeV/\(c^2\) with GERDA, Phys. Rev.
Lett.125 (2020) 011801.; DOI:10.1103/PhysRevLett.125.011801
355.S. Centelles Chuliá, C. Döring, W. Rodejohann and U. J.
Saldaña-Salazar, Natural axion model from
flavour, JHEP09 (2020) 137.; DOI:10.1007/JHEP09(2020)137
356.M. J. Zurowski, E. Barberio and G. Busoni, Inelastic Dark Matter and the SABRE Experiment,
JCAP12 (2020) 014.; DOI:10.1088/1475-7516/2020/12/014
357.D. Cichon, G. Eurin, F. Jörg, T. Marrodán Undagoitia and N. Rupp,
Transmission of xenon scintillation light through
PTFE, JINST15 (2020) P09010.; DOI:10.1088/1748-0221/15/09/P09010
358.X. Luo, W. Rodejohann and X.-J. Xu, Dirac
neutrinos and \(N_{{\rm eff}}\),
JCAP06 (2020) 058.; DOI:10.1088/1475-7516/2020/06/058
359.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron
Stars, JCAP09 (2020) 028.; DOI:10.1088/1475-7516/2020/09/028
360.C. Jaramillo, M. Lindner and W. Rodejohann, Seesaw neutrino dark matter by freeze-out,
JCAP04 (2021) 023.; DOI:10.1088/1475-7516/2021/04/023
361.M. Berbig, S. Jana and A. Trautner, The Hubble
tension and a renormalizable model of gauged neutrino
self-interactions, Phys. Rev. D102
(2020) 115008.; DOI:10.1103/PhysRevD.102.115008
362.F. F. Deppisch, L. Graf, W. Rodejohann and X.-J. Xu, Neutrino Self-Interactions and Double Beta Decay,
Phys. Rev. D102 (2020) 051701.; DOI:10.1103/PhysRevD.102.051701
363.S. Blasi, C. Csaki and F. Goertz, A natural
composite Higgs via universal boundary conditions, SciPost
Phys.10 (2021) 121.; DOI:10.21468/SciPostPhys.10.5.121
364.H. Almazán et al., Accurate Measurement of the
Electron Antineutrino Yield of \(^{235}\)U Fissions from the STEREO
Experiment with 119 Days of Reactor-On Data, Phys. Rev.
Lett.125 (2020) 201801.; DOI:10.1103/PhysRevLett.125.201801
365.S. Blasi, V. Brdar and K. Schmitz, Fingerprint
of low-scale leptogenesis in the primordial gravitational-wave
spectrum, Phys. Rev. Res.2 (2020)
043321.; DOI:10.1103/PhysRevResearch.2.043321
366.S. Jana, N. Okada and D. Raut, Displaced vertex
and disappearing track signatures in type-III seesaw, Eur.
Phys. J. C82 (2022) 927.; DOI:10.1140/epjc/s10052-022-10855-3
367.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S.
Hannestad, MeV-scale reheating temperature and
cosmological production of light sterile neutrinos, JCAP08 (2020) 015.; DOI:10.1088/1475-7516/2020/08/015
368.F. F. Deppisch, L. Graf and F. Šimkovic, Searching for New Physics in Two-Neutrino Double Beta
Decay, Phys. Rev. Lett.125 (2020)
171801.; DOI:10.1103/PhysRevLett.125.171801
369.F. Agostini et al., Sensitivity of the DARWIN
observatory to the neutrinoless double beta decay of \(^{136}\)Xe, Eur. Phys. J. C80 (2020) 808.; DOI:10.1140/epjc/s10052-020-8196-z
370.V. Brdar, M. Lindner, S. Vogl and X.-J. Xu, Revisiting neutrino self-interaction constraints from
\(Z\) and \(\tau\) decays, Phys. Rev. D101 (2020) 115001.; DOI:10.1103/PhysRevD.101.115001
371.E. Aprile et al., Energy resolution and
linearity of XENON1T in the MeV energy range, Eur. Phys. J.
C80 (2020) 785.; DOI:10.1140/epjc/s10052-020-8284-0
372.K. S. Babu, D. Gonçalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity
Between LHC and Oscillation Experiments, Phys. Lett. B815 (2021) 136131.; DOI:10.1016/j.physletb.2021.136131
373.S. Jana, V. P. K. and S. Saad, Resolving
electron and muon \(g-2\) within the
2HDM, Phys. Rev. D101 (2020) 115037.;
DOI:10.1103/PhysRevD.101.115037
374.Y. P. Porto-Silva, S. Prakash, O. L. G. Peres, H. Nunokawa and H.
Minakata, Constraining visible neutrino decay at
KamLAND and JUNO, Eur. Phys. J. C80
(2020) 999.; DOI:10.1140/epjc/s10052-020-08573-9
375.A. Trautner, On the systematic construction of
basis invariants, (E. Widmann, J. Marton, A. Pichler, M. Simon,
& D. Murtagh, Eds.)J. Phys. Conf. Ser.1586 (2020) 012005.; DOI:10.1088/1742-6596/1586/1/012005
376.Y. P. Porto-Silva and M. C. de Oliveira, Theory
of Neutrino Detection – Flavor Oscillations and Weak Values,
Eur. Phys. J. C81 (2021) 330.; DOI:10.1140/epjc/s10052-021-09108-6
377.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, MUonE sensitivity to new physics explanations of the muon
anomalous magnetic moment, JHEP05
(2020) 053.; DOI:10.1007/JHEP05(2020)053
378.G. Arcadi, G. Busoni, T. Hugle and V. T. Tenorth, Comparing 2HDM \(+\)
Scalar and Pseudoscalar Simplified Models at LHC, JHEP06 (2020) 098.; DOI:10.1007/JHEP06(2020)098
379.P. Bakhti and A. Yu. Smirnov, Oscillation
tomography of the Earth with solar neutrinos and future
experiments, Phys. Rev. D101 (2020)
123031.; DOI:10.1103/PhysRevD.101.123031
380.A. E. Cárcamo Hernández, C. O. Dib and U. J. Saldaña-Salazar, When \(\tan \beta\)
meets all the mixing angles, Phys. Lett. B809 (2020) 135750.; DOI:10.1016/j.physletb.2020.135750
381.C. Buck et al., A novel experiment for coherent
elastic neutrino nucleus scattering: CONUS, (K. Clark, C.
Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf.
Ser.1342 (2020) 012094.; DOI:10.1088/1742-6596/1342/1/012094
382.S. Baumholzer, V. Brdar, P. Schwaller and A. Segner, Shining Light on the Scotogenic Model: Interplay of
Colliders and Cosmology, JHEP09 (2020)
136.; DOI:10.1007/JHEP09(2020)136
383.H. Almazán et al., Improved sterile neutrino
constraints from the STEREO experiment with 179 days of reactor-on
data, Phys. Rev. D102 (2020) 052002.;
DOI:10.1103/PhysRevD.102.052002
384.S. Centelles Chuliá and A. Trautner, Asymmetric
tri-bi-maximal mixing and residual symmetries, Mod. Phys.
Lett. A35 (2020) 2050292.; DOI:10.1142/S0217732320502922
385.A. Bonhomme, Latest results of the STEREO
sterile neutrino search at the ILL Grenoble, PoSLeptonPhoton2019 (2019) 087.; DOI:10.22323/1.367.0087
386.J. Kawamura, S. Raby and A. Trautner, Complete
vectorlike fourth family with U(1)’ : A global analysis,
Phys. Rev. D101 (2020) 035026.; DOI:10.1103/PhysRevD.101.035026
387.S. Centelles Chuliá, W. Rodejohann and U. J. Saldaña-Salazar, Two-Higgs-doublet models with a flavored \(\mathbb{Z}_2\) symmetry, Phys.
Rev. D101 (2020) 035013.; DOI:10.1103/PhysRevD.101.035013
388.C. Schwanenberger and O. Fischer, Beyond the
Standard Model physics at the LHeC and the FCC-he, PoSEPS-HEP2019 (2020) 563.; DOI:10.22323/1.364.0563
389.C. Benso, V. Brdar, M. Lindner and W. Rodejohann, Prospects for Finding Sterile Neutrino Dark Matter at
KATRIN, Phys. Rev. D100 (2019)
115035.; DOI:10.1103/PhysRevD.100.115035
390.V. Brdar, A. J. Helmboldt and M. Lindner, Strong Supercooling as a Consequence of Renormalization
Group Consistency, JHEP12 (2019) 158.;
DOI:10.1007/JHEP12(2019)158
391.A. N. Khan, H. Nunokawa and S. J. Parke, Why
matter effects matter for JUNO, Phys. Lett. B803 (2020) 135354.; DOI:10.1016/j.physletb.2020.135354
392.L. Graf, Particle physics of non-standard
0\(\nu \beta \beta\) decay, (O.
Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc.2165 (2019) 020009.; DOI:10.1063/1.5130970
393.J. Kotila, L. Graf, F. F. Deppisch and F. Iachello, Nuclear physics of non-standard \(0 \nu \beta\beta\)-decay, (O.
Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc.2165 (2019) 020017.; DOI:10.1063/1.5130978
394.A. Smolnikov, GERDA searches for 0\(\nu \beta\beta\) and other \(\beta\beta\) decay modes of \(^{76}\)Ge, (O. Civitarese, I. Stekl,
& J. Suhonen, Eds.)AIP Conf. Proc.2165
(2019) 020024.; DOI:10.1063/1.5130985
395.S. Jana, P. K. Vishnu and S. Saad, Minimal
realizations of Dirac neutrino mass from generic one-loop and two-loop
topologies at \(d = 5\),
JCAP04 (2020) 018.; DOI:10.1088/1475-7516/2020/04/018
396.G. Huang, W. Rodejohann and S. Zhou, Effective
neutrino masses in KATRIN and future tritium beta-decay
experiments, Phys. Rev. D101 (2020)
016003.; DOI:10.1103/PhysRevD.101.016003
397.D. Aristizabal Sierra et al., Proceedings
of The Magnificent CE\(\nu\)NS Workshop
2018.; DOI:10.5281/zenodo.3489190
398.J. Alison et al., Higgs boson potential at
colliders: Status and perspectives, (B. Di Micco, M. Gouzevitch,
J. Mazzitelli, & C. Vernieri, Eds.)Rev. Phys.5 (2020) 100045.; DOI:10.1016/j.revip.2020.100045
399.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave signal from
cosmological phase transitions, JHEP03
(2020) 004.; DOI:10.1007/JHEP03(2020)004
400.F. Goertz, E. Madge, P. Schwaller and V. T. Tenorth, Discovering the \(h\to Z
\gamma\) decay in \(t \bar t\)
associated production, Phys. Rev. D102
(2020) 053004.; DOI:10.1103/PhysRevD.102.053004
401.A. Y. Smirnov and X.-J. Xu, Wolfenstein
potentials for neutrinos induced by ultra-light mediators,
JHEP12 (2019) 046.; DOI:10.1007/JHEP12(2019)046
402.M. Agostini et al., Modeling of GERDA Phase II
data, JHEP03 (2020) 139.; DOI:10.1007/JHEP03(2020)139
403.V. Brdar, L. Graf, A. J. Helmboldt and X.-J. Xu, Gravitational Waves as a Probe of Left-Right Symmetry
Breaking, JCAP12 (2019) 027.; DOI:10.1088/1475-7516/2019/12/027
404.S. Schoppmann, Search for eV Sterile Neutrinos
The Stereo Experiment, (K. Clark, C. Jillings, C. Kraus, J.
Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser.1342 (2020) 012042.; DOI:10.1088/1742-6596/1342/1/012042
405.S. Schoppmann, Search for eV Sterile Neutrinos
- The STEREO Experiment [Blois 2019], 31st Rencontres de Blois on Particle Physics and
Cosmology.; Retrieved from https://arxiv.org/abs/1909.01017
407.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S.
Hannestad, MeV-scale reheating temperature and
thermalization of oscillating neutrinos by radiative and hadronic decays
of massive particles, JCAP12 (2019)
012.; DOI:10.1088/1475-7516/2019/12/012
408.C. Buck, B. Gramlich and S. Schoppmann, Novel
Opaque Scintillator for Neutrino Detection, JINST14 (2019) P11007.; DOI:10.1088/1748-0221/14/11/P11007
409.A. Cabrera et al., Neutrino Physics with an
Opaque Detector, Commun. Phys.4 (2021)
273.; DOI:10.1038/s42005-021-00763-5
410.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, A String Theory of Flavor and \(\mathscr {CP}\), Nucl. Phys.
B947 (2019) 114737.; DOI:10.1016/j.nuclphysb.2019.114737
411.E. Aprile et al., Search for Light Dark Matter
Interactions Enhanced by the Migdal Effect or Bremsstrahlung in
XENON1T, Phys. Rev. Lett.123 (2019)
241803.; DOI:10.1103/PhysRevLett.123.241803
412.A. N. Khan and W. Rodejohann, New physics from
COHERENT data with an improved quenching factor, Phys. Rev.
D100 (2019) 113003.; DOI:10.1103/PhysRevD.100.113003
413.W. Rodejohann and X.-J. Xu, Loop-enhanced rate
of neutrinoless double beta decay, JHEP11 (2019) 029.; DOI:10.1007/JHEP11(2019)029
414.E. Aprile et al., Light Dark Matter Search with
Ionization Signals in XENON1T, Phys. Rev. Lett.123 (2019) 251801.; DOI:10.1103/PhysRevLett.123.251801
415.P.-H. Gu, Double type II seesaw mechanism
accompanied by Dirac fermionic dark matter, Phys. Rev. D101 (2020) 015006.; DOI:10.1103/PhysRevD.101.015006
416.S. Biondini and S. Vogl, Scalar dark matter
coannihilating with a coloured fermion, JHEP11 (2019) 147.; DOI:10.1007/JHEP11(2019)147
417.C. Klein, M. Lindner and S. Vogl, Radiative
neutrino masses and successful \(SU(5)\) unification, Phys. Rev.
D100 (2019) 075024.; DOI:10.1103/PhysRevD.100.075024
418.A. N. Khan, W. Rodejohann and X.-J. Xu, Borexino and general neutrino interactions,
Phys. Rev. D101 (2020) 055047.; DOI:10.1103/PhysRevD.101.055047
419.J. Kawamura, S. Raby and A. Trautner, Complete
vectorlike fourth family and new U(1)’ for muon anomalies,
Phys. Rev. D100 (2019) 055030.; DOI:10.1103/PhysRevD.100.055030
420.G. Arcadi, C. Döring, C. Hasterok and S. Vogl, Inelastic dark matter nucleus scattering,
JCAP12 (2019) 053.; DOI:10.1088/1475-7516/2019/12/053
421.F. Goertz, K. Tame-Narvaez and V. T. Tenorth, Di-jet/\(e^+e^-\)+ MET
to Probe \(Z_2-\)Odd Mediators to the
Dark Sector, Eur. Phys. J. C79 (2019)
860.; DOI:10.1140/epjc/s10052-019-7374-3
422.G. Arcadi, O. Lebedev, S. Pokorski and T. Toma, Real Scalar
Dark Matter: Relativistic Treatment, JHEP08 (2019) 050.; DOI:10.1007/JHEP08(2019)050
423.E. Aprile et al., XENON1T Dark Matter Data
Analysis: Signal Reconstruction, Calibration and Event Selection,
Phys. Rev. D100 (2019) 052014.; DOI:10.1103/PhysRevD.100.052014
424.G. Arcadi, M. Lindner, J. Martins and F. S. Queiroz, New physics probes: Atomic parity violation, polarized
electron scattering and neutrino-nucleus coherent scattering,
Nucl. Phys. B959 (2020) 115158.; DOI:10.1016/j.nuclphysb.2020.115158
425.S. Böser, C. Buck, C. Giunti, J. Lesgourgues, L. Ludhova, S.
Mertens, A. Schukraft and M. Wurm, Status of Light
Sterile Neutrino Searches, Prog. Part. Nucl. Phys.111 (2020) 103736.; DOI:10.1016/j.ppnp.2019.103736
427.R. S. L. Hansen and A. Y. Smirnov, Effect of
extended \(\nu\) production region on
collective oscillations in supernovae, JCAP10 (2019) 027.; DOI:10.1088/1475-7516/2019/10/027
428.V. Brdar, A. J. Helmboldt, S. Iwamoto and K. Schmitz, Type-I Seesaw as the Common Origin of Neutrino Mass,
Baryon Asymmetry, and the Electroweak Scale, Phys. Rev.
D100 (2019) 075029.; DOI:10.1103/PhysRevD.100.075029
429.H. Almazán Molina et al., Improved STEREO
simulation with a new gamma ray spectrum of excited gadolinium isotopes
using FIFRELIN, Eur. Phys. J. A55
(2019) 183.; DOI:10.1140/epja/i2019-12886-y
430.E. Akhmedov, Relic neutrino detection through
angular correlations in inverse \(\beta\)-decay, JCAP09 (2019) 031.; DOI:10.1088/1475-7516/2019/09/031
431.G. Alonso-Álvarez, T. Hugle and J. Jaeckel, Misalignment \& Co.: (Pseudo-)scalar and vector dark
matter with curvature couplings, JCAP02 (2020) 014.; DOI:10.1088/1475-7516/2020/02/014
432.I. Bischer and W. Rodejohann, General neutrino
interactions from an effective field theory perspective,
Nucl. Phys. B947 (2019) 114746.; DOI:10.1016/j.nuclphysb.2019.114746
433.T. Alanne, S. Blasi and N. A. Dondi, Critical
Look at \(\beta\) -Function
Singularities at Large \(N\),
Phys. Rev. Lett.123 (2019) 131602.; DOI:10.1103/PhysRevLett.123.131602
434.T. Alanne, S. Blasi and F. Goertz, Axiflavon-Higgs
Unification, 54th Rencontres de Moriond
on Electroweak Interactions and Unified Theories (pp.
111–116).; Retrieved from https://arxiv.org/abs/1905.07285
435.C. Döring, R. S. L. Hansen and M. Lindner, Stability of three neutrino flavor conversion in
supernovae, JCAP08 (2019) 003.; DOI:10.1088/1475-7516/2019/08/003
436.A. Y. Smirnov, Neutrino Mixing via the Neutrino
Portal, Prospects in Neutrino
Physics.; Retrieved from https://arxiv.org/abs/1905.00838
437.R. S. L. Hansen, M. Lindner and O. Scholer, Timing the neutrino signal of a Galactic
supernova, Phys. Rev. D101 (2020)
123018.; DOI:10.1103/PhysRevD.101.123018
438.E. Aprile et al., Observation of two-neutrino
double electron capture in \(^{124}\)Xe
with XENON1T, Nature568 (2019)
532–535.; DOI:10.1038/s41586-019-1124-4
439.N. F. Bell, G. Busoni and S. Robles, Capture of
Leptophilic Dark Matter in Neutron Stars, JCAP06 (2019) 054.; DOI:10.1088/1475-7516/2019/06/054
440.A. E. Cárcamo Hernández, J. Marchant González and U. J.
Saldaña-Salazar, Viable low-scale model with
universal and inverse seesaw mechanisms, Phys. Rev. D100 (2019) 035024.; DOI:10.1103/PhysRevD.100.035024
441.A. J. Helmboldt, J. Kubo and S. van der Woude, Observational prospects for gravitational waves from
hidden or dark chiral phase transitions, Phys. Rev. D100 (2019) 055025.; DOI:10.1103/PhysRevD.100.055025
442.T. Alanne, S. Blasi and N. A. Dondi, Bubble-resummation and critical-point methods for \(\beta\)-functions at large \(N\), Eur. Phys. J. C79 (2019) 689.; DOI:10.1140/epjc/s10052-019-7190-9
443.A. Acharyya et al., Monte Carlo studies for the
optimisation of the Cherenkov Telescope Array layout,
Astropart. Phys.111 (2019) 35–53.; DOI:10.1016/j.astropartphys.2019.04.001
444.M. Garny, J. Heisig, M. Hufnagel, B. Lülf and S. Vogl, Conversion-driven freeze-out: Dark matter genesis beyond
the WIMP paradigm, (K. Anagnostopoulos et al., Eds.)PoSCORFU2018 (2019) 092.; DOI:10.22323/1.347.0092
445.J. Hakenmüller et al., Neutron-induced
background in the CONUS experiment, Eur. Phys. J. C79 (2019) 699.; DOI:10.1140/epjc/s10052-019-7160-2
446.S. Blasi and F. Goertz, Softened Symmetry
Breaking in Composite Higgs Models, Phys. Rev. Lett.123 (2019) 221801.; DOI:10.1103/PhysRevLett.123.221801
447.I. Bischer, T. Grandou and R. Hofmann, Perturbative Peculiarities of Quantum Field Theories at
High Temperatures, Universe5 (2019)
81.; DOI:10.3390/universe5030081
448.D. Croon, T. E. Gonzalo, L. Graf, N. Košnik and G. White, GUT Physics in the era of the LHC, Front. in
Phys.7 (2019) 76.; DOI:10.3389/fphy.2019.00076
449.G. Arcadi, A. Djouadi and M. Raidal, Dark
Matter through the Higgs portal, Phys. Rept.842 (2020) 1–180.; DOI:10.1016/j.physrep.2019.11.003
450.W. Rodejohann and U. Saldaña-Salazar, Multi-Higgs-Doublet Models and Singular Alignment,
JHEP07 (2019) 036.; DOI:10.1007/JHEP07(2019)036
451.E. Aprile et al., XENON1T dark matter data
analysis: Signal and background models and statistical inference,
Phys. Rev. D99 (2019) 112009.; DOI:10.1103/PhysRevD.99.112009
452.M. J. Dolinski, A. W. P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and
Prospects, Ann. Rev. Nucl. Part. Sci.69 (2019) 219–251.; DOI:10.1146/annurev-nucl-101918-023407
453.E. Aprile et al., Constraining the
spin-dependent WIMP-nucleon cross sections with XENON1T,
Phys. Rev. Lett.122 (2019) 141301.; DOI:10.1103/PhysRevLett.122.141301
454.I. P. Ivanov, C. C. Nishi and A. Trautner, Beyond basis invariants, Eur. Phys. J. C79 (2019) 315.; DOI:10.1140/epjc/s10052-019-6845-x
455.A. Y. Smirnov, The Mikheyev-Smirnov-Wolfenstein (MSW)
Effect, International Conference on
History of the Neutrino: 1930-2018.; Retrieved
from https://arxiv.org/abs/1901.11473
456.R. S. L. Hansen, Extended neutrinosphere
effects on SN nu oscillations, (A. Marrone, A. Mirizzi, & D.
Montanino, Eds.)PoSNOW2018 (2019) 050.;
DOI:10.22323/1.337.0050
457.H. de Kerret et al., Double Chooz \(\theta_{13}\) measurement via total neutron
capture detection, Nature Phys.16
(2020) 558–564.; DOI:10.1038/s41567-020-0831-y
458.M. Agostini et al., Characterization of 30\(^{76}\)Ge enriched Broad Energy Ge
detectors for GERDA Phase II, Eur. Phys. J. C79 (2019) 978.; DOI:10.1140/epjc/s10052-019-7353-8
459.E. Akhmedov, Quantum mechanics aspects and
subtleties of neutrino oscillations, International Conference on History of the
Neutrino: 1930-2018.; Retrieved from https://arxiv.org/abs/1901.05232
460.D. A. Camargo, M. D. Campos, T. B. de Melo and F. S. Queiroz, A Two Higgs Doublet Model for Dark Matter and Neutrino
Masses, Phys. Lett. B795 (2019)
319–326.; DOI:10.1016/j.physletb.2019.06.020
461.I. Bischer, T. Grandou and R. Hofmann, On
Quantum Fields at High Temperature, Universe5 (2019) 26.; DOI:10.3390/universe5010026
462.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Unification of Flavor, CP, and Modular Symmetries,
Phys. Lett. B795 (2019) 7–14.; DOI:10.1016/j.physletb.2019.03.066
463.C. Klein, M. Lindner and S. Ohmer, Minimal Radiative Neutrino
Masses, JHEP03 (2019) 018.; DOI:10.1007/JHEP03(2019)018
464.T. A. Kirsten, GALLEX/GNO: Context and
recollections, In M. Meyer & K. Zuber (Eds.),
Proceedings, 5th International Solar Neutrino
Conference: Dresden, Germany, June 11-14, 2018
(pp. 47–68).; DOI:10.1142/9789811204296_0003
465.A. Y. Smirnov, The MSW effect, solar neutrinos
and searches for new physics, In M. Meyer & K. Zuber (Eds.),
Proceedings, 5th International Solar Neutrino
Conference: Dresden, Germany, June 11-14, 2018
(pp. 143–160).; DOI:10.1142/9789811204296_0007
466.C. K. M. Klein, Minimal radiative neutrino
mass -A systematic study- (Master’s thesis). Heidelberg, Max
Planck Inst.
467.H. Almazán et al., Search for light sterile
neutrinos with the STEREO experiment, (T. Jenke, S. Degenkolb, P.
Geltenbort, M. Jentschel, V. V. Nesvizhevsky, D. Rebreyend, S. Roccia,
et al., Eds.)EPJ Web Conf.219 (2019) 08001.;
DOI:10.1051/epjconf/201921908001
468.T. A. Kirsten, Solar neutrinos: the pioneering
experiments, International Conference on
History of the Neutrino: 1930-2018.
469.A. Smolnikov, Fifty years of searching for
neutrinoless double beta decay with Ge detectors, International Conference on History of the
Neutrino: 1930-2018.
470.C. Buck, Latest results of the CONUS reactor
neutrino experiment, 54th Rencontres de
Moriond on Electroweak Interactions and Unified Theories
(pp. 163–168).
471.G. Arcadi, A. Abada and M. Lucente, Leptogenesis from tiny violation of Lepton Number,
(A. Marrone, A. Mirizzi, & D. Montanino, Eds.)PoSNOW2018 (2018) 090.; DOI:10.22323/1.337.0090
472.A. Abada et al., HE-LHC: The High-Energy Large Hadron
Collider: Future Circular Collider Conceptual Design Report
Volume 4, Eur. Phys. J. ST228 (2019)
1109–1382.; DOI:10.1140/epjst/e2019-900088-6
473.A. Abada et al., FCC-hh: The Hadron
Collider: Future Circular Collider Conceptual Design Report
Volume 3, Eur. Phys. J. ST228 (2019)
755–1107.; DOI:10.1140/epjst/e2019-900087-0
474.A. Abada et al., FCC-ee: The Lepton
Collider: Future Circular Collider Conceptual Design Report
Volume 2, Eur. Phys. J. ST228 (2019)
261–623.; DOI:10.1140/epjst/e2019-900045-4
475.T. Alanne, M. Heikinheimo, V. Keus, N. Koivunen and K. Tuominen,
Direct and indirect probes of Goldstone dark
matter, Phys. Rev. D99 (2019) 075028.;
DOI:10.1103/PhysRevD.99.075028
477.V. Brdar and R. S. L. Hansen, IceCube Flavor
Ratios with Identified Astrophysical Sources: Towards Improving New
Physics Testability, JCAP02 (2019)
023.; DOI:10.1088/1475-7516/2019/02/023
478.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, Low-scale leptogenesis assisted by a real scalar
singlet, JCAP03 (2019) 037.; DOI:10.1088/1475-7516/2019/03/037
479.J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-Standard Neutrino Interactions and Neutral Gauge
Bosons, SciPost Phys.6 (2019) 038.;
DOI:10.21468/SciPostPhys.6.3.038
480.A. Trautner, Systematic construction of basis
invariants in the 2HDM, JHEP05 (2019)
208.; DOI:10.1007/JHEP05(2019)208
481.E. Aprile et al., First results on the scalar
WIMP-pion coupling, using the XENON1T experiment, Phys. Rev.
Lett.122 (2019) 071301.; DOI:10.1103/PhysRevLett.122.071301
482.P. S. Bhupal Dev, R. N. Mohapatra, W. Rodejohann and X.-J. Xu, Vacuum structure of the left-right symmetric
model, JHEP02 (2019) 154.; DOI:10.1007/JHEP02(2019)154
483.M. Lucente, A. Abada, G. Arcadi, V. Domcke, M. Drewes and J. Klaric,
Freeze-in leptogenesis with 3 right-handed
neutrinos, PoSICHEP2018 (2019) 306.;
DOI:10.5281/zenodo.1289773
484.J. Kubo, M. Lindner, K. Schmitz and M. Yamada, Planck mass and inflation as consequences of dynamically
broken scale invariance, Phys. Rev. D100 (2019) 015037.; DOI:10.1103/PhysRevD.100.015037
485.G. Arcadi, J. Heeck, F. Heizmann, S. Mertens, F. S. Queiroz, W.
Rodejohann, M. Slezák and K. Valerius, Tritium beta
decay with additional emission of new light bosons, JHEP01 (2019) 206.; DOI:10.1007/JHEP01(2019)206
486.R. Carr et al., Neutrino-based tools for
nuclear verification and diplomacy in North Korea (2018).; DOI:10.1080/08929882.2019.1603007
487.S. Biondini and S. Vogl, Coloured
coannihilations: Dark matter phenomenology meets non-relativistic
EFTs, JHEP02 (2019) 016.; DOI:10.1007/JHEP02(2019)016
488.I. P. Ivanov, C. C. Nishi, J. P. Silva and A. Trautner, Basis-invariant conditions for \(CP\) symmetry of order four,
Phys. Rev. D99 (2019) 015039.; DOI:10.1103/PhysRevD.99.015039
489.A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente,
Low-scale leptogenesis with three heavy
neutrinos, JHEP01 (2019) 164.; DOI:10.1007/JHEP01(2019)164
490.V. Brdar, A. J. Helmboldt and J. Kubo, Gravitational Waves from First-Order Phase Transitions:
LIGO as a Window to Unexplored Seesaw Scales, JCAP02 (2019) 021.; DOI:10.1088/1475-7516/2019/02/021
491.V. Brdar, W. Rodejohann and X.-J. Xu, Producing
a new Fermion in Coherent Elastic Neutrino-Nucleus Scattering: from
Neutrino Mass to Dark Matter, JHEP12
(2018) 024.; DOI:10.1007/JHEP12(2018)024
492.I. Bischer and W. Rodejohann, General Neutrino
Interactions at the DUNE Near Detector, Phys. Rev. D99 (2019) 036006.; DOI:10.1103/PhysRevD.99.036006
493.V. Brdar and A. Y. Smirnov, Low Scale
Left-Right Symmetry and Naturally Small Neutrino Mass,
JHEP02 (2019) 045.; DOI:10.1007/JHEP02(2019)045
494.A. Ibarra, E. Molinaro and S. Vogl, Potential
for probing three-body decays of Long-Lived Particles with
MATHUSLA, Phys. Lett. B789 (2019)
127–131.; DOI:10.1016/j.physletb.2018.12.015
496.T. Alanne, D. Buarque Franzosi, M. T. Frandsen and M. Rosenlyst,
Dark matter in (partially) composite Higgs
models, JHEP12 (2018) 088.; DOI:10.1007/JHEP12(2018)088
497.T. Alanne and S. Blasi, Abelian gauge-Yukawa
\(\beta\)-functions at large \(N_f\), Phys. Rev. D98 (2018) 116004.; DOI:10.1103/PhysRevD.98.116004
498.J. Kubo and M. Yamada, Scale and confinement
phase transitions in scale invariant \(SU(N)\) scalar gauge theory,
JHEP10 (2018) 003.; DOI:10.1007/JHEP10(2018)003
499.S. Ohmer, Spontaneous CP Violation and the
Strong CP Problem in Left-Right Symmetric Theories, Phys.
Rev. D99 (2019) 115031.; DOI:10.1103/PhysRevD.99.115031
500.V. Brdar, Y. Emonds, A. J. Helmboldt and M. Lindner, Conformal Realization of the Neutrino Option,
Phys. Rev. D99 (2019) 055014.; DOI:10.1103/PhysRevD.99.055014
501.T. Alanne, S. Blasi and F. Goertz, Common
source for scalars: Flavored axion-Higgs unification, Phys.
Rev. D99 (2019) 015028.; DOI:10.1103/PhysRevD.99.015028
502.I. Bischer, W. Rodejohann and X.-J. Xu, Loop-induced Neutrino Non-Standard Interactions,
JHEP10 (2018) 096.; DOI:10.1007/JHEP10(2018)096
503.E. Akhmedov, G. Arcadi, M. Lindner and S. Vogl, Coherent scattering and macroscopic coherence:
Implications for neutrino, dark matter and axion detection,
JHEP10 (2018) 045.; DOI:10.1007/JHEP10(2018)045
504.S. Baumholzer, V. Brdar and P. Schwaller, The
New \(\nu\)MSM (\(\nu\nu\)MSM): Radiative Neutrino Masses,
keV-Scale Dark Matter and Viable Leptogenesis with sub-TeV New
Physics, JHEP08 (2018) 067.; DOI:10.1007/JHEP08(2018)067
505.T. Alanne and S. Blasi, The \(\beta\)-function for Yukawa theory at large
\(N_f\), JHEP08 (2018) 081.; DOI:10.1007/JHEP08(2018)081
506.K. Schmitz and T. T. Yanagida, Axion
Isocurvature Perturbations in Low-Scale Models of Hybrid
Inflation, Phys. Rev. D98 (2018)
075003.; DOI:10.1103/PhysRevD.98.075003
507.H. Almazán et al., Sterile Neutrino Constraints
from the STEREO Experiment with 66 Days of Reactor-On Data,
Phys. Rev. Lett.121 (2018) 161801.; DOI:10.1103/PhysRevLett.121.161801
508.E. Aprile et al., Dark Matter Search Results
from a One Ton-Year Exposure of XENON1T, Phys. Rev.
Lett.121 (2018) 111302.; DOI:10.1103/PhysRevLett.121.111302
509.F. Mackenroth, N. Kumar, N. Neitz and C. H. Keitel, Nonlinear Compton scattering of an ultraintense laser
pulse in a plasma, Phys. Rev. E99
(2019) 033205.; DOI:10.1103/PhysRevE.99.033205
510.T. Hugle, M. Platscher and K. Schmitz, Low-Scale Leptogenesis in the Scotogenic Neutrino Mass
Model, Phys. Rev. D98 (2018) 023020.;
DOI:10.1103/PhysRevD.98.023020
512.G. Arcadi, 2HDM portal for Singlet-Doublet Dark
Matter, Eur. Phys. J. C78 (2018) 864.;
DOI:10.1140/epjc/s10052-018-6327-6
513.M. Agostini et al., New Data Release of GERDA
Phase II: Search for \(0\nu\beta\beta\)
decay of \(^{76}\)Ge, KnE
Energ. Phys.3 (2018) 202–209.; DOI:10.18502/ken.v3i1.1745
514.M. Agostini et al., GERDA results and the
future perspectives for the neutrinoless double beta decay search using
\(^{76}\)Ge, Int. J. Mod.
Phys. A33 (2018) 1843004.; DOI:10.1142/S0217751X18430042
515.M. Lucente, A. Abada, G. Arcadi and V. Domcke, Leptogenesis, dark matter and neutrino masses,
Prospects in Neutrino Physics (pp.
70–78).; Retrieved from https://arxiv.org/abs/1803.10826
516.M. Agostini et al., Improved Limit on
Neutrinoless Double-\(\beta\) Decay of
\(^{76}\)Ge from GERDA Phase II,
Phys. Rev. Lett.120 (2018) 132503.; DOI:10.1103/PhysRevLett.120.132503
517.J. M. Berryman, V. Brdar and P. Huber, Particle
physics origin of the 5 MeV bump in the reactor antineutrino
spectrum?, Phys. Rev. D99 (2019)
055045.; DOI:10.1103/PhysRevD.99.055045
518.A. Y. Smirnov and X.-J. Xu, Neutrino mixing in
SO(10) GUTs with a non-Abelian flavor symmetry in the hidden
sector, Phys. Rev. D97 (2018) 095030.;
DOI:10.1103/PhysRevD.97.095030
519.G. Arcadi, T. Hugle and F. S. Queiroz, The Dark
\(L_\mu - L_\tau\) Rises via Kinetic
Mixing, Phys. Lett. B784 (2018)
151–158.; DOI:10.1016/j.physletb.2018.07.028
520.M. Lindner, F. S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on
Z\(^{′}\) and dark photon
models, JHEP05 (2018) 098.; DOI:10.1007/JHEP05(2018)098
521.H. de Kerret et al., Yields and production
rates of cosmogenic \(^9\)Li and \(^8\)He measured with the Double Chooz near
and far detectors, JHEP11 (2018) 053.;
DOI:10.1007/JHEP11(2018)053
522.Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent
neutrino scattering, JHEP05 (2018)
066.; DOI:10.1007/JHEP05(2018)066
523.V. Brdar, M. Lindner and X.-J. Xu, Neutrino
astronomy with supernova neutrinos, JCAP04 (2018) 025.; DOI:10.1088/1475-7516/2018/04/025
524.R. S. L. Hansen and A. Y. Smirnov, Neutrino
conversion in a neutrino flux: Towards an effective theory of collective
oscillations, JCAP04 (2018) 057.;
DOI:10.1088/1475-7516/2018/04/057
525.T. Alanne, N. Bizot, G. Cacciapaglia and F. Sannino, Classification of NLO operators for composite Higgs
models, Phys. Rev. D97 (2018) 075028.;
DOI:10.1103/PhysRevD.97.075028
526.M. Dutra, M. Lindner, S. Profumo, F. S. Queiroz, W. Rodejohann and
C. Siqueira, MeV Dark Matter Complementarity and
the Dark Photon Portal, JCAP03 (2018)
037.; DOI:10.1088/1475-7516/2018/03/037
527.A. Y. Smirnov, Solar Neutrinos and Matter
Effects, Adv. Ser. Direct. High Energy Phys.28 (2018) 149–209.; DOI:10.1142/9789813226098_0004
528.V. Domcke, A. Abada, G. Arcadi and M. Lucente, Neutrino masses and leptogenesis from small lepton number
violation, 53rd Rencontres de Moriond on
Electroweak Interactions and Unified Theories (pp. 285–290).
529.V. Domcke and K. Schmitz, Inflation from
High-Scale Supersymmetry Breaking, Phys. Rev. D97 (2018) 115025.; DOI:10.1103/PhysRevD.97.115025
531.T. Alanne and F. Goertz, Extended Dark Matter EFT,
Eur. Phys. J. C80 (2020) 446.; DOI:10.1140/epjc/s10052-020-7999-2
532.K. Max, M. Platscher and J. Smirnov, Decoherence of Gravitational Wave Oscillations in
Bigravity, Phys. Rev. D97 (2018)
064009.; DOI:10.1103/PhysRevD.97.064009
533.M. Bauer, M. Klassen and V. Tenorth, Universal
properties of pseudoscalar mediators in dark matter extensions of
2HDMs, JHEP07 (2018) 107.; DOI:10.1007/JHEP07(2018)107
534.A. Carmona and F. Goertz, Recent \(B\) physics anomalies: a first hint for
compositeness?, Eur. Phys. J. C78
(2018) 979.; DOI:10.1140/epjc/s10052-018-6437-1
535.G. Arcadi, C. P. Ferreira, F. Goertz, M. M. Guzzo, F. S. Queiroz and
A. C. O. Santos, Lepton Flavor Violation Induced by
Dark Matter, Phys. Rev. D97 (2018)
075022.; DOI:10.1103/PhysRevD.97.075022
536.T. Alanne, D. Buarque Franzosi, M. T. Frandsen, M. L. A. Kristensen,
A. Meroni and M. Rosenlyst, Partially composite
Higgs models: Phenomenology and RG analysis, JHEP01 (2018) 051.; DOI:10.1007/JHEP01(2018)051
537.G. Benato et al., Radon mitigation during the
installation of the CUORE 0\(\nu\beta\beta\) decay detector,
JINST13 (2018) P01010.; DOI:10.1088/1748-0221/13/01/P01010
538.O. Yu. Smirnov et al., Borexino: Recent results
and future plans, Phys. Part. Nucl.48
(2017) 1026–1029.; DOI:10.1134/S1063779617060533
539.S. Profumo, F. S. Queiroz, J. Silk and C. Siqueira, Searching for Secluded Dark Matter with H.E.S.S.,
Fermi-LAT, and Planck, JCAP03 (2018)
010.; DOI:10.1088/1475-7516/2018/03/010
540.F. Goertz, Indirect estimation of masses beyond
collider reach in EFT, JHEP05 (2019)
090.; DOI:10.1007/JHEP05(2019)090
541.G. Arcadi, M. Lindner, F. S. Queiroz, W. Rodejohann and S. Vogl,
Pseudoscalar Mediators: A WIMP model at the
Neutrino Floor, JCAP03 (2018) 042.;
DOI:10.1088/1475-7516/2018/03/042
542.M. Agostini et al., Upgrade for Phase II of the
Gerda experiment, Eur. Phys. J. C78
(2018) 388.; DOI:10.1140/epjc/s10052-018-5812-2
543.M. Tavani et al., Science with e-ASTROGAM: A
space mission for MeVGeV gamma-ray astrophysics, (A. De Angelis,
V. Tatischeff, I. A. Grenier, J. McEnery, & M. Mallamaci,
Eds.)JHEAp19 (2018) 1–106.; DOI:10.1016/j.jheap.2018.07.001
544.A. Carvalho, F. Goertz, K. Mimasu, M. Gouzevitch and A. Aggarwal,
On the reinterpretation of non-resonant searches
for Higgs boson pairs, JHEP02 (2021)
049.; DOI:10.1007/JHEP02(2021)049
545.F. S. Queiroz, WIMP Theory Review, (P. Checchia et al.,
Eds.)PoSEPS-HEP2017 (2017) 080.; DOI:10.22323/1.314.0080
546.M. Agostini et al., Searching for neutrinoless
double beta decay with GERDA, (K. Clark, C. Jillings, C. Kraus,
J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser.1342 (2020) 012005.; DOI:10.1088/1742-6596/1342/1/012005
547.D. Barducci and A. J. Helmboldt, Quark
flavour-violating Higgs decays at the ILC, JHEP12 (2017) 105.; DOI:10.1007/JHEP12(2017)105
548.P. V. Dong, D. T. Huong, F. S. Queiroz, J. W. F. Valle and C. A.
Vaquera-Araujo, The Dark Side of Flipped
Trinification, JHEP04 (2018) 143.;
DOI:10.1007/JHEP04(2018)143
549.J. Haser, Light sterile neutrino
searches, 29th Rencontres de Blois on
Particle Physics and Cosmology.; Retrieved from https://arxiv.org/abs/1710.06330
550.M. Agostini et al., Search for Neutrinoless
Double Beta Decay with GERDA Phase II, (O. Civitarese, I. Stekl,
& J. Suhonen, Eds.)AIP Conf. Proc.1894
(2017) 020012.; DOI:10.1063/1.5007637
551.T. Abrahão et al., Novel event classification
based on spectral analysis of scintillation waveforms in Double
Chooz, JINST13 (2018) P01031.; DOI:10.1088/1748-0221/13/01/P01031
552.J. Haser, Search for eV Sterile Neutrinos - The
Stereo Experiment, (P. Checchia et al., Eds.)PoSEPS-HEP2017 (2017) 113.; DOI:10.22323/1.314.0113
553.J. Heeck and W. Rodejohann, Lepton flavor
violation with displaced vertices, Phys. Lett. B776 (2018) 385–390.; DOI:10.1016/j.physletb.2017.11.067
554.V. Brdar, J. Kopp, J. Liu and X.-P. Wang, X-Ray
Lines from Dark Matter Annihilation at the keV Scale, Phys.
Rev. Lett.120 (2018) 061301.; DOI:10.1103/PhysRevLett.120.061301
555.N. Fornengo, A. Masiero, F. S. Queiroz and C. E. Yaguna, On the Role of Neutrinos Telescopes in the Search for
Dark Matter Annihilations in the Sun, JCAP12 (2017) 012.; DOI:10.1088/1475-7516/2017/12/012
556.M. Lindner, W. Rodejohann and X.-J. Xu, Neutrino Parameters from Reactor and Accelerator Neutrino
Experiments, Phys. Rev. D97 (2018)
075024.; DOI:10.1103/PhysRevD.97.075024
557.T. Alanne, D. Buarque Franzosi and M. T. Frandsen, A partially composite Goldstone Higgs, Phys.
Rev. D96 (2017) 095012.; DOI:10.1103/PhysRevD.96.095012
558.A. N. Khan and D. W. McKay, Probing New Physics
in Low Energy Solar Neutrino Oscillation Data.; Retrieved from https://arxiv.org/abs/1709.09961
559.E. Aprile et al., Signal Yields of keV
Electronic Recoils and Their Discrimination from Nuclear Recoils in
Liquid Xenon, Phys. Rev. D97 (2018)
092007.; DOI:10.1103/PhysRevD.97.092007
560.B. S. Acharya et al., Science with the
Cherenkov Telescope Array. WSP.; DOI:10.1142/10986
561.M. Agostini et al., First results from GERDA
Phase II, J. Phys. Conf. Ser.888
(2017) 012030.; DOI:10.1088/1742-6596/888/1/012030
562.C. Buck, M. Lindner and C. Roca, Scintillation
light production, propagation and detection in the Stereo reactor
antineutrino experiment, J. Phys. Conf. Ser.888 (2017) 012187.; DOI:10.1088/1742-6596/888/1/012187
563.A. Vishneva et al., Test of the electron
stability with the Borexino detector, J. Phys. Conf.
Ser.888 (2017) 012193.; DOI:10.1088/1742-6596/888/1/012193
564.M. Agostini et al., Active background
suppression with the liquid argon scintillation veto of GERDA Phase
II, J. Phys. Conf. Ser.888 (2017)
012238.; DOI:10.1088/1742-6596/888/1/012238
565.M. Pallavicini et al., Solar neutrino detectors
as sterile neutrino hunters, J. Phys. Conf. Ser.888 (2017) 012018.; DOI:10.1088/1742-6596/888/1/012018
566.C. Buck, M. Lindner and C. Roca, Scintillation
light production, propagation and detection in the Stereo reactor
antineutrino experiment, J. Phys. Conf. Ser.888 (2017) 012101.; DOI:10.1088/1742-6596/888/1/012101
567.M. Agostini et al., Study of the GERDA Phase II
background spectrum, J. Phys. Conf. Ser.888 (2017) 012106.; DOI:10.1088/1742-6596/888/1/012106
568.H. Almazan and D. Navas-Nicolás, Neutrino
detection systematics in the two detector phase of the Double Chooz
experiment, J. Phys. Conf. Ser.888
(2017) 012135.; DOI:10.1088/1742-6596/888/1/012135
569.A. Caminata et al., Improvements in the
simulation code of the SOX experiment, J. Phys. Conf.
Ser.888 (2017) 012145.; DOI:10.1088/1742-6596/888/1/012145
570.A. N. Khan, \(\sin
^{2}\theta _{W}\) Estimate and Neutrino Electromagnetic
Properties from Low-Energy Solar Data, J. Phys. G46 (2019) 035005.; DOI:10.1088/1361-6471/ab0057
571.E. Aprile et al., Search for Bosonic Super-WIMP
Interactions with the XENON100 Experiment, Phys. Rev. D96 (2017) 122002.; DOI:10.1103/PhysRevD.96.122002
572.N. Abgrall et al., The Large Enriched Germanium
Experiment for Neutrinoless Double Beta Decay (LEGEND), (O.
Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc.1894 (2017) 020027.; DOI:10.1063/1.5007652
573.A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small
lepton number violation?, JCAP12
(2017) 024.; DOI:10.1088/1475-7516/2017/12/024
574.E. Aprile et al., The XENON1T Dark Matter Experiment,
Eur. Phys. J. C77 (2017) 881.; DOI:10.1140/epjc/s10052-017-5326-3
575.E. Aprile et al., Intrinsic backgrounds from Rn
and Kr in the XENON100 experiment, Eur. Phys. J. C78 (2018) 132.; DOI:10.1140/epjc/s10052-018-5565-y
576.G. Arcadi, M. D. Campos, M. Lindner, A. Masiero and F. S. Queiroz,
Dark sequential Z’ portal: Collider and direct
detection experiments, Phys. Rev. D97
(2018) 043009.; DOI:10.1103/PhysRevD.97.043009
577.A. Lubashevskiy et al., Mitigation of\(^{42}\) Ar/\(^{42}\) K background for the GERDA Phase II
experiment, Eur. Phys. J. C78 (2018)
15.; DOI:10.1140/epjc/s10052-017-5499-9
578.D. Jiménez, K. Kamada, K. Schmitz and X.-J. Xu, Baryon asymmetry and gravitational waves from
pseudoscalar inflation, JCAP12 (2017)
011.; DOI:10.1088/1475-7516/2017/12/011
579.S.-F. Ge, W. Rodejohann and K. Zuber, Half-life
Expectations for Neutrinoless Double Beta Decay in Standard and
Non-Standard Scenarios, Phys. Rev. D96
(2017) 055019.; DOI:10.1103/PhysRevD.96.055019
580.K. Harigaya and K. Schmitz, Unified Model of
Chaotic Inflation and Dynamical Supersymmetry Breaking, Phys.
Lett. B773 (2017) 320–324.; DOI:10.1016/j.physletb.2017.08.050
581.B. J. Kavanagh, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Prospects for determining the particle/antiparticle
nature of WIMP dark matter with direct detection experiments,
JHEP10 (2017) 059.; DOI:10.1007/JHEP10(2017)059
582.J. G. Ferreira, C. A. de S. Pires, P. S. Rodrigues da Silva and C.
Siqueira, On the Higgs-like boson in the Minimal
Supersymmetric 3-3-1 Model, Eur. Phys. J. C78 (2018) 225.; DOI:10.1140/epjc/s10052-018-5705-4
583.G. Arcadi, P. Ghosh, Y. Mambrini, M. Pierre and F. S. Queiroz, \(Z'\) portal to
Chern-Simons Dark Matter, JCAP11
(2017) 020.; DOI:10.1088/1475-7516/2017/11/020
584.M. Lindner, B. Radovčić and J. Welter, Revisiting Large
Neutrino Magnetic Moments, JHEP07
(2017) 139.; DOI:10.1007/JHEP07(2017)139
585.R. S. L. Hansen and S. Vogl, Thermalizing
sterile neutrino dark matter, Phys. Rev. Lett.119 (2017) 251305.; DOI:10.1103/PhysRevLett.119.251305
586.G. Arcadi, F. S. Queiroz and C. Siqueira, The
Semi-Hooperon: Gamma-ray and anti-proton excesses in the Galactic
Center, Phys. Lett. B775 (2017)
196–205.; DOI:10.1016/j.physletb.2017.10.065
587.A. Pierce, N. R. Shah and S. Vogl, Stop
Co-Annihilation in the Minimal Supersymmetric Standard Model
Revisited, Phys. Rev. D97 (2018)
023008.; DOI:10.1103/PhysRevD.97.023008
588.C. Balázs, J. Conrad, B. Farmer, T. Jacques, T. Li, M. Meyer, F. S.
Queiroz and M. A. Sánchez-Conde, Sensitivity of the
Cherenkov Telescope Array to the detection of a dark matter signal in
comparison to direct detection and collider experiments,
Phys. Rev. D96 (2017) 083002.; DOI:10.1103/PhysRevD.96.083002
589.M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium,
Phys. Rev. D96 (2017) 103521.; DOI:10.1103/PhysRevD.96.103521
590.E. Aprile et al., First Dark Matter Search
Results from the XENON1T Experiment, Phys. Rev. Lett.119 (2017) 181301.; DOI:10.1103/PhysRevLett.119.181301
591.M. D. Campos, D. Cogollo, M. Lindner, T. Melo, F. S. Queiroz and W.
Rodejohann, Neutrino Masses and Absence of Flavor
Changing Interactions in the 2HDM from Gauge Principles,
JHEP08 (2017) 092.; DOI:10.1007/JHEP08(2017)092
592.E. Aprile et al., Effective field theory search
for high-energy nuclear recoils using the XENON100 dark matter
detector, Phys. Rev. D96 (2017)
042004.; DOI:10.1103/PhysRevD.96.042004
593.E. Aprile et al., Material radioassay and
selection for the XENON1T dark matter experiment, Eur. Phys.
J. C77 (2017) 890.; DOI:10.1140/epjc/s10052-017-5329-0
595.E. Aprile et al., Search for WIMP Inelastic
Scattering off Xenon Nuclei with XENON100, Phys. Rev. D96 (2017) 022008.; DOI:10.1103/PhysRevD.96.022008
596.C. Buck, Sterile Neutrinos: Reactor Experiments,
Prospects in Neutrino Physics.;
Retrieved from https://arxiv.org/abs/1704.08885
597.S.-F. Ge, Measuring the Leptonic Dirac CP Phase
with TNT2K, Prospects in Neutrino
Physics.; Retrieved from https://arxiv.org/abs/1704.08518
598.W. Maneschg, Present status of neutrinoless
double beta decay searches, Prospects in
Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08537
599.E. Aprile et al., Search for magnetic inelastic
dark matter with XENON100, JCAP10
(2017) 039.; DOI:10.1088/1475-7516/2017/10/039
600.G. Arcadi, M. Lindner, Y. Mambrini, M. Pierre and F. S. Queiroz,
GUT Models at Current and Future Hadron Colliders
and Implications to Dark Matter Searches, Phys. Lett. B771 (2017) 508–514.; DOI:10.1016/j.physletb.2017.05.023
601.H. H. Patel and B. Radovcic, On the Decoupling
Theorem for Vacuum Metastability, Phys. Lett. B773 (2017) 527–533.; DOI:10.1016/j.physletb.2017.08.075
602.M. Lindner and S. Ohmer, Emerging Internal
Symmetries from Effective Spacetimes, Phys. Lett. B773 (2017) 231–235.; DOI:10.1016/j.physletb.2017.08.026
603.E. Akhmedov, Do non-relativistic neutrinos
oscillate?, JHEP07 (2017) 070.; DOI:10.1007/JHEP07(2017)070
604.K. Max, M. Platscher and J. Smirnov, Gravitational Wave Oscillations in Bigravity,
Phys. Rev. Lett.119 (2017) 111101.; DOI:10.1103/PhysRevLett.119.111101
605.G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre,
S. Profumo and F. S. Queiroz, The waning of the
WIMP? A review of models, searches, and constraints, Eur.
Phys. J. C78 (2018) 203.; DOI:10.1140/epjc/s10052-018-5662-y
606.M. Agostini et al., First results of GERDA
Phase II and consistency with background models, (A. Galper, A.
Petrukhin, A. Taranenko, I. Selyushenkov, M. Skorokhvatov, S. Rubin, V.
Dmitrnko, et al., Eds.)J. Phys. Conf. Ser.798
(2017) 012106.; DOI:10.1088/1742-6596/798/1/012106
607.D. Jeschke et al., Recent Results from
Borexino, (A. Galper, A. Petrukhin, A. Taranenko, I.
Selyushenkov, M. Skorokhvatov, S. Rubin, V. Dmitrnko, et al.,
Eds.)J. Phys. Conf. Ser.798 (2017) 012114.;
DOI:10.1088/1742-6596/798/1/012114
608.P. S. B. Dev, C. M. Vila and W. Rodejohann, Naturalness in testable type II seesaw scenarios,
Nucl. Phys. B921 (2017) 436–453.; DOI:10.1016/j.nuclphysb.2017.06.007
609.M. Agostini et al., Background-free search for
neutrinoless double-\(\beta\) decay of
\(^{76}\)Ge with GERDA,
Nature544 (2017) 47.; DOI:10.1038/nature21717
610.E. Akhmedov, J. Kopp and M. Lindner, Collective
neutrino oscillations and neutrino wave packets, JCAP09 (2017) 017.; DOI:10.1088/1475-7516/2017/09/017
611.E. Aprile et al., Online\(^{222}\) Rn removal by cryogenic
distillation in the XENON100 experiment, Eur. Phys. J. C77 (2017) 358.; DOI:10.1140/epjc/s10052-017-4902-x
612.V. D’Andrea et al., First Results of Gerda
Phase II, PoSNOW2016 (2017) 098.;
DOI:10.22323/1.283.0098
613.M. D. Campos, F. S. Queiroz, C. E. Yaguna and C. Weniger, Search for right-handed neutrinos from dark matter
annihilation with gamma-rays, JCAP07
(2017) 016.; DOI:10.1088/1475-7516/2017/07/016
614.W. Rodejohann, X.-J. Xu and C. E. Yaguna, Distinguishing between Dirac and Majorana neutrinos in
the presence of general interactions, JHEP05 (2017) 024.; DOI:10.1007/JHEP05(2017)024
615.P. Pasquini, S.-F. Ge, M. A. Tórtola and J. W. F. Valle, Measuring the Leptonic CP Phase in Neutrino Oscillations
with Non-Unitary Mixing, PoSNOW2016
(2017) 026.; DOI:10.22323/1.283.0026
616.S.-F. Ge, M. Lindner and W. Rodejohann, Atmospheric Trident Production for Probing New
Physics, Phys. Lett. B772 (2017)
164–168.; DOI:10.1016/j.physletb.2017.06.020
617.V. Domcke and K. Schmitz, Unified model of
D-term inflation, Phys. Rev. D95
(2017) 075020.; DOI:10.1103/PhysRevD.95.075020
618.E. Aprile et al., Search for Electronic Recoil
Event Rate Modulation with 4 Years of XENON100 Data, Phys.
Rev. Lett.118 (2017) 101101.; DOI:10.1103/PhysRevLett.118.101101
619.S. Marcocci et al., Real-time detection of
solar neutrinos with Borexino, Nuovo Cim. C40 (2017) 58.; DOI:10.1393/ncc/i2017-17058-9
620.G. Arcadi, Impact of next future Direct
Detection experiments on Dark Portals and beyond, (A. Morselli,
A. Capone, & G. Rodriguez Fernandez, Eds.)EPJ Web Conf.136 (2017) 05003.; DOI:10.1051/epjconf/201713605003
621.T. Rink, K. Schmitz and T. T. Yanagida, Minimal
Seesaw Model with a Discrete Heavy-Neutrino Exchange Symmetry
(2016).; Retrieved from https://arxiv.org/abs/1612.08878
622.P. S. B. Dev, Testing Neutrino Mass Models at
the LHC and beyond, PoSICHEP2016
(2016) 487.; DOI:10.22323/1.282.0487
623.A. Alves, G. Arcadi, Y. Mambrini, S. Profumo and F. S. Queiroz,
Augury of darkness: the low-mass dark Z\(^{′}\) portal, JHEP04 (2017) 164.; DOI:10.1007/JHEP04(2017)164
624.P. Fileviez Perez and S. Ohmer, Unification and
Local Baryon Number, Phys. Lett. B768
(2017) 86–91.; DOI:10.1016/j.physletb.2017.02.049
625.M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino
Interactions, JHEP03 (2017) 097.;
DOI:10.1007/JHEP03(2017)097
626.E. Aprile et al., Removing krypton from xenon
by cryogenic distillation to the ppq level, Eur. Phys. J.
C77 (2017) 275.; DOI:10.1140/epjc/s10052-017-4757-1
627.A. Alves, G. Arcadi, P. V. Dong, L. Duarte, F. S. Queiroz and J. W.
F. Valle, Matter-parity as a residual gauge
symmetry: Probing a theory of cosmological dark matter, Phys.
Lett. B772 (2017) 825–831.; DOI:10.1016/j.physletb.2017.07.056
628.H. H. Patel, Package-X 2.0: A Mathematica
package for the analytic calculation of one-loop integrals,
Comput. Phys. Commun.218 (2017) 66–70.;
DOI:10.1016/j.cpc.2017.04.015
629.R. S. L. Lundkvist, M. Archidiacono, S. Hannestad and T. Tram, How to make the short baseline sterile neutrino
compatible with cosmology, PoSICHEP2016 (2016) 478.; DOI:10.22323/1.282.0478
630.A. G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Probing the scotogenic FIMP at the LHC,
JHEP01 (2017) 100.; DOI:10.1007/JHEP01(2017)100
631.G. Arcadi, C. Gross, O. Lebedev, S. Pokorski and T. Toma, Evading Direct Dark Matter Detection in Higgs Portal
Models, Phys. Lett. B769 (2017)
129–133.; DOI:10.1016/j.physletb.2017.03.044
632.M. Platscher and J. Smirnov, Degravitation of
the Cosmological Constant in Bigravity, JCAP03 (2017) 051.; DOI:10.1088/1475-7516/2017/03/051
633.T. Abrahão et al., Cosmic-muon characterization
and annual modulation measurement with Double Chooz detectors,
JCAP02 (2017) 017.; DOI:10.1088/1475-7516/2017/02/017
634.A. Angelescu and G. Arcadi, Dark Matter
Phenomenology of SM and Enlarged Higgs Sectors Extended with Vector Like
Leptons, Eur. Phys. J. C77 (2017)
456.; DOI:10.1140/epjc/s10052-017-5015-2
635.M. Agostini et al., Limits on uranium and
thorium bulk content in GERDA Phase I detectors, Astropart.
Phys.91 (2017) 15–21.; DOI:10.1016/j.astropartphys.2017.03.003
636.T. Rink and K. Schmitz, Perturbed Yukawa
Textures in the Minimal Seesaw Model, JHEP03 (2017) 158.; DOI:10.1007/JHEP03(2017)158
637.M. Agostini et al., Search for Neutrinoless
Double Beta Decay with the GERDA experiment: Phase II,
PoSICHEP2016 (2016) 493.; DOI:10.22323/1.282.0493
638.C. Buck, The Double Chooz experiment,
PoSNOW2016 (2016) 007.; DOI:10.22323/1.283.0007
639.S. Bruenner, D. Cichon, S. Lindemann, T. Marrodán Undagoitia and H.
Simgen, Radon depletion in xenon boil-off
gas, Eur. Phys. J. C77 (2017) 143.;
DOI:10.1140/epjc/s10052-017-4676-1
640.G. Bambhaniya, P. S. Bhupal Dev, S. Goswami, S. Khan and W.
Rodejohann, Naturalness, Vacuum Stability and
Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D95 (2017) 095016.; DOI:10.1103/PhysRevD.95.095016
641.E. Aprile et al., Results from a Calibration of
XENON100 Using a Source of Dissolved Radon-220, Phys. Rev.
D95 (2017) 072008.; DOI:10.1103/PhysRevD.95.072008
642.G. Arcadi, C. Gross, O. Lebedev, Y. Mambrini, S. Pokorski and T.
Toma, Multicomponent Dark Matter from Gauge
Symmetry, JHEP12 (2016) 081.; DOI:10.1007/JHEP12(2016)081
643.C. E. Yaguna, Isospin-violating dark matter in
the light of recent data, Phys. Rev. D95 (2017) 055015.; DOI:10.1103/PhysRevD.95.055015
644.F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Is the dark matter particle its own antiparticle?,
Phys. Rev. D95 (2017) 095010.; DOI:10.1103/PhysRevD.95.095010
645.M. Lindner, M. Platscher and F. S. Queiroz, A
Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton
Flavor Violation, Phys. Rept.731
(2018) 1–82.; DOI:10.1016/j.physrep.2017.12.001
646.S.-F. Ge, H.-J. He and R.-Q. Xiao, Testing
Higgs coupling precision and new physics scales at lepton
colliders, (L. R. Flores Castillo & K. Prokofiev,
Eds.)Int. J. Mod. Phys. A31 (2016) 1644004.;
DOI:10.1142/S0217751X16440048
647.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in leftright
models, Mod. Phys. Lett. A32 (2017)
1740007.; DOI:10.1142/S0217732317400077
648.N. Priel, L. Rauch, H. Landsman, A. Manfredini and R. Budnik, A model independent safeguard against background
mismodeling for statistical inference, JCAP05 (2017) 013.; DOI:10.1088/1475-7516/2017/05/013
649.R. S. L. Hansen and A. Yu. Smirnov, The
Liouville equation for flavour evolution of neutrinos and neutrino wave
packets, JCAP12 (2016) 019.; DOI:10.1088/1475-7516/2016/12/019
650.A. J. Helmboldt and M. Lindner, Prospects for
three-body Higgs boson decays into extra light scalars, Phys.
Rev. D95 (2017) 055008.; DOI:10.1103/PhysRevD.95.055008
651.E. Aprile et al., XENON100 Dark Matter Results
from a Combination of 477 Live Days, Phys. Rev. D94 (2016) 122001.; DOI:10.1103/PhysRevD.94.122001
652.P. S. B. Dev, M. Lindner and S. Ohmer, Gravitational waves as a new probe of BoseEinstein
condensate Dark Matter, Phys. Lett. B773 (2017) 219–224.; DOI:10.1016/j.physletb.2017.08.043
653.W. Altmannshofer, S. Gori, S. Profumo and F. S. Queiroz, Explaining dark matter and B decay anomalies with an
\(L_\mu - L_\tau\) model,
JHEP12 (2016) 106.; DOI:10.1007/JHEP12(2016)106
654.E. Aprile et al., Search for two-neutrino
double electron capture of \(^{124}\)Xe
with XENON100, Phys. Rev. C95 (2017)
024605.; DOI:10.1103/PhysRevC.95.024605
655.P. Barrow et al., Qualification Tests of the
R11410-21 Photomultiplier Tubes for the XENON1T Detector,
JINST12 (2017) P01024.; DOI:10.1088/1748-0221/12/01/P01024
656.M. Herranen, A. Hohenegger, A. Osland and A. Tranberg, Quantum corrections to inflation: the importance of
RG-running and choosing the optimal RG-scale, Phys. Rev.
D95 (2017) 023525.; DOI:10.1103/PhysRevD.95.023525
657.F. S. Queiroz, C. Siqueira and J. W. F. Valle, Constraining Flavor Changing Interactions from LHC Run-2
Dilepton Bounds with Vector Mediators, Phys. Lett. B763 (2016) 269–274.; DOI:10.1016/j.physletb.2016.10.057
658.P. S. Bhupal Dev, R. N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark
matter, JHEP11 (2016) 077.; DOI:10.1007/JHEP11(2016)077
659.F. Björkeroth, S. F. King, K. Schmitz and T. T. Yanagida, Leptogenesis after Chaotic Sneutrino Inflation and the
Supersymmetry Breaking Scale, Nucl. Phys. B916 (2017) 688–708.; DOI:10.1016/j.nuclphysb.2017.01.017
660.S.-F. Ge and M. Lindner, Extracting Majorana
properties from strong bounds on neutrinoless double beta decay,
Phys. Rev. D95 (2017) 033003.; DOI:10.1103/PhysRevD.95.033003
661.C. Buck and M. Yeh, Metal-loaded organic
scintillators for neutrino physics, J. Phys. G43 (2016) 093001.; DOI:10.1088/0954-3899/43/9/093001
662.M. Lindner, M. Platscher, C. E. Yaguna and A. Merle, Fermionic WIMPs and vacuum stability in the scotogenic
model, Phys. Rev. D94 (2016) 115027.;
DOI:10.1103/PhysRevD.94.115027
663.S.-F. Ge and A. Yu. Smirnov, Non-standard
interactions and the CP phase measurements in neutrino oscillations at
low energies, JHEP10 (2016) 138.;
DOI:10.1007/JHEP10(2016)138
664.W. Altmannshofer, C.-Y. Chen, P. S. Bhupal Dev and A. Soni, Lepton flavor violating Z’ explanation of the muon
anomalous magnetic moment, Phys. Lett. B762 (2016) 389–398.; DOI:10.1016/j.physletb.2016.09.046
665.M. Klasen, F. Lyonnet and F. S. Queiroz, NLO+NLL collider bounds, Dirac fermion and scalar dark
matter in the BL model, Eur. Phys. J. C77 (2017) 348.; DOI:10.1140/epjc/s10052-017-4904-8
666.M. Agostini et al., Borexino’s search for
low-energy neutrino and antineutrino signals correlated with gamma-ray
bursts, Astropart. Phys.86 (2017)
11–17.; DOI:10.1016/j.astropartphys.2016.10.004
667.S. Patra, W. Rodejohann and C. E. Yaguna, A new
B \(-\) L model without right-handed
neutrinos, JHEP09 (2016) 076.; DOI:10.1007/JHEP09(2016)076
668.A. Caminata et al., Short distance neutrino
oscillations with Borexino, (P. Piattelli, A. Capone, R.
Coniglione, G. De Bonis, M. De Vincenzi, C. Distefano, A. Morselli, et
al., Eds.)EPJ Web Conf.121 (2016) 01002.;
DOI:10.1051/epjconf/201612101002
669.S. Davini et al., New results of the Borexino
experiment: pp solar neutrino detection, (M. Greco, Ed.)Nuovo
Cim. C38 (2016) 120.; DOI:10.1393/ncc/i2015-15120-4
670.P. Fileviez Perez, C. Murgui and S. Ohmer, Simple Left-Right Theory: Lepton Number Violation at the
LHC, Phys. Rev. D94 (2016) 051701.;
DOI:10.1103/PhysRevD.94.051701
671.R. Contino et al., Physics at a 100 TeV pp
collider: Higgs and EW symmetry breaking studies (2016).; DOI:10.23731/CYRM-2017-003.255
672.F. S. Queiroz, Comment on “Polarized window for
left-right symmetry and a right-handed neutrino at the Large
Hadron-Electron Collider”, Phys. Rev. D93 (2016) 118701.; DOI:10.1103/PhysRevD.93.118701
673.R. Arnold et al., Measurement of the 2\(\nu\beta\beta\) decay half-life of \(^{150}\)Nd and a search for 0\(\nu\beta\beta\) decay processes with the
full exposure from the NEMO-3 detector, Phys. Rev. D94 (2016) 072003.; DOI:10.1103/PhysRevD.94.072003
674.M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M.
Laveder and T. Tram, Pseudoscalarsterile neutrino
interactions: reconciling the cosmos with neutrino oscillations,
JCAP08 (2016) 067.; DOI:10.1088/1475-7516/2016/08/067
675.E. Akhmedov, Atmospheric neutrinos, \(\nu_{e}-\nu_{s}\) oscillations and a novel
neutrino evolution equation, JHEP08
(2016) 153.; DOI:10.1007/JHEP08(2016)153
676.J. Aalbers et al., DARWIN: towards the ultimate
dark matter detector, JCAP11 (2016)
017.; DOI:10.1088/1475-7516/2016/11/017
677.A. Alves, D. A. Camargo, A. G. Dias, R. Longas, C. C. Nishi and F.
S. Queiroz, Collider and Dark Matter Searches in
the Inert Doublet Model from Peccei-Quinn Symmetry, JHEP10 (2016) 015.; DOI:10.1007/JHEP10(2016)015
678.V. Wagner, Status of the GERDA Phase II
upgrade, (B. Szczerbinska, R. Allahverdi, K. Babu, B. Balantekin,
B. Dutta, T. Kamon, J. Kumar, et al., Eds.)AIP Conf. Proc.1743 (2016) 060005.; DOI:10.1063/1.4953322
679.P. S. B. Dev, D. Kazanas, R. N. Mohapatra, V. L. Teplitz and Y.
Zhang, Heavy right-handed neutrino dark matter and
PeV neutrinos at IceCube, JCAP08
(2016) 034.; DOI:10.1088/1475-7516/2016/08/034
680.M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Secret neutrino interactions: a pseudoscalar
model, J. Phys. Conf. Ser.718 (2016)
032002.; DOI:10.1088/1742-6596/718/3/032002
681.J. Hakenmüller, W. Maneschg and G. Heusser, Simulation and verification of the cosmogenic background
at the shallow depth GIOVE detector, J. Phys. Conf. Ser.718 (2016) 042028.; DOI:10.1088/1742-6596/718/4/042028
682.J. Haser, Search for eV sterile neutrinos at a
nuclear reactor the Stereo project, J. Phys. Conf. Ser.718 (2016) 062023.; DOI:10.1088/1742-6596/718/6/062023
683.A. Ianni et al., High significance measurement
of the terrestrial neutrino flux with the Borexino detector,
J. Phys. Conf. Ser.718 (2016) 062025.; DOI:10.1088/1742-6596/718/6/062025
684.G. Testera et al., Recent results from
Borexino, J. Phys. Conf. Ser.718
(2016) 062059.; DOI:10.1088/1742-6596/718/6/062059
685.M. Vivier et al., SOX: search for short
baseline neutrino oscillations with Borexino, J. Phys. Conf.
Ser.718 (2016) 062066.; DOI:10.1088/1742-6596/718/6/062066
686.T. Golling et al., Physics at a 100 TeV pp
collider: beyond the Standard Model phenomena (2016).; DOI:10.23731/CYRM-2017-003.441
687.S. Zavatarelli et al., Recent results from
Borexino and the first real time measure of solar pp neutrinos,
(M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a,
Eds.)Nucl. Part. Phys. Proc.273-275 (2016)
1753–1759.; DOI:10.1016/j.nuclphysbps.2015.09.282
688.D. Bravo-Berguño et al., SOX: Short Distance
Neutrino Oscillations with Borexino, (M. Aguilar-Benı́tez, J.
Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys.
Proc.273-275 (2016) 1760–1764.; DOI:10.1016/j.nuclphysbps.2015.09.283
689.J. Haser, Current status of the Double Chooz
experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a,
& A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc.273-275 (2016) 1915–1921.; DOI:10.1016/j.nuclphysbps.2015.09.309
690.A. P. Collin, J. I. Crespo-Anadón, J. Haser and G. Yang, Measurement of the detection systematic uncertainty in
the Double Chooz experiment, (M. Aguilar-Benı́tez, J. Fuster, S.
Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc.273-275 (2016) 2645–2647.; DOI:10.1016/j.nuclphysbps.2015.10.017
691.M. Agostini et al., Search of Neutrinoless
Double Beta Decay with the GERDA Experiment, (M. Aguilar-Benı́tez,
J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part.
Phys. Proc.273-275 (2016) 1876–1882.; DOI:10.1016/j.nuclphysbps.2015.09.303
692.P. S. B. Dev, D. K. Ghosh and W. Rodejohann, R-parity Violating Supersymmetry at IceCube,
Phys. Lett. B762 (2016) 116–123.; DOI:10.1016/j.physletb.2016.08.066
693.F. S. Queiroz, Dark Matter Overview: Collider,
Direct and Indirect Detection Searches, 51st Rencontres de Moriond on EW Interactions and Unified
Theories (pp. 427–436). ARISF.; Retrieved from https://arxiv.org/abs/1605.08788
694.E. Aprile et al., Low-mass dark matter search
using ionization signals in XENON100, Phys. Rev. D94 (2016) 092001.; DOI:10.1103/PhysRevD.94.092001
695.M. D. Campos and W. Rodejohann, Testing keV
sterile neutrino dark matter in future direct detection
experiments, Phys. Rev. D94 (2016)
095010.; DOI:10.1103/PhysRevD.94.095010
696.S.-F. Ge, P. Pasquini, M. Tortola and J. W. F. Valle, Measuring the leptonic CP phase in neutrino oscillations
with nonunitary mixing, Phys. Rev. D95
(2017) 033005.; DOI:10.1103/PhysRevD.95.033005
697.M. Agostini et al., Limit on the radiative
neutrinoless double electron capture of\(^{36}\) Ar from GERDA Phase I,
Eur. Phys. J. C76 (2016) 652.; DOI:10.1140/epjc/s10052-016-4454-5
698.M. Lindner, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Left-Right Symmetry and Lepton Number Violation at the
Large Hadron Electron Collider, JHEP06
(2016) 140.; DOI:10.1007/JHEP06(2016)140
699.M. Lindner, F. S. Queiroz and W. Rodejohann, Dilepton bounds on leftright symmetry at the LHC run II
and neutrinoless double beta decay, Phys. Lett. B762 (2016) 190–195.; DOI:10.1016/j.physletb.2016.08.068
700.Y. Abe et al., Characterization of the
Spontaneous Light Emission of the PMTs used in the Double Chooz
Experiment, JINST11 (2016) P08001.;
DOI:10.1088/1748-0221/11/08/P08001
701.M. Duerr, P. Fileviez Perez and J. Smirnov, New
Forces and the 750 GeV Resonance (2016).; Retrieved from https://arxiv.org/abs/1604.05319
702.K. Schmitz and T. T. Yanagida, Dynamical
supersymmetry breaking and late-time R symmetry breaking as the origin
of cosmic inflation, Phys. Rev. D94
(2016) 074021.; DOI:10.1103/PhysRevD.94.074021
703.X. Chu and A. Yu. Smirnov, Neutrino mixing and
masses in SO(10) GUTs with hidden sector and flavor symmetries,
JHEP05 (2016) 135.; DOI:10.1007/JHEP05(2016)135
704.P. Fileviez Perez and C. Murgui, Renormalizable SU(5)
Unification, Phys. Rev. D94 (2016)
075014.; DOI:10.1103/PhysRevD.94.075014
705.P. O. Ludl and W. Rodejohann, Direct Neutrino
Mass Experiments and Exotic Charged Current Interactions,
JHEP06 (2016) 040.; DOI:10.1007/JHEP06(2016)040
706.A. Merle, M. Platscher, N. Rojas, J. W. F. Valle and A. Vicente,
Consistency of WIMP Dark Matter as radiative
neutrino mass messenger, JHEP07 (2016)
013.; DOI:10.1007/JHEP07(2016)013
707.A. J. Helmboldt, P. Humbert, M. Lindner and J. Smirnov, Minimal conformal extensions of the Higgs sector,
JHEP07 (2017) 113.; DOI:10.1007/JHEP07(2017)113
708.S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new
physics scales from Higgs and electroweak observables at e\(^{+}\) e\(^{−}\) Higgs factory, JHEP10 (2016) 007.; DOI:10.1007/JHEP10(2016)007
709.S. Profumo, F. S. Queiroz and C. E. Yaguna, Extending Fermi-LAT and H.E.S.S. Limits on Gamma-ray
Lines from Dark Matter Annihilation, Mon. Not. Roy. Astron.
Soc.461 (2016) 3976–3981.; DOI:10.1093/mnras/stw1600
710.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right
Symmetric Model at Future Hadron Colliders, JHEP05 (2016) 174.; DOI:10.1007/JHEP05(2016)174
711.F. S. Queiroz, C. E. Yaguna and C. Weniger, Gamma-ray Limits on Neutrino Lines, JCAP05 (2016) 050.; DOI:10.1088/1475-7516/2016/05/050
712.P. S. B. Dev and A. Mazumdar, Probing the Scale
of New Physics by Advanced LIGO/VIRGO, Phys. Rev. D93 (2016) 104001.; DOI:10.1103/PhysRevD.93.104001
713.S. Chakraborty, R. Hansen, I. Izaguirre and G. Raffelt, Collective neutrino flavor conversion: Recent
developments, Nucl. Phys. B908 (2016)
366–381.; DOI:10.1016/j.nuclphysb.2016.02.012
714.A. Caminata et al., Understanding the detector
behavior through Montecarlo and calibration studies in view of the SOX
measurement, J. Phys. Conf. Ser.675
(2016) 012012.; DOI:10.1088/1742-6596/675/1/012012
715.A. Vishneva et al., Test of the electric charge
conservation law with Borexino detector, J. Phys. Conf.
Ser.675 (2016) 012025.; DOI:10.1088/1742-6596/675/1/012025
716.O. Y. Smirnov et al., Measurement of Solar
pp-neutrino flux with Borexino: results and implications, J.
Phys. Conf. Ser.675 (2016) 012027.; DOI:10.1088/1742-6596/675/1/012027
717.R. Roncin et al., Geo-neutrino results with
Borexino, J. Phys. Conf. Ser.675
(2016) 012029.; DOI:10.1088/1742-6596/675/1/012029
718.M. Durero et al., The \(^{144}\)Ce source for SOX, J.
Phys. Conf. Ser.675 (2016) 012032.; DOI:10.1088/1742-6596/675/1/012032
719.L. Di Noto et al., The high precision
measurement of the \(^{144}\)Ce
activity in the SOX experiment, J. Phys. Conf. Ser.675 (2016) 012035.; DOI:10.1088/1742-6596/675/1/012035
720.G. Ranucci et al., Overview and accomplishments
of the Borexino experiment, J. Phys. Conf. Ser.675 (2016) 012036.; DOI:10.1088/1742-6596/675/1/012036
721.S. Davini et al., CNO and pep solar neutrino
measurements and perspectives in Borexino, J. Phys. Conf.
Ser.675 (2016) 012040.; DOI:10.1088/1742-6596/675/1/012040
722.S.-F. Ge, H.-J. He, J. Ren and Z.-Z. Xianyu, Realizing Dark Matter and Higgs Inflation in Light of LHC
Diphoton Excess, Phys. Lett. B757
(2016) 480–492.; DOI:10.1016/j.physletb.2016.04.008
723.R. F. Lang, A. Brown, E. Brown, M. Cervantes, S. Macmullin, D.
Masson, J. Schreiner and H. Simgen, A \(^{220}\)Rn source for the calibration of
low-background experiments, JINST11
(2016) P04004.; DOI:10.1088/1748-0221/11/04/P04004
724.S. Chakraborty, R. S. Hansen, I. Izaguirre and G. Raffelt, Self-induced neutrino flavor conversion without flavor
mixing, JCAP03 (2016) 042.; DOI:10.1088/1475-7516/2016/03/042
725.E. Akhmedov and A. Mirizzi, Another look at
synchronized neutrino oscillations, Nucl. Phys. B908 (2016) 382–407.; DOI:10.1016/j.nuclphysb.2016.02.011
726.M. Agostini et al., Flux Modulations seen by
the Muon Veto of the GERDA Experiment, Astropart. Phys.84 (2016) 29–35.; DOI:10.1016/j.astropartphys.2016.08.002
727.P. S. B. Dev and A. Ibarra, Heavy Neutrinos at
Future Colliders, (G. Corcella, S. De Curtis, S. Moretti, &
G. Pancheri, Eds.)Frascati Phys. Ser.61
(2016) 40.; Retrieved from https://arxiv.org/abs/1601.01658
728.A. Ibarra, C. E. Yaguna and O. Zapata, Direct
Detection of Fermion Dark Matter in the Radiative Seesaw Model,
Phys. Rev. D93 (2016) 035012.; DOI:10.1103/PhysRevD.93.035012
729.A. Caminata et al., Search for sterile
neutrinos with the SOX experiment, Nuovo Cim. C39 (2016) 236.; DOI:10.1393/ncc/i2016-16236-7
730.S. Marcocci et al., Measurement of solar
neutrino fluxes with Borexino, Magellan
Workshop: Connecting Neutrino Physics and
Astronomy (pp. 95–104).; DOI:10.3204/DESY-PROC-2016-05/30
731.A. Caminata et al., Monte Carlo simulations in
neutrino physics: the example of the SOX experiment,
Magellan Workshop: Connecting
Neutrino Physics and Astronomy (pp. 105–112).; DOI:10.3204/DESY-PROC-2016-05/21
732.A. Caminata et al., The SOX experiment:
understanding the detector behavior using calibration sources,
Magellan Workshop: Connecting
Neutrino Physics and Astronomy (pp. 175–180).; DOI:10.3204/DESY-PROC-2016-05/22
733.K. Altenmüller et al., The search for sterile
neutrinos with SOX-Borexino, Phys. Atom. Nucl.79 (2016) 1481–1484.; DOI:10.1134/S106377881610001X
734.J. Kersten and A. Yu. Smirnov, Decoherence and
oscillations of supernova neutrinos, Eur. Phys. J. C76 (2016) 339.; DOI:10.1140/epjc/s10052-016-4187-5
735.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Quark Seesaw, Vectorlike Fermions and Diphoton
Excess, JHEP02 (2016) 186.; DOI:10.1007/JHEP02(2016)186
736.E. Aprile et al., Physics reach of the XENON1T
dark matter experiment, JCAP04 (2016)
027.; DOI:10.1088/1475-7516/2016/04/027
737.Y. Abe et al., Muon capture on light isotopes
measured with the Double Chooz detector, Phys. Rev. C93 (2016) 054608.; DOI:10.1103/PhysRevC.93.054608
738.B. C. Allanach, P. S. B. Dev, S. A. Renner and K. Sakurai, 750 GeV diphoton excess explained by a resonant sneutrino
in R-parity violating supersymmetry, Phys. Rev. D93 (2016) 115022.; DOI:10.1103/PhysRevD.93.115022
739.C. Buck, The Double Chooz experiment,
PoSNEUTEL2015 (2015) 015.; DOI:10.22323/1.244.0015
740.P. S. B. Dev and D. Teresi, Asymmetric dark
matter in the Sun and diphoton excess at the LHC, Phys. Rev.
D94 (2016) 025001.; DOI:10.1103/PhysRevD.94.025001
741.C. Buck, A. P. Collin, J. Haser and M. Lindner, Investigating the Spectral Anomaly with Different Reactor
Antineutrino Experiments, Phys. Lett. B765 (2017) 159–162.; DOI:10.1016/j.physletb.2016.11.062
742.A. Y. Smirnov, Neutrino properties, mass
hierarchy, and CP-violation, PoSICRC2015 (2016) 004.; DOI:10.22323/1.236.0004
743.G. Bambhaniya, P. S. B. Dev, S. Goswami and M. Mitra, The Scalar Triplet Contribution to Lepton Flavour
Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric
Model, JHEP04 (2016) 046.; DOI:10.1007/JHEP04(2016)046
744.B. Allanach, F. S. Queiroz, A. Strumia and S. Sun, \(Z′\) models for the
LHCb and \(g-2\) muon anomalies,
Phys. Rev. D93 (2016) 055045.; DOI:10.1103/PhysRevD.93.055045
745.M. Lindner, H. H. Patel and B. Radovčić, Electroweak Absolute, Meta-, and Thermal Stability in
Neutrino Mass Models, Phys. Rev. D93
(2016) 073005.; DOI:10.1103/PhysRevD.93.073005
746.F. S. Queiroz and C. E. Yaguna, The CTA aims at
the Inert Doublet Model, JCAP02 (2016)
038.; DOI:10.1088/1475-7516/2016/02/038
747.L. Miramonti et al., Geo-neutrinos from 1353
Days with the Borexino Detector, (F. Avignone & W. Haxton,
Eds.)Phys. Procedia61 (2015) 340–344.; DOI:10.1016/j.phpro.2014.12.073
748.O. Smirnov et al., Short Distance Neutrino
Oscillations with BoreXino: SOX, (F. Avignone & W. Haxton,
Eds.)Phys. Procedia61 (2015) 511–517.; DOI:10.1016/j.phpro.2014.12.115
749.Y. Abe et al., Measurement of \(\theta\)\(_{13}\) in Double Chooz using neutron
captures on hydrogen with novel background rejection techniques,
JHEP01 (2016) 163.; DOI:10.1007/JHEP01(2016)163
750.M. Duerr, P. Fileviez Pérez and J. Smirnov, Gamma-Ray Excess and the Minimal Dark Matter
Model, JHEP06 (2016) 008.; DOI:10.1007/JHEP06(2016)008
751.C. E. Yaguna, Singlet-Doublet Dirac Dark Matter,
Phys. Rev. D92 (2015) 115002.; DOI:10.1103/PhysRevD.92.115002
752.M. Lindner, W. Rodejohann and X.-J. Xu, Sterile
neutrinos in the light of IceCube, JHEP01 (2016) 124.; DOI:10.1007/JHEP01(2016)124
753.A. Esmaili and A. Yu. Smirnov, Discrete
symmetries and mixing of Dirac neutrinos, Phys. Rev. D92 (2015) 093012.; DOI:10.1103/PhysRevD.92.093012
754.M. G. Baring, T. Ghosh, F. S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf
Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D93 (2016) 103009.; DOI:10.1103/PhysRevD.93.103009
755.T. Marrodán Undagoitia and L. Rauch, Dark
matter direct-detection experiments, J. Phys. G43 (2016) 013001.; DOI:10.1088/0954-3899/43/1/013001
756.G. Boireau et al., Online Monitoring of the
Osiris Reactor with the Nucifer Neutrino Detector, Phys. Rev.
D93 (2016) 112006.; DOI:10.1103/PhysRevD.93.112006
757.W. Rodejohann and C. E. Yaguna, Scalar dark
matter in the B\(-\)L model,
JCAP12 (2015) 032.; DOI:10.1088/1475-7516/2015/12/032
758.M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar Dark Matter: Direct vs. Indirect Detection,
JHEP06 (2016) 152.; DOI:10.1007/JHEP06(2016)152
759.W. Rodejohann and X.-J. Xu, A leftright
symmetric flavor symmetry model, Eur. Phys. J. C76 (2016) 138.; DOI:10.1140/epjc/s10052-016-3992-1
760.C. Buck, B. Gramlich and S. Wagner, Light
propagation and fluorescence quantum yields in liquid
scintillators, JINST10 (2015) P09007.;
DOI:10.1088/1748-0221/10/09/P09007
762.M. Agostini et al., A test of electric charge
conservation with Borexino, Phys. Rev. Lett.115 (2015) 231802.; DOI:10.1103/PhysRevLett.115.231802
763.S.-F. Ge, M. Lindner and S. Patra, New physics
effects on neutrinoless double beta decay from right-handed
current, JHEP10 (2015) 077.; DOI:10.1007/JHEP10(2015)077
764.Y. Mambrini, S. Profumo and F. S. Queiroz, Dark
Matter and Global Symmetries, Phys. Lett. B760 (2016) 807–815.; DOI:10.1016/j.physletb.2016.07.076
765.F. F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N.
Sahu and U. Sarkar, Reconciling the 2 TeV excesses
at the LHC in a linear seesaw left-right model, Phys. Rev.
D93 (2016) 013011.; DOI:10.1103/PhysRevD.93.013011
766.P. Mosteiro et al., Low-energy (anti)neutrino
physics with Borexino: Neutrinos from the primary proton-proton fusion
process in the Sun, (P. Bernardini, G. Fogli, & E. Lisi,
Eds.)Nucl. Part. Phys. Proc.265-266 (2015)
87–92.; DOI:10.1016/j.nuclphysbps.2015.06.023
767.W. Rodejohann and X.-J. Xu, Robustness of
neutrino mass matrix predictions, Nucl. Phys. B899 (2015) 463–475.; DOI:10.1016/j.nuclphysb.2015.08.014
768.M. Duerr, P. Fileviez Perez and J. Smirnov, Scalar Singlet Dark Matter and Gamma Lines,
Phys. Lett. B751 (2015) 119–122.; DOI:10.1016/j.physletb.2015.10.034
769.M. L. di Vacri, S. Nisi, C. Cattadori, J. Janicsko, A. Lubashevskiy,
A. Smolnikov and M. Walter, ICP MS selection of
radiopure materials for the GERDA experiment, (J. L. Orrell,
Ed.)AIP Conf. Proc.1672 (2015) 150001.;
DOI:10.1063/1.4928024
770.M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma Lines from Majorana Dark Matter, Phys.
Rev. D93 (2016) 023509.; DOI:10.1103/PhysRevD.93.023509
771.E. Aprile et al., Exclusion of Leptophilic Dark
Matter Models using XENON100 Electronic Recoil Data,
Science349 (2015) 851–854.; DOI:10.1126/science.aab2069
772.E. Aprile et al., Search for Event Rate
Modulation in XENON100 Electronic Recoil Data, Phys. Rev.
Lett.115 (2015) 091302.; DOI:10.1103/PhysRevLett.115.091302
773.S.-F. Ge and W. Rodejohann, JUNO and
Neutrinoless Double Beta Decay, Phys. Rev. D92 (2015) 093006.; DOI:10.1103/PhysRevD.92.093006
774.M. Maltoni and A. Yu. Smirnov, Solar neutrinos
and neutrino physics, Eur. Phys. J. A52 (2016) 87.; DOI:10.1140/epja/i2016-16087-0
775.G. Bellini et al., Neutrino measurements from
the Sun and Earth: Results from Borexino, (E. Kearns, Ed.)AIP
Conf. Proc.1666 (2015) 090002.; DOI:10.1063/1.4915567
776.P. O. Ludl and A. Yu. Smirnov, Lepton mixing
from the hidden sector, Phys. Rev. D92
(2015) 073010.; DOI:10.1103/PhysRevD.92.073010
777.H.-J. He, W. Rodejohann and X.-J. Xu, Origin of
Constrained Maximal CP Violation in Flavor Symmetry, Phys.
Lett. B751 (2015) 586–594.; DOI:10.1016/j.physletb.2015.10.066
778.G. Heusser, M. Weber, J. Hakenmüller, M. Laubenstein, M. Lindner, W.
Maneschg, H. Simgen, D. Stolzenburg and H. Strecker, GIOVE - A new detector setup for high sensitivity
germanium spectroscopy at shallow depth, Eur. Phys. J. C75 (2015) 531.; DOI:10.1140/epjc/s10052-015-3704-2
779.O. Yu. Smirnov et al., Measurement of neutrino
flux from the primary protonproton fusion process in the Sun with
Borexino detector, Phys. Part. Nucl.47
(2016) 995–1002.; DOI:10.1134/S106377961606023X
780.J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark
Matter, Phys. Rev. Lett.115 (2015)
121804.; DOI:10.1103/PhysRevLett.115.121804
781.A. J. Long, H. H. Patel and M. Trodden, Electroweak vacuum angle at finite temperature and
implications for baryogenesis, Phys. Rev. D92 (2015) 043513.; DOI:10.1103/PhysRevD.92.043513
782.H. Päs and W. Rodejohann, Neutrinoless Double Beta
Decay, New J. Phys.17 (2015) 115010.;
DOI:10.1088/1367-2630/17/11/115010
783.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dirac-fermionic dark matter in U(1)\(_{X}\) models, JHEP10 (2015) 076.; DOI:10.1007/JHEP10(2015)076
784.J. Evslin, S.-F. Ge and K. Hagiwara, The
leptonic CP phase from T2(H)K and \(\mu\)\(^{+}\) decay at rest, JHEP02 (2016) 137.; DOI:10.1007/JHEP02(2016)137
785.M. Duerr, P. Fileviez Perez and J. Smirnov, Simplified Dirac Dark Matter Models and Gamma-Ray
Lines, Phys. Rev. D92 (2015) 083521.;
DOI:10.1103/PhysRevD.92.083521
786.M. Agostini et al., Spectroscopy of
geoneutrinos from 2056 days of Borexino data, Phys. Rev.
D92 (2015) 031101.; DOI:10.1103/PhysRevD.92.031101
787.M. Agostini et al., Limit on Neutrinoless
Double Beta Decay of \(^{76}\)Ge by
GERDA, (F. Avignone & W. Haxton, Eds.)Phys. Procedia61 (2015) 828–837.; DOI:10.1016/j.phpro.2015.06.002
788.S. Patra, F. S. Queiroz and W. Rodejohann, Stringent Dilepton Bounds on Left-Right Models using LHC
data, Phys. Lett. B752 (2016)
186–190.; DOI:10.1016/j.physletb.2015.11.009
789.M. Agostini et al., \(2\nu\beta\beta\) decay of \(^{76}\)Ge into excited states with GERDA
Phase I, J. Phys. G42 (2015) 115201.;
DOI:10.1088/0954-3899/42/11/115201
790.J. Abdallah et al., Simplified Models for Dark
Matter Searches at the LHC, Phys. Dark Univ.9-10 (2015) 8–23.; DOI:10.1016/j.dark.2015.08.001
791.S. Ohmer and H. H. Patel, Leptobaryons as
Majorana Dark Matter, Phys. Rev. D92
(2015) 055020.; DOI:10.1103/PhysRevD.92.055020
792.P. P. Povinec et al., Reference material for
natural radionuclides in glass designed for underground
experiments, J. Radioanal. Nucl. Chem.307 (2016) 619–626.; DOI:10.1007/s10967-015-4202-6
793.P. Humbert, M. Lindner, S. Patra and J. Smirnov, Lepton Number Violation within the Conformal Inverse
Seesaw, JHEP09 (2015) 064.; DOI:10.1007/JHEP09(2015)064
794.M. Salathe and T. Kihm, Optimized digital
filtering techniques for radiation detection with HPGe detectors,
Nucl. Instrum. Meth. A808 (2016) 150–155.;
DOI:10.1016/j.nima.2015.11.051
795.E. Aprile et al., Lowering the radioactivity of
the photomultiplier tubes for the XENON1T dark matter experiment,
Eur. Phys. J. C75 (2015) 546.; DOI:10.1140/epjc/s10052-015-3657-5
796.L. Ludhova et al., Geo-neutrinos and
Borexino, Phys. Part. Nucl.46 (2015)
174–181.; DOI:10.1134/S1063779615020148
797.P. Humbert, M. Lindner and J. Smirnov, The
Inverse Seesaw in Conformal Electro-Weak Symmetry Breaking and
Phenomenological Consequences, JHEP06
(2015) 035.; DOI:10.1007/JHEP06(2015)035
798.W. Maneschg, Review of neutrinoless double beta
decay experiments: Present status and near future, (A. Stahl
& I. M. Nugent, Eds.)Nucl. Part. Phys. Proc.260 (2015) 188–193.; DOI:10.1016/j.nuclphysbps.2015.02.039
799.M. Ahmad et al., CEPC-SPPC Preliminary
Conceptual Design Report. 1. Physics and Detector (2015).
800.M. Agostini et al., Improvement of the energy
resolution via an optimized digital signal processing in GERDA Phase
I, Eur. Phys. J. C75 (2015) 255.;
DOI:10.1140/epjc/s10052-015-3409-6
801.M. Agostini et al., LArGe: active background
suppression using argon scintillation for the Gerda \(0\nu \beta \beta\) -experiment,
Eur. Phys. J. C75 (2015) 506.; DOI:10.1140/epjc/s10052-015-3681-5
802.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dark Matter Complementarity and the Z\(^\prime\) Portal, Phys. Rev.
D92 (2015) 083004.; DOI:10.1103/PhysRevD.92.083004
803.B. Allanach, A. Alves, F. S. Queiroz, K. Sinha and A. Strumia, Interpreting the CMS \(\ell^+\ell^- jj E\!\!\!\!/_{\rm T}\) Excess
with a Leptoquark Model, Phys. Rev. D92 (2015) 055023.; DOI:10.1103/PhysRevD.92.055023
804.W. Rodejohann and X.-J. Xu, Origin of Symmetric
PMNS and CKM Matrices, Phys. Rev. D91
(2015) 056004.; DOI:10.1103/PhysRevD.91.056004
805.M. Agostini et al., Results on \(\beta \beta\) decay with emission of two
neutrinos or Majorons in\(^{76}\) Ge
from GERDA Phase I, Eur. Phys. J. C75
(2015) 416.; DOI:10.1140/epjc/s10052-015-3627-y
806.P. Fileviez Perez, New Paradigm for Baryon and
Lepton Number Violation, Phys. Rept.597 (2015) 1–30.; DOI:10.1016/j.physrep.2015.09.001
807.B. Povh, K. Rith, C. Scholz, F. Zetsche and W. Rodejohann, Particles and Nuclei. An Introduction to the Physical
Concepts, Graduate texts in physics.; DOI:10.1007/978-3-662-46321-5
808.L. Di Noto et al., The SOX experiment in the
neutrino physics, Nuovo Cim. C38
(2015) 36.; DOI:10.1393/ncc/i2015-15036-y
809.S. Patra, N. Sahoo and N. Sahu, Dipolar dark
matter in light of the 3.5 keV x-ray line, neutrino mass, and LUX
data, Phys. Rev. D91 (2015) 115013.;
DOI:10.1103/PhysRevD.91.115013
810.J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs \(\mu\)\(\tau\) in Abelian and non-Abelian flavor
symmetry models, Nucl. Phys. B896
(2015) 281–310.; DOI:10.1016/j.nuclphysb.2015.04.025
811.E. Akhmedov, Majorana neutrinos and other
Majorana particles:Theory and experiment.; Retrieved from https://arxiv.org/abs/1412.3320
813.J. Smirnov, Gauge-Invariant Average of Einstein
Equations for finite Volumes (2014).; Retrieved from https://arxiv.org/abs/1410.6480
814.N. Bozorgnia and T. Schwetz, What is the
probability that direct detection experiments have observed Dark
Matter?, JCAP12 (2014) 015.; DOI:10.1088/1475-7516/2014/12/015
815.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, LHC Tests of Light Neutralino Dark Matter without Light
Sfermions, JHEP11 (2014) 106.; DOI:10.1007/JHEP11(2014)106
816.O. Smirnov et al., Solar neutrino with
Borexino: results and perspectives, Phys. Part. Nucl.46 (2015) 166–173.; DOI:10.1134/S1063779615020185
817.M. Agostini et al., Production,
characterization and operation of \(^{76}\)Ge enriched BEGe detectors in
GERDA, Eur. Phys. J. C75 (2015) 39.;
DOI:10.1140/epjc/s10052-014-3253-0
818.M. Duerr and P. Fileviez Perez, Theory for
Baryon Number and Dark Matter at the LHC, Phys. Rev. D91 (2015) 095001.; DOI:10.1103/PhysRevD.91.095001
819.S. Benic and B. Radovcic, Majorana dark matter
in a classically scale invariant model, JHEP01 (2015) 143.; DOI:10.1007/JHEP01(2015)143
821.S.-F. Ge, The Georgi Algorithms of Jet
Clustering, JHEP05 (2015) 066.; DOI:10.1007/JHEP05(2015)066
822.J. Kopp and J. Welter, The Not-So-Sterile 4th
Neutrino: Constraints on New Gauge Interactions from Neutrino
Oscillation Experiments, JHEP12 (2014)
104.; DOI:10.1007/JHEP12(2014)104
823.Y. Abe et al., Ortho-positronium observation in
the Double Chooz Experiment, JHEP10
(2014) 032.; DOI:10.1007/JHEP10(2014)032
824.T. Marrodán Undagoitia, Liquid noble gases for
direct dark matter searches, PoSTIPP2014 (2014) 011.; DOI:10.22323/1.213.0011
825.X.-J. Xu, H.-J. He and W. Rodejohann, Constraining Astrophysical Neutrino Flavor Composition
from Leptonic Unitarity, JCAP12 (2014)
039.; DOI:10.1088/1475-7516/2014/12/039
826.W. Rodejohann and H. Zhang, Signatures of Extra
Dimensional Sterile Neutrinos, Phys. Lett. B737 (2014) 81–89.; DOI:10.1016/j.physletb.2014.08.035
827.T. I. Banks et al., A compact ultra-clean
system for deploying radioactive sources inside the KamLAND
detector, Nucl. Instrum. Meth. A769
(2015) 88–96.; DOI:10.1016/j.nima.2014.09.068
828.Y. Abe et al., Improved measurements of the
neutrino mixing angle \(\theta_{13}\)
with the Double Chooz detector, JHEP10
(2014) 086.; DOI:10.1007/JHEP02(2015)074
829.J. Kopp and M. Nardecchia, Flavor and CP
violation in Higgs decays, JHEP10
(2014) 156.; DOI:10.1007/JHEP10(2014)156
830.E. Aprile et al., Conceptual design and
simulation of a water Cherenkov muon veto for the XENON1T
experiment, JINST9 (2014) P11006.;
DOI:10.1088/1748-0221/9/11/P11006
831.D. D’Angelo et al., Recent Borexino results and
prospects for the near future, (L. Bravina, Y. Foka, & S.
Kabana, Eds.)EPJ Web Conf.126 (2016) 02008.;
DOI:10.1051/epjconf/201612602008
832.E. Akhmedov, J. Kopp and M. Lindner, Decoherence by wave packet separation and collective
neutrino oscillations (2014).; Retrieved from https://arxiv.org/abs/1405.7275
833.I. Girardi, D. Meloni, T. Ohlsson, H. Zhang and S. Zhou,
Constraining Sterile Neutrinos Using Reactor Neutrino
Experiments, JHEP08 (2014) 057.;
DOI:10.1007/JHEP08(2014)057
834.Y. Abe et al., Precision Muon Reconstruction in
Double Chooz, Nucl. Instrum. Meth. A764 (2014) 330–339.; DOI:10.1016/j.nima.2014.07.058
835.M. Lindner, S. Schmidt and J. Smirnov, Neutrino
Masses and Conformal Electro-Weak Symmetry Breaking,
JHEP10 (2014) 177.; DOI:10.1007/JHEP10(2014)177
836.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, A lower bound on light neutralino dark matter from LHC
data, 49th Rencontres de Moriond on
Electroweak Interactions and Unified Theories (pp.
205–2010).; Retrieved from https://arxiv.org/abs/1405.3884
837.N. Bozorgnia and T. Schwetz, Is the effect of
the Sun’s gravitational potential on dark matter particles
observable?, JCAP08 (2014) 013.;
DOI:10.1088/1475-7516/2014/08/013
838.P. Fileviez Perez and S. Ohmer, Low Scale
Unification of Gauge Interactions, Phys. Rev. D90 (2014) 037701.; DOI:10.1103/PhysRevD.90.037701
839.J. Kubo, K. S. Lim and M. Lindner, Gamma-ray
Line from Nambu-Goldstone Dark Matter in a Scale Invariant Extension of
the Standard Model, JHEP09 (2014)
016.; DOI:10.1007/JHEP09(2014)016
840.J. Barry, J. Heeck and W. Rodejohann, Sterile
neutrinos and right-handed currents in KATRIN, JHEP07 (2014) 081.; DOI:10.1007/JHEP07(2014)081
841.E. Aprile et al., First Axion Results from the
XENON100 Experiment, Phys. Rev. D90
(2014) 062009.; DOI:10.1103/PhysRevD.90.062009
842.A. Greljo, J. F. Kamenik and J. Kopp, Disentangling Flavor Violation in the Top-Higgs Sector at
the LHC, JHEP07 (2014) 046.; DOI:10.1007/JHEP07(2014)046
843.B. Dasgupta and A. Yu. Smirnov, Leptonic CP
Violation Phases, Quark-Lepton Similarity and Seesaw Mechanism,
Nucl. Phys. B884 (2014) 357–378.; DOI:10.1016/j.nuclphysb.2014.05.001
844.P. Fileviez Perez, S. Ohmer and H. H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett.
B735 (2014) 283–287.; DOI:10.1016/j.physletb.2014.06.057
845.J. Kubo, K. S. Lim and M. Lindner, Electroweak
Symmetry Breaking via QCD, Phys. Rev. Lett.113 (2014) 091604.; DOI:10.1103/PhysRevLett.113.091604
846.A. Yu. Smirnov, Theory of neutrino masses and
mixing, Nuovo Cim. C037 (2014) 29–37.;
DOI:10.1393/ncc/i2014-11761-y
847.P. Fileviez Perez and H. H. Patel, The Electroweak Vacuum
Angle, Phys. Lett. B732 (2014)
241–243.; DOI:10.1016/j.physletb.2014.03.064
848.D. Adey et al., Light Sterile Neutrino
Sensitivity at the nuSTORM Facility, Phys. Rev. D89 (2014) 071301.; DOI:10.1103/PhysRevD.89.071301
849.W. Rodejohann and H. Zhang, Reducing \(\theta_{13}\) to \(9^\circ\), Phys. Lett. B732 (2014) 174–181.; DOI:10.1016/j.physletb.2014.03.040
850.D. Schmidt, T. Schwetz and H. Zhang, Status of
the ZeeBabu model for neutrino mass and possible tests at a like-sign
linear collider, Nucl. Phys. B885
(2014) 524–541.; DOI:10.1016/j.nuclphysb.2014.05.024
851.J. Smirnov, Regularization of Vacuum
Fluctuations and Frame Dependence (2014).; Retrieved from https://arxiv.org/abs/1402.1490
852.P. Fileviez Perez and S. Spinner, Higgs mass
and the Stueckelberg mechanism in supersymmetry, Phys. Rev.
D89 (2014) 095004.; DOI:10.1103/PhysRevD.89.095004
853.J. Kopp, L. Michaels and J. Smirnov, Loopy
Constraints on Leptophilic Dark Matter and Internal
Bremsstrahlung, JCAP04 (2014) 022.;
DOI:10.1088/1475-7516/2014/04/022
854.Y. Abe et al., Background-independent
measurement of \(\theta_{13}\) in
Double Chooz, Phys. Lett. B735 (2014)
51–56.; DOI:10.1016/j.physletb.2014.04.045
855.C.-Y. Seng, J. de Vries, E. Mereghetti, H. H. Patel and M.
Ramsey-Musolf, Nucleon electric dipole moments and
the isovector parity- and time-reversal-odd pionnucleon coupling,
Phys. Lett. B736 (2014) 147–153.; DOI:10.1016/j.physletb.2014.07.014
856.N. Neitz, N. Kumar, F. Mackenroth, K. Z. Hatsagortsyan, C. H. Keitel
and A. Di Piazza, Novel aspects of radiation
reaction in the classical and the quantum regime, J. Phys.
Conf. Ser.497 (2014) 012015.; DOI:10.1088/1742-6596/497/1/012015
857.H. Simgen, G. Heusser, M. Laubenstein and G. Zuzel, Analysis of radioactive trace impurities with \(\mu\)Bq-sensitivity in Borexino,
Int. J. Mod. Phys. A29 (2014) 1442009.;
DOI:10.1142/S0217751X14420093
858.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Sensitivity of oscillation experiments to the neutrino
mass hierarchy, 49th Rencontres de
Moriond on Electroweak Interactions and Unified Theories
(pp. 121–128).
859.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov,
Impact of TeV-scale sterile neutrinos on precision
low-energy observables, 49th Rencontres
de Moriond on Electroweak Interactions and Unified Theories
(pp. 389–394).
860.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov,
Improving electroweak fit with TeV-scale sterile
neutrinos, 18th International Seminar on
High Energy Physics.
861.L. F. Rauch, Detector characterization,
electronic-recoil energy scale and astrophysical independent results in
XENON100 (Master’s thesis). Heidelberg U.
862.P. Fileviez Pérez and H. H. Patel, Baryon
Asymmetry, Dark Matter and Local Baryon Number, Phys. Lett.
B731 (2014) 232–235.; DOI:10.1016/j.physletb.2014.02.047
863.K. S. Babu et al., Working Group Report: Baryon Number
Violation, Snowmass 2013: Snowmass on the Mississippi.; Retrieved from
https://arxiv.org/abs/1311.5285
864.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to
the neutrino mass ordering, JHEP03
(2014) 028.; DOI:10.1007/JHEP03(2014)028
865.E. Aprile et al., Observation and applications
of single-electron charge signals in the XENON100 experiment,
J. Phys. G41 (2014) 035201.; DOI:10.1088/0954-3899/41/3/035201
866.G. Bellini et al., New limits on heavy sterile
neutrino mixing in B8 decay obtained with the Borexino detector,
Phys. Rev. D88 (2013) 072010.; DOI:10.1103/PhysRevD.88.072010
867.J. M. Arnold, P. Fileviez Pérez, B. Fornal and S. Spinner, B and L at the supersymmetry scale, dark matter, and
R-parity violation, Phys. Rev. D88
(2013) 115009.; DOI:10.1103/PhysRevD.88.115009
868.M. Lindner, D. Schmidt and A. Watanabe, Dark
matter and U(1)’ symmetry for the right-handed neutrinos,
Phys. Rev. D89 (2014) 013007.; DOI:10.1103/PhysRevD.89.013007
869.B. Dasgupta and J. Kopp, Cosmologically Safe
eV-Scale Sterile Neutrinos and Improved Dark Matter Structure,
Phys. Rev. Lett.112 (2014) 031803.; DOI:10.1103/PhysRevLett.112.031803
870.T. Ohlsson, H. Zhang and S. Zhou, Nonstandard
interaction effects on neutrino parameters at medium-baseline reactor
antineutrino experiments, Phys. Lett. B728 (2014) 148–155.; DOI:10.1016/j.physletb.2013.11.052
871.M. Holthausen, J. Kubo, K. S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly
Coupled Hidden Sector, JHEP12 (2013)
076.; DOI:10.1007/JHEP12(2013)076
872.N. Bozorgnia, R. Catena and T. Schwetz, Anisotropic dark matter distribution functions and impact
on WIMP direct detection, JCAP12
(2013) 050.; DOI:10.1088/1475-7516/2013/12/050
873.L. Baudis, A. Ferella, A. Kish, A. Manalaysay, T. Marrodan
Undagoitia and M. Schumann, Neutrino physics with
multi-ton scale liquid xenon detectors, JCAP01 (2014) 044.; DOI:10.1088/1475-7516/2014/01/044
874.M. Duerr and P. Fileviez Perez, Baryonic Dark Matter,
Phys. Lett. B732 (2014) 101–104.; DOI:10.1016/j.physletb.2014.03.011
875.S. Lindemann and H. Simgen, Krypton assay in
xenon at the ppq level using a gas chromatographic system and mass
spectrometer, Eur. Phys. J. C74 (2014)
2746.; DOI:10.1140/epjc/s10052-014-2746-1
876.W. Maneschg, GERDA phase II detectors: Behind
the production and characterisation at low background conditions,
(L. Miramonti & L. Pandola, Eds.)AIP Conf. Proc.1549 (2013) 54–57.; DOI:10.1063/1.4818075
877.G. Bellini et al., Final results of Borexino
Phase-I on low energy solar neutrino spectroscopy, Phys. Rev.
D89 (2014) 112007.; DOI:10.1103/PhysRevD.89.112007
878.P. Fileviez Perez and S. Spinner, Supersymmetry
at the LHC and The Theory of R-parity, Phys. Lett. B728 (2014) 489–495.; DOI:10.1016/j.physletb.2013.12.022
879.D. Adey et al., nuSTORM - Neutrinos from STORed
Muons: Proposal to the Fermilab PAC (2013).; Retrieved from https://arxiv.org/abs/1308.6822
880.L. Lavoura, W. Rodejohann and A. Watanabe, Reproducing lepton mixing in a texture zero model,
Phys. Lett. B726 (2013) 352–355.; DOI:10.1016/j.physletb.2013.08.074
881.P. Fileviez Perez and M. B. Wise, Low Scale Quark-Lepton
Unification, Phys. Rev. D88 (2013)
057703.; DOI:10.1103/PhysRevD.88.057703
882.M. Agostini et al., Results on Neutrinoless
Double-\(\beta\) Decay of \(^{76}\)Ge from Phase I of the GERDA
Experiment, Phys. Rev. Lett.111 (2013)
122503.; DOI:10.1103/PhysRevLett.111.122503
883.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, Cornering light Neutralino Dark Matter at the LHC,
JHEP10 (2013) 132.; DOI:10.1007/JHEP10(2013)132
884.M. Agostini et al., Pulse shape discrimination
for GERDA Phase I data, Eur. Phys. J. C73 (2013) 2583.; DOI:10.1140/epjc/s10052-013-2583-7
886.S. Antusch, M. Holthausen, M. A. Schmidt and M. Spinrath, Solving the Strong CP Problem with Discrete Symmetries
and the Right Unitarity Triangle, Nucl. Phys. B877 (2013) 752–771.; DOI:10.1016/j.nuclphysb.2013.10.028
887.M. Agostini et al., The background in the \(0 \nu \beta \beta\) experiment
GERDA, Eur. Phys. J. C74 (2014) 2764.;
DOI:10.1140/epjc/s10052-014-2764-z
888.A. Dueck and W. Rodejohann, Fits to SO(10)
Grand Unified Models, JHEP09 (2013)
024.; DOI:10.1007/JHEP09(2013)024
889.M. Holthausen and K. S. Lim, Quark and Leptonic
Mixing Patterns from the Breakdown of a Common Discrete Flavor
Symmetry, Phys. Rev. D88 (2013)
033018.; DOI:10.1103/PhysRevD.88.033018
890.M. Blennow and T. Schwetz, Determination of the
neutrino mass ordering by combining PINGU and Daya Bay II,
JHEP09 (2013) 089.; DOI:10.1007/JHEP09(2013)089
891.A. Merle, V. Niro and D. Schmidt, New
Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of
Frozen-In Scalars, JCAP03 (2014) 028.;
DOI:10.1088/1475-7516/2014/03/028
892.E. Aprile et al., The neutron background of the
XENON100 dark matter search experiment, J. Phys. G40 (2013) 115201.; DOI:10.1088/0954-3899/40/11/115201
893.M. Duerr, P. Fileviez Perez and M. Lindner, Left-Right Symmetric Theory with Light Sterile
Neutrinos, Phys. Rev. D88 (2013)
051701.; DOI:10.1103/PhysRevD.88.051701
894.J. Heeck and W. Rodejohann, Neutrinoless Quadruple Beta
Decay, EPL103 (2013) 32001.; DOI:10.1209/0295-5075/103/32001
895.P. Fileviez Perez, On the Origin of R-parity
Violation in Supersymmetry, Int. J. Mod. Phys. A28 (2013) 1330024.; DOI:10.1142/S0217751X1330024X
896.N. Bozorgnia, J. Herrero-Garcia, T. Schwetz and J. Zupan, Halo-independent methods for inelastic dark matter
scattering, JCAP07 (2013) 049.; DOI:10.1088/1475-7516/2013/07/049
897.D. Adey et al., Neutrinos from Stored Muons
nuSTORM: Expression of Interest (2013).; Retrieved from https://arxiv.org/abs/1305.1419
898.P. S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, Constraining Neutrino Mass from Neutrinoless Double Beta
Decay, Phys. Rev. D88 (2013) 091301.;
DOI:10.1103/PhysRevD.88.091301
899.G. Bellini et al., SOX: Short distance neutrino
Oscillations with BoreXino, JHEP08
(2013) 038.; DOI:10.1007/JHEP08(2013)038
900.P.-H. Gu, Parity: from strong CP problem to
dark matter, neutrino masses and baryon asymmetry (2013).;
Retrieved from https://arxiv.org/abs/1304.7647
901.G. Bellini et al., Cosmogenic Backgrounds in
Borexino at 3800 m water-equivalent depth, JCAP08 (2013) 049.; DOI:10.1088/1475-7516/2013/08/049
903.T. Frossard, A. Kartavtsev and D. Mitrouskas, Systematic approach to \(\Delta\)L=1 processes in thermal
leptogenesis, Phys. Rev. D87 (2013)
125006.; DOI:10.1103/PhysRevD.87.125006
904.E. Aprile et al., Response of the XENON100 Dark
Matter Detector to Nuclear Recoils, Phys. Rev. D88 (2013) 012006.; DOI:10.1103/PhysRevD.88.012006
905.J. Kopp, Constraints on dark matter
annihilation from AMS-02 results, Phys. Rev. D88 (2013) 076013.; DOI:10.1103/PhysRevD.88.076013
906.M. Duerr, P. Fileviez Perez and M. B. Wise, Gauge Theory for Baryon and Lepton Numbers with
Leptoquarks, Phys. Rev. Lett.110
(2013) 231801.; DOI:10.1103/PhysRevLett.110.231801
907.D. Budjas et al., Isotopically modified Ge
detectors for \sc Gerda: from production to
operation, JINST8 (2013) P04018.;
DOI:10.1088/1748-0221/8/04/P04018
908.P.-H. Gu, Mirror symmetry: from active and
sterile neutrino masses to baryonic and dark matter asymmetries,
Nucl. Phys. B874 (2013) 158–176.; DOI:10.1016/j.nuclphysb.2013.05.013
909.T. Ohlsson, H. Zhang and S. Zhou, Effects of
nonstandard neutrino interactions at PINGU, Phys. Rev. D88 (2013) 013001.; DOI:10.1103/PhysRevD.88.013001
910.J. Barry and W. Rodejohann, Lepton number and
flavour violation in TeV-scale left-right symmetric theories with large
left-right mixing, JHEP09 (2013) 153.;
DOI:10.1007/JHEP09(2013)153
911.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Sterile
Neutrino Oscillations: The Global Picture, JHEP05 (2013) 050.; DOI:10.1007/JHEP05(2013)050
912.G. Bellini et al., Measurement of geo-neutrinos
from 1353 days of Borexino, Phys. Lett. B722 (2013) 295–300.; DOI:10.1016/j.physletb.2013.04.030
913.P. Fileviez Perez and M. B. Wise, Baryon
Asymmetry and Dark Matter Through the Vector-Like Portal,
JHEP05 (2013) 094.; DOI:10.1007/JHEP05(2013)094
914.L. Baudis, A. Behrens, A. Ferella, A. Kish, T. Marrodan Undagoitia,
D. Mayani and M. Schumann, Performance of the
Hamamatsu R11410 Photomultiplier Tube in cryogenic Xenon
Environments, JINST8 (2013) P04026.;
DOI:10.1088/1748-0221/8/04/P04026
915.T. R. Edgecock et al., High Intensity Neutrino
Oscillation Facilities in Europe, Phys. Rev. ST Accel.
Beams16 (2013) 021002.; DOI:10.1103/PhysRevSTAB.16.021002
916.E. Andreotti et al., HEROICA: an Underground
Facility for the Fast Screening of Germanium Detectors,
JINST8 (2013) P06012.; DOI:10.1088/1748-0221/8/06/P06012
917.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov,
Improving Electro-Weak Fits with TeV-scale Sterile
Neutrinos, JHEP05 (2013) 081.; DOI:10.1007/JHEP05(2013)081
918.J. Kopp, E. T. Neil, R. Primulando and J. Zupan, From Gamma Ray Line Signals of Dark Matter to the
LHC, Phys. Dark Univ.2 (2013) 22–34.;
DOI:10.1016/j.dark.2013.02.001
919.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, S. Lucht, S.
Roth, M. Schumann, A. Stahl, A. Stüken and C. Wiebusch, Afterpulse Measurements of R7081 Photomultipliers for the
Double Chooz Experiment, JINST8 (2013)
P04029.; DOI:10.1088/1748-0221/8/04/P04029
920.Y. Abe et al., First Measurement of \(\theta_{13}\) from Delayed Neutron Capture
on Hydrogen in the Double Chooz Experiment, Phys. Lett.
B723 (2013) 66–70.; DOI:10.1016/j.physletb.2013.04.050
921.N. Memenga, W. Rodejohann and H. Zhang, \(A_4\) flavor symmetry model for Dirac
neutrinos and sizable \(U_{e3}\), Phys. Rev. D87 (2013) 053021.; DOI:10.1103/PhysRevD.87.053021
922.T. Ohlsson, H. Zhang and S. Zhou, Probing the
leptonic Dirac CP-violating phase in neutrino oscillation
experiments, Phys. Rev. D87 (2013)
053006.; DOI:10.1103/PhysRevD.87.053006
923.P.-H. Gu, Multi-component dark matter with
magnetic moments for Fermi-LAT gamma-ray line, Phys. Dark
Univ.2 (2013) 35–40.; DOI:10.1016/j.dark.2013.03.001
924.E. Aprile et al., Limits on spin-dependent
WIMP-nucleon cross sections from 225 live days of XENON100 data,
Phys. Rev. Lett.111 (2013) 021301.; DOI:10.1103/PhysRevLett.111.021301
925.H. Zhang, Light sterile neutrinos from flavor
symmetries, (A. Blondel, I. Efthymiopoulos, & G. Prior,
Eds.)J. Phys. Conf. Ser.408 (2013) 012029.;
DOI:10.1088/1742-6596/408/1/012029
926.M. Blennow and A. Yu. Smirnov, Neutrino
propagation in matter, Adv. High Energy Phys.2013 (2013) 972485.; DOI:10.1155/2013/972485
927.S. Pascoli and T. Schwetz, Prospects for
neutrino oscillation physics, Adv. High Energy Phys.2013 (2013) 503401.; DOI:10.1155/2013/503401
928.M. Pallavicini et al., Recent results and
future development of Borexino, (T. Kobayashi, M. Nakahata, &
T. Nakaya, Eds.)Nucl. Phys. B Proc. Suppl.235-236 (2013) 55–60.; DOI:10.1016/j.nuclphysbps.2013.03.011
929.T. Schwetz, Status of sterile neutrino
oscillations, (T. Kobayashi, M. Nakahata, & T. Nakaya,
Eds.)Nucl. Phys. B Proc. Suppl.235-236 (2013)
229–235.; DOI:10.1016/j.nuclphysbps.2013.04.015
930.C. O’Shaughnessy et al., High voltage
capacitors for low background experiments, Eur. Phys. J.
C73 (2013) 2445.; DOI:10.1140/epjc/s10052-013-2445-3
931.J. Heeck, Gauged Flavor Symmetries, (P. Bernardini, G.
Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.237-238 (2013) 336–338.; DOI:10.1016/j.nuclphysbps.2013.04.121
932.M. Duerr, Lepton number violating new physics
and neutrinoless double beta decay, (P. Bernardini, G. Fogli,
& E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.237-238 (2013) 24–27.; DOI:10.1016/j.nuclphysbps.2013.04.048
933.A. Ianni et al., Neutrinos from the sun and
from radioactive sources, (P. Bernardini, G. Fogli, & E.
Lisi, Eds.)Nucl. Phys. B Proc. Suppl.237-238
(2013) 77–81.; DOI:10.1016/j.nuclphysbps.2013.04.061
934.D. Franco et al., Solar neutrino results from
Borexino, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl.
Phys. B Proc. Suppl.237-238 (2013) 104–106.;
DOI:10.1016/j.nuclphysbps.2013.04.068
935.C. Buck, The Double Chooz experiment,
PoSEPS-HEP2013 (2013) 514.; DOI:10.22323/1.180.0514
936.T. Ohlsson, H. Zhang and S. Zhou, Leptonic CP
Violation in Neutrino Oscillations, PoSEPS-HEP2013 (2013) 538.; DOI:10.22323/1.180.0538
937.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Global Status of Sterile Neutrino Scenarios,
PoSNeutel2013 (2013) 019.; DOI:10.22323/1.196.0019
938.R. Brugnera et al., Status of the GERDA
experiment, PoSNeutel2013 (2013) 039.;
DOI:10.22323/1.196.0039
940.T. Asaka, S. Eijima and A. Watanabe, Heavy
neutrino search in accelerator-based experiments, JHEP03 (2013) 125.; DOI:10.1007/JHEP03(2013)125
941.G. Bellini et al., Lifetime measurements of
214Po and 212Po with the CTF liquid scintillator detector at
LNGS, Eur. Phys. J. A49 (2013) 92.;
DOI:10.1140/epja/i2013-13092-9
942.M. Holthausen, K. S. Lim and M. Lindner, Lepton
Mixing Patterns from a Scan of Finite Discrete Groups, Phys.
Lett. B721 (2013) 61–67.; DOI:10.1016/j.physletb.2013.02.047
943.M. Agostini et al., Measurement of the
half-life of the two-neutrino double beta decay of Ge-76 with the Gerda
experiment, J. Phys. G40 (2013)
035110.; DOI:10.1088/0954-3899/40/3/035110
944.K. H. Ackermann et al., The GERDA experiment
for the search of \(0\nu\beta\beta\)
decay in \(^{76}\)Ge, Eur.
Phys. J. C73 (2013) 2330.; DOI:10.1140/epjc/s10052-013-2330-0
945.J. Heeck and H. Zhang, Exotic Charges,
Multicomponent Dark Matter and Light Sterile Neutrinos,
JHEP05 (2013) 164.; DOI:10.1007/JHEP05(2013)164
946.P. Fileviez Pérez and S. Spinner, Higgs mass
via type II seesaw mechanism, Phys. Rev. D87 (2013) 031702.; DOI:10.1103/PhysRevD.87.031702
947.T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D.
Mitrouskas, Systematic approach to thermal
leptogenesis, Phys. Rev. D87 (2013)
085009.; DOI:10.1103/PhysRevD.87.085009
948.T. Ohlsson, H. Zhang and S. Zhou, Radiative
corrections to the leptonic Dirac \(CP\)-violating phase, Phys. Rev.
D87 (2013) 013012.; DOI:10.1103/PhysRevD.87.013012
949.J. Heeck and W. Rodejohann, Sterile neutrino
anarchy, Phys. Rev. D87 (2013)
037301.; DOI:10.1103/PhysRevD.87.037301
950.M. Holthausen, M. Lindner and M. A. Schmidt, Lepton flavor at the electroweak scale: A complete \(A_{4}\) model, Phys. Rev. D87 (2013) 033006.; DOI:10.1103/PhysRevD.87.033006
951.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, B. Reinhold and
S. Schonert, PMT Test Facility at MPIK Heidelberg
and Double Chooz Super Vertical Slice, (G. S. Tzanakos,
Ed.)Nucl. Phys. Proc. Supl.229-232 (2012)
456.; DOI:10.1016/j.nuclphysbps.2012.09.093
952.M. Holthausen, M. Lindner and M. A. Schmidt, CP
and Discrete Flavour Symmetries, JHEP04 (2013) 122.; DOI:10.1007/JHEP04(2013)122
953.J. Kopp, New Signals in Dark Matter
Detectors, (M. Mondragón, A. Bashir, D. Delepine, F. Larios, O.
Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J. Phys. Conf.
Ser.485 (2014) 012032.; DOI:10.1088/1742-6596/485/1/012032
954.Y. Abe et al., Direct Measurement of
Backgrounds using Reactor-Off Data in Double Chooz, Phys.
Rev. D87 (2013) 011102.; DOI:10.1103/PhysRevD.87.011102
955.R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs
Decays, JHEP03 (2013) 026.; DOI:10.1007/JHEP03(2013)026
956.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, On the interpretation of IceCube cascade events in terms
of the Glashow resonance (2012).; Retrieved from https://arxiv.org/abs/1209.2422
958.M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at
present precision, JHEP12 (2012) 123.;
DOI:10.1007/JHEP12(2012)123
959.P.-H. Gu, From Dirac neutrino masses to
baryonic and dark matter asymmetries, Nucl. Phys. B872 (2013) 38–61.; DOI:10.1016/j.nuclphysb.2013.03.014
960.P. Fileviez Perez, Baryon and Lepton Numbers:
Life in the Desert, (M. Mondragón, A. Bashir, D. Delepine, F.
Larios, O. Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J.
Phys. Conf. Ser.485 (2014) 012009.; DOI:10.1088/1742-6596/485/1/012009
961.Y. Abe et al., First Test of Lorentz Violation
with a Reactor-based Antineutrino Experiment, Phys. Rev.
D86 (2012) 112009.; DOI:10.1103/PhysRevD.86.112009
962.P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic Uncertainties in Long-Baseline Neutrino
Oscillations for Large \(θ_{13}\), Phys. Rev. D87 (2013) 033004.; DOI:10.1103/PhysRevD.87.033004
963.P. Fileviez Perez and S. Spinner, On the Higgs
Mass and Perturbativity, Phys. Lett. B723 (2013) 371–383.; DOI:10.1016/j.physletb.2013.05.052
964.S. Clesse, L. Lopez-Honorez, C. Ringeval, H. Tashiro and M. H. G.
Tytgat, Background reionization history from
omniscopes, Phys. Rev. D86 (2012)
123506.; DOI:10.1103/PhysRevD.86.123506
965.L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from
Right Handed Neutrinos, Phys. Rev. D87
(2013) 093006.; DOI:10.1103/PhysRevD.87.093006
966.F. Kaether and C. Langbrandtner, Transit Time
and Charge Correlations of Single Photoelectron Events in R7081
PMTs, JINST7 (2012) P09002.; DOI:10.1088/1748-0221/7/09/P09002
967.W. Rodejohann and H. Zhang, Simple two
Parameter Description of Lepton Mixing, Phys. Rev. D86 (2012) 093008.; DOI:10.1103/PhysRevD.86.093008
968.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation
Prospects, Phys. Rev. D86 (2012)
076015.; DOI:10.1103/PhysRevD.86.076015
969.E. Aprile et al., Analysis of the XENON100 Dark
Matter Search Data, Astropart. Phys.54
(2014) 11–24.; DOI:10.1016/j.astropartphys.2013.10.002
970.P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of Neutralino Dark Matter,
JHEP07 (2013) 094.; DOI:10.1007/JHEP07(2013)094
971.H. Back et al., Borexino calibrations:
Hardware, Methods, and Results, JINST7
(2012) P10018.; DOI:10.1088/1748-0221/7/10/P10018
972.J. Heeck, Seesaw parametrization for n
right-handed neutrinos, Phys. Rev. D86
(2012) 093023.; DOI:10.1103/PhysRevD.86.093023
973.E. Aprile et al., Dark Matter Results from 225
Live Days of XENON100 Data, Phys. Rev. Lett.109 (2012) 181301.; DOI:10.1103/PhysRevLett.109.181301
974.Y. Abe et al., Reactor electron antineutrino
disappearance in the Double Chooz experiment, Phys. Rev.
D86 (2012) 052008.; DOI:10.1103/PhysRevD.86.052008
975.P. Alvarez Sanchez et al., Measurement of CNGS
muon neutrino speed with Borexino, Phys. Lett. B716 (2012) 401–405.; DOI:10.1016/j.physletb.2012.08.052
976.M. Duerr, Neutrinoless Double Beta Decay and
Neutrino Masses, (T. Fukuyama & R. N. Mohapatra, Eds.)AIP
Conf. Proc.1467 (2012) 235–238.; DOI:10.1063/1.4742106
977.B. Dumont, G. Belanger, S. Fichet, S. Kraml and T. Schwetz, Mixed sneutrino dark matter in light of the 2011 XENON
and LHC results, JCAP09 (2012) 013.;
DOI:10.1088/1475-7516/2012/09/013
978.W. Rodejohann, Neutrinoless double beta decay
and neutrino physics, J. Phys. G39
(2012) 124008.; DOI:10.1088/0954-3899/39/12/124008
979.M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of
multileptons at the LHC, Phys. Rev. D86 (2012) 075019.; DOI:10.1103/PhysRevD.86.075019
980.D. Schmidt, Direct detection of leptophilic
dark matter in a model with radiative neutrino masses, 2nd Workshop on Flavor Symmetries and Consequences in
Accelerators and Cosmology (pp. 265–272).
981.M. Aoki, M. Duerr and J. Kubo, Multi-component
dark matter system with non-standard annihilation processes of dark
matter, 2nd Workshop on Flavor
Symmetries and Consequences in Accelerators and Cosmology
(pp. 169–176).
982.M. Holthausen, Vacuum alignment from group
theory, 2nd Workshop on Flavor
Symmetries and Consequences in Accelerators and Cosmology
(pp. 115–122).
983.J. Heeck, Local flavor symmetries,
2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology (pp. 99–106).
984.J. Barry, Sterile neutrinos for warm dark
matter and the reactor anomaly in flavor symmetry models,
2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology (pp. 1–10).
985.J. Herrero-Garcia, T. Schwetz and J. Zupan, Astrophysics independent bounds on the annual modulation
of dark matter signals, Phys. Rev. Lett.109 (2012) 141301.; DOI:10.1103/PhysRevLett.109.141301
986.L. Ludhova et al., Solar neutrino physics with
Borexino I, 47th Rencontres de Moriond
on Electroweak Interactions and Unified Theories (p. 341).;
Retrieved from https://arxiv.org/abs/1205.2989
987.A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni and T. Schwetz,
The minimal 3+2 neutrino model versus oscillation
anomalies, JHEP07 (2012) 161.; DOI:10.1007/JHEP07(2012)161
988.E. Kh. Akhmedov and A. Wilhelm, Quantum field
theoretic approach to neutrino oscillations in matter,
JHEP01 (2013) 165.; DOI:10.1007/JHEP01(2013)165
989.E. Kh. Akhmedov, S. Razzaque and A. Yu. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with Huge
Atmospheric Neutrino Detectors, JHEP02
(2013) 082.; DOI:10.1007/JHEP02(2013)082
990.J. Chakrabortty, P. Ghosh and W. Rodejohann, Lower Limits on \(\mu \to e
\gamma\) from New Measurements on \(U_{e3}\), Phys. Rev. D86 (2012) 075020.; DOI:10.1103/PhysRevD.86.075020
991.S. S. C. Law and K. L. McDonald, Inverse seesaw
and dark matter in models with exotic lepton triplets, Phys.
Lett. B713 (2012) 490–494.; DOI:10.1016/j.physletb.2012.06.044
992.R. Abbasi et al., An absence of neutrinos
associated with cosmic-ray acceleration in \(\gamma\)-ray bursts, Nature484 (2012) 351–353.; DOI:10.1038/nature11068
994.F. Bezrukov, A. Kartavtsev and M. Lindner, Leptogenesis in models with keV sterile neutrino dark
matter, J. Phys. G40 (2013) 095202.;
DOI:10.1088/0954-3899/40/9/095202
995.L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter, and a Standard Model
like Higgs at 125 GeV, Phys. Lett. B716 (2012) 179–185.; DOI:10.1016/j.physletb.2012.07.017
996.J. Heeck and W. Rodejohann, Neutrino
Hierarchies from a Gauge Symmetry, Phys. Rev. D85 (2012) 113017.; DOI:10.1103/PhysRevD.85.113017
997.M. Blennow and T. Schwetz, Identifying the
Neutrino mass Ordering with INO and NOvA, JHEP08 (2012) 058.; DOI:10.1007/JHEP08(2012)058
998.J. Barry, L. Dorame and W. Rodejohann, Linear
Collider Test of a Neutrinoless Double Beta Decay Mechanism in
left-right Symmetric Theories, Eur. Phys. J. C72 (2012) 2023.; DOI:10.1140/epjc/s10052-012-2023-0
999.W. Rodejohann and H. Zhang, Impact of massive
neutrinos on the Higgs self-coupling and electroweak vacuum
stability, JHEP06 (2012) 022.; DOI:10.1007/JHEP06(2012)022
1001.T. Araki, J. Heeck and J. Kubo, Vanishing
Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries,
JHEP07 (2012) 083.; DOI:10.1007/JHEP07(2012)083
1002.M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P.
Serra, Asymmetric Dark Matter and Dark
Radiation, JCAP07 (2012) 022.; DOI:10.1088/1475-7516/2012/07/022
1003.G. Bellini et al., Search for Solar Axions
Produced in \(p(d,\rm{^3He})A\)
Reaction with Borexino Detector, Phys. Rev. D85 (2012) 092003.; DOI:10.1103/PhysRevD.85.092003
1004.K. L. McDonald, Sommerfeld Enhancement from
Multiple Mediators, JHEP07 (2012)
145.; DOI:10.1007/JHEP07(2012)145
1005.B. von Harling and K. L. McDonald, Secluded
Dark Matter Coupled to a Hidden CFT, JHEP08 (2012) 048.; DOI:10.1007/JHEP08(2012)048
1006.T. Asaka and A. Watanabe, Atmospheric Sterile
Neutrinos, JHEP07 (2012) 112.; DOI:10.1007/JHEP07(2012)112
1007.G. Bellini et al., Cosmic-muon flux and annual
modulation in Borexino at 3800 m water-equivalent depth,
JCAP05 (2012) 015.; DOI:10.1088/1475-7516/2012/05/015
1008.D. Schmidt, T. Schwetz and T. Toma, Direct
Detection of Leptophilic Dark Matter in a Model with Radiative Neutrino
Masses, Phys. Rev. D85 (2012) 073009.;
DOI:10.1103/PhysRevD.85.073009
1009.S. Choubey, M. Duerr, M. Mitra and W. Rodejohann, Lepton Number and Lepton Flavor Violation through Color
Octet States, JHEP05 (2012) 017.;
DOI:10.1007/JHEP05(2012)017
1011.E. Akhmedov, D. Hernandez and A. Smirnov, Neutrino production coherence and oscillation
experiments, JHEP04 (2012) 052.;
DOI:10.1007/JHEP04(2012)052
1012.W. Rodejohann, M. Tanimoto and A. Watanabe, Relating large \(U_{e3}\) to the ratio of neutrino
mass-squared differences, Phys. Lett. B710 (2012) 636–640.; DOI:10.1016/j.physletb.2012.03.037
1013.C. Buck et al., Measuring the (14)C isotope
concentration in a liquid organic scintillator at a small-volume
setup, Instrum. Exp. Tech.55 (2012)
34–37.; DOI:10.1134/S0020441212010022
1015.M. Agostini et al., LArGe \& for active
background suppression in GERDA, (L. Oberauer, G. Raffelt, &
R. Wagner, Eds.)J. Phys. Conf. Ser.375 (2012)
042009.; DOI:10.1088/1742-6596/375/1/042009
1016.L. Lopez Honorez, Coupled quintessence through
dark energy density, (L. Oberauer, G. Raffelt, & R. Wagner,
Eds.)J. Phys. Conf. Ser.375 (2012) 032007.;
DOI:10.1088/1742-6596/375/1/032007
1017.G. Testera et al., High precision Be-7 solar
neutrinos measurement and day night effect obtained with
Borexino, (A. Capone, G. De Bonis, M. De Vincenzi, & A.
Morselli, Eds.)Nucl. Instrum. Meth. A692
(2012) 258–261.; DOI:10.1016/j.nima.2012.01.006
1018.T. Schwetz, Neutrino mass and mixing:
Status, (R. Godbole & N. K. Mondal, Eds.)Pramana79 (2012) 979–992.; DOI:10.1007/s12043-012-0414-2
1019.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multicomponent dark matter system with nonstandard
annihilation processes of dark matter, (B. Szczerbinska, K. Babu,
B. Balantekin, B. Dutta, & R. N. Mohapatra, Eds.)AIP Conf.
Proc.1534 (2013) 31–38.; DOI:10.1063/1.4807340
1020.M. Barnabe Heider, Semiconductor-based
experiments for neutrinoless double beta decay search, (G. S.
Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl.229-232 (2012) 141–145.; DOI:10.1016/j.nuclphysbps.2012.09.023
1021.C. Aberle, C. Buck, F. X. Hartmann, M. Lindner, S. Schönert, S.
Wagner and H. Watanabe, Large Scale Production of
the Liquid Scintillator for the Double Chooz Experiment, (G. S.
Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl.229-232 (2012) 448–448.; DOI:10.1016/j.nuclphysbps.2012.09.085
1022.M. Agostini et al., Procurement, production
and testing of BEGe detectors depleted in \(^{76}Ge\), (G. S. Tzanakos,
Ed.)Nucl. Phys. B Proc. Suppl.229-232 (2012)
489–489.; DOI:10.1016/j.nuclphysbps.2012.09.126
1023.L. Lopez-Honorez, Biases on cosmological
parameters by general relativity effects, 47th Rencontres de Moriond on Cosmology (pp.
29–32).
1024.J. Herrero-Garcia, T. Schwetz and J. Zupan, On
the annual modulation signal in dark matter direct detection,
JCAP03 (2012) 005.; DOI:10.1088/1475-7516/2012/03/005
1025.R. Abbasi et al., Multi-year search for dark
matter annihilations in the Sun with the AMANDA-II and IceCube
detectors, Phys. Rev. D85 (2012)
042002.; DOI:10.1103/PhysRevD.85.042002
1026.M. Holthausen, K. S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs
Mass, JHEP02 (2012) 037.; DOI:10.1007/JHEP02(2012)037
1027.Z. Xing, H. Zhang and S. Zhou, Impacts of the
Higgs mass on vacuum stability, running fermion masses and two-body
Higgs decays, Phys. Rev. D86 (2012)
013013.; DOI:10.1103/PhysRevD.86.013013
1028.J. Heeck and W. Rodejohann, Hidden O(2) and
SO(2) Symmetry in Lepton Mixing, JHEP02 (2012) 094.; DOI:10.1007/JHEP02(2012)094
1029.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, RG running in a minimal UED model in light of recent LHC
Higgs mass bounds, Phys. Lett. B712
(2012) 419–424.; DOI:10.1016/j.physletb.2012.05.029
1030.T. Asaka, S. Eijima and H. Ishida, Kinetic
Equations for Baryogenesis via Sterile Neutrino Oscillation,
JCAP02 (2012) 021.; DOI:10.1088/1475-7516/2012/02/021
1031.Y. Abe et al., Indication of Reactor \(\bar{\nu}_e\) Disappearance in the Double
Chooz Experiment, Phys. Rev. Lett.108
(2012) 131801.; DOI:10.1103/PhysRevLett.108.131801
1032.M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant
regime, Annals Phys.328 (2013) 26–63.;
DOI:10.1016/j.aop.2012.10.007
1033.C. Aberle, C. Buck, B. Gramlich, F. X. Hartmann, M. Lindner, S.
Schonert, U. Schwan, S. Wagner and H. Watanabe, Large scale Gd-beta-diketonate based organic liquid
scintillator production for antineutrino detection,
JINST7 (2012) P06008.; DOI:10.1088/1748-0221/7/06/P06008
1035.M. Holthausen and M. A. Schmidt, Natural
Vacuum Alignment from Group Theory: The Minimal Case,
JHEP01 (2012) 126.; DOI:10.1007/JHEP01(2012)126
1036.R. Abbasi et al., The IceCube Neutrino Observatory V: Future
Developments, 32nd International Cosmic Ray
Conference.; Retrieved from https://arxiv.org/abs/1111.2742
1037.R. Abbasi et al., The IceCube Neutrino
Observatory IV: Searches for Dark Matter and Exotic Particles,
32nd International Cosmic Ray Conference.;
Retrieved from https://arxiv.org/abs/1111.2738
1038.R. Abbasi et al., IceCube - Astrophysics and
Astroparticle Physics at the South Pole (2011).; Retrieved from
https://arxiv.org/abs/1111.5188
1039.R. Abbasi et al., Searching for soft
relativistic jets in Core-collapse Supernovae with the IceCube Optical
Follow-up Program, Astron. Astrophys.539 (2012) A60.; DOI:10.1051/0004-6361/201118071
1040.C. Aberle, C. Buck, F. X. Hartmann and S. Schonert, Light yield and energy transfer in a new Gd-loaded liquid
scintillator, Chem. Phys. Lett.516
(2011) 257–262.; DOI:10.1016/j.cplett.2011.09.067
1041.E. Akhmedov and T. Schwetz, LSND and MiniBooNE
within (3+1) plus NSI, (B. S. Acharya, M. Goodman, & N. K.
Mondal, Eds.)AIP Conf. Proc.1382 (2011)
94–96.; DOI:10.1063/1.3644278
1042.S. Choubey, T. Schwetz and P. Vahle, Summary
of the Oscillation Physics Working Group, (B. S. Acharya, M.
Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc.1382 (2011) 77–81.; DOI:10.1063/1.3644274
1043.W. Maneschg et al., Production and
characterization of a custom-made \(^{228}Th\) source with reduced neutron
source strength for the Borexino experiment, Nucl. Instrum.
Meth. A680 (2012) 161–167.; DOI:10.1016/j.nima.2012.04.019
1044.J. Kopp, T. Schwetz and J. Zupan, Light Dark
Matter in the light of CRESST-II, JCAP03 (2012) 001.; DOI:10.1088/1475-7516/2012/03/001
1045.P.-H. Gu and U. Sarkar, Inflationary
Baryogenesis with Low Reheating Temperature and Testable
Neutron-Antineutron Oscillation (2011).; Retrieved from https://arxiv.org/abs/1110.2926
1046.G. Bellini et al., First evidence of pep solar
neutrinos by direct detection in Borexino, Phys. Rev.
Lett.108 (2012) 051302.; DOI:10.1103/PhysRevLett.108.051302
1047.C. H. Kom and W. Rodejohann, Four-jet final
state in same-sign lepton colliders and neutrinoless double beta decay
mechanisms, Phys. Rev. D85 (2012)
015013.; DOI:10.1103/PhysRevD.85.015013
1048.P.-H. Gu and U. Sarkar, Common Origin of
Baryon Asymmetry and Proton Decay, Mod. Phys. Lett. A28 (2013) 1350159.; DOI:10.1142/S0217732313501599
1049.P.-H. Gu, A left-right symmetric model with
SU(2)-triplet fermions, Phys. Rev. D84
(2011) 097301.; DOI:10.1103/PhysRevD.84.097301
1050.J. Barry, W. Rodejohann and H. Zhang, Sterile
Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor
Symmetry Models, JCAP01 (2012) 052.;
DOI:10.1088/1475-7516/2012/01/052
1051.H. Zhang, Light Sterile Neutrino in the
Minimal Extended Seesaw, Phys. Lett. B714 (2012) 262–266.; DOI:10.1016/j.physletb.2012.06.074
1052.R. Abbasi et al., Observation of an Anisotropy
in the Galactic Cosmic Ray arrival direction at 400 TeV with
IceCube, Astrophys. J.746 (2012) 33.;
DOI:10.1088/0004-637X/746/1/33
1053.J. Heeck and W. Rodejohann, Kinetic and mass
mixing with three abelian groups, Phys. Lett. B705 (2011) 369–374.; DOI:10.1016/j.physletb.2011.10.050
1054.R. Abbasi et al., The Design and Performance
of IceCube DeepCore, Astropart. Phys.35 (2012) 615–624.; DOI:10.1016/j.astropartphys.2012.01.004
1055.R. Abbasi et al., IceCube Sensitivity for
Low-Energy Neutrinos from Nearby Supernovae, Astron.
Astrophys.535 (2011) A109.; DOI:10.1051/0004-6361/201117810e
1056.T. Schwetz, M. Tortola and J. W. F. Valle, Where we are on \(\theta_{13}\): addendum to “Global
neutrino data and recent reactor fluxes: status of three-flavour
oscillation parameters”, New J. Phys.13 (2011) 109401.; DOI:10.1088/1367-2630/13/10/109401
1057.R. Abbasi et al., Searches for periodic
neutrino emission from binary systems with 22 and 40 strings of
IceCube, Astrophys. J.748 (2012) 118.;
DOI:10.1088/0004-637X/748/2/118
1058.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, The Glashow resonance at IceCube: signatures, event rates
and \(pp\) vs. \(p\gamma\) interactions,
JCAP10 (2011) 017.; DOI:10.1088/1475-7516/2011/10/017
1059.W. Rodejohann and J. W. F. Valle, Symmetrical
Parametrizations of the Lepton Mixing Matrix, Phys. Rev.
D84 (2011) 073011.; DOI:10.1103/PhysRevD.84.073011
1060.R. Abbasi et al., The IceCube Neutrino Observatory I: Point
Source Searches, 32nd International Cosmic Ray
Conference.; Retrieved from https://arxiv.org/abs/1111.2741
1061.R. Abbasi et al., The IceCube Neutrino
Observatory II: All Sky Searches: Atmospheric, Diffuse and EHE,
32nd International Cosmic Ray Conference.;
Retrieved from https://arxiv.org/abs/1111.2736
1062.P.-H. Gu and U. Sarkar, Baryogenesis and
neutron-antineutron oscillation at TeV, Phys. Lett. B705 (2011) 170–173.; DOI:10.1016/j.physletb.2011.10.017
1063.D. P. George and K. L. McDonald, Gravity on a
Little Warped Space, Phys. Rev. D84
(2011) 064007.; DOI:10.1103/PhysRevD.84.064007
1064.H. Zhang and S. Zhou, Radiative corrections
and explicit perturbations to the tetra-maximal neutrino mixing with
large \(\theta_{13}\), Phys.
Lett. B704 (2011) 296–302.; DOI:10.1016/j.physletb.2011.09.033
1065.A. Adulpravitchai and R. Takahashi, A4 Flavor
Models in Split Seesaw Mechanism, JHEP09 (2011) 127.; DOI:10.1007/JHEP09(2011)127
1066.W. Rodejohann, H. Zhang and S. Zhou, Systematic search for successful lepton mixing patterns
with nonzero \(\theta_{13}\),
Nucl. Phys. B855 (2012) 592–607.; DOI:10.1016/j.nuclphysb.2011.10.017
1067.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) Symmetry at the
Electroweak Scale, Phys. Rev. D84
(2011) 075007.; DOI:10.1103/PhysRevD.84.075007
1068.W. Rodejohann, Neutrino-less Double Beta Decay
and Particle Physics, Int. J. Mod. Phys. E20 (2011) 1833–1930.; DOI:10.1142/S0218301311020186
1069.R. Abbasi et al., Neutrino analysis of the
September 2010 Crab Nebula flare and time-integrated constraints on
neutrino emission from the Crab using IceCube, Astrophys.
J.745 (2012) 45.; DOI:10.1088/0004-637X/745/1/45
1070.N. Haba and R. Takahashi, Predictions via
large \(\theta_{13}\) from
cascades, Phys. Lett. B702 (2011)
388–393.; DOI:10.1016/j.physletb.2011.07.029
1071.T. Schwetz and J. Zupan, Dark Matter attempts
for CoGeNT and DAMA, JCAP08 (2011)
008.; DOI:10.1088/1475-7516/2011/08/008
1072.M. Duerr, M. Lindner and A. Merle, On the
Quantitative Impact of the Schechter-Valle Theorem, JHEP06 (2011) 091.; DOI:10.1007/JHEP06(2011)091
1073.M. Duerr, D. P. George and K. L. McDonald, Neutrino Mass and \(\mu
\rightarrow e + \gamma\) from a Mini-Seesaw, JHEP07 (2011) 103.; DOI:10.1007/JHEP07(2011)103
1074.R. Abbasi et al., Observation of Anisotropy in
the Arrival Directions of Galactic Cosmic Rays at Multiple Angular
Scales with IceCube, Astrophys. J.740
(2011) 16.; DOI:10.1088/0004-637X/740/1/16
1075.J. Barry, W. Rodejohann and H. Zhang, Light
Sterile Neutrinos: Models and Phenomenology, JHEP07 (2011) 091.; DOI:10.1007/JHEP07(2011)091
1076.M. Lindner, D. Schmidt and T. Schwetz, Dark
Matter and neutrino masses from global U(1)\(_{B−L}\) symmetry breaking,
Phys. Lett. B705 (2011) 324–330.; DOI:10.1016/j.physletb.2011.10.022
1077.A. Merle and V. Niro, Deriving Models for keV
sterile Neutrino Dark Matter with the Froggatt-Nielsen mechanism,
JCAP07 (2011) 023.; DOI:10.1088/1475-7516/2011/07/023
1078.R. Leitner, M. Malinsky, B. Roskovec and H. Zhang, Non-standard antineutrino interactions at Daya
Bay, JHEP12 (2011) 001.; DOI:10.1007/JHEP12(2011)001
1079.R. Abbasi et al., Time-Dependent Searches for
Point Sources of Neutrinos with the 40-String and 22-String
Configurations of IceCube, Astrophys. J.744 (2012) 1.; DOI:10.1088/0004-637X/744/1/1
1080.R.-Z. Yang and H. Zhang, Minimal seesaw model
with \(S_4\) flavor symmetry,
Phys. Lett. B700 (2011) 316–321.; DOI:10.1016/j.physletb.2011.05.014
1081.C. Bauer et al., Qualification Tests of 474
Photomultiplier Tubes for the Inner Detector of the Double Chooz
Experiment, JINST6 (2011) P06008.;
DOI:10.1088/1748-0221/6/06/P06008
1082.G. Bellini et al., Precision measurement of
the 7Be solar neutrino interaction rate in Borexino, Phys.
Rev. Lett.107 (2011) 141302.; DOI:10.1103/PhysRevLett.107.141302
1083.G. Bellini et al., Absence of day–night
asymmetry of 862 keV \(^7\)Be solar
neutrino rate in Borexino and MSW oscillation parameters,
Phys. Lett. B707 (2012) 22–26.; DOI:10.1016/j.physletb.2011.11.025
1084.E. Aprile et al., Dark Matter Results from 100
Live Days of XENON100 Data, Phys. Rev. Lett.107 (2011) 131302.; DOI:10.1103/PhysRevLett.107.131302
1085.E. Aprile et al., Implications on Inelastic
Dark Matter from 100 Live Days of XENON100 Data, Phys. Rev.
D84 (2011) 061101.; DOI:10.1103/PhysRevD.84.061101
1086.R. Abbasi et al., A Search for a Diffuse Flux
of Astrophysical Muon Neutrinos with the IceCube 40-String
Detector, Phys. Rev. D84 (2011)
082001.; DOI:10.1103/PhysRevD.84.082001
1087.E. Aprile et al., Likelihood Approach to the
First Dark Matter Results from XENON100, Phys. Rev. D84 (2011) 052003.; DOI:10.1103/PhysRevD.84.052003
1088.T. Schwetz, M. Tortola and J. W. F. Valle, Global neutrino data and recent reactor fluxes: status of
three-flavour oscillation parameters, New J. Phys.13 (2011) 063004.; DOI:10.1088/1367-2630/13/6/063004
1089.R. Abbasi et al., Background studies for
acoustic neutrino detection at the South Pole, Astropart.
Phys.35 (2012) 312–324.; DOI:10.1016/j.astropartphys.2011.09.004
1090.A. Adulpravitchai, B. Batell and J. Pradler, Non-Abelian
Discrete Dark Matter, Phys. Lett. B700
(2011) 207–216.; DOI:10.1016/j.physletb.2011.04.015
1091.R. Abbasi et al., Constraints on the
Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009
Data, Phys. Rev. D83 (2011) 092003.;
DOI:10.1103/PhysRevD.84.079902
1092.A. Dueck, W. Rodejohann and K. Zuber, Neutrinoless Double Beta Decay, the Inverted Hierarchy
and Precision Determination of theta(12), Phys. Rev. D83 (2011) 113010.; DOI:10.1103/PhysRevD.83.113010
1093.J. Kopp, M. Maltoni and T. Schwetz, Are There
Sterile Neutrinos at the eV Scale?, Phys. Rev. Lett.107 (2011) 091801.; DOI:10.1103/PhysRevLett.107.091801
1094.M. Duerr, M. Lindner and K. Zuber, Consistency
Test of Neutrinoless Double Beta Decay with one Isotope,
Phys. Rev. D84 (2011) 093004.; DOI:10.1103/PhysRevD.84.093004
1095.S. Choubey et al., International Design Study
for the Neutrino Factory, Interim Design Report (2011).;
Retrieved from https://arxiv.org/abs/1112.2853
1096.T. Schwetz, Reactor anomaly, Theta(13), and
sterile neutrinos, 14th International
Workshop on Neutrino Telescopes: Un altro
modo di guardare il cielo (pp. 183–192).
1097.N. Haba, K. Oda and R. Takahashi, Dirichlet
Higgs as radion stabilizer in warped compactification,
JHEP05 (2011) 125.; DOI:10.1007/JHEP05(2011)125
1098.H. Hettmansperger, M. Lindner and W. Rodejohann, Phenomenological Consequences of sub-leading Terms in
See-Saw Formulas, JHEP04 (2011) 123.;
DOI:10.1007/JHEP04(2011)123
1099.R. Abbasi et al., Limits on Neutrino Emission
from Gamma-Ray Bursts with the 40 String IceCube Detector,
Phys. Rev. Lett.106 (2011) 141101.; DOI:10.1103/PhysRevLett.106.141101
1100.T. Asaka, S. Eijima and H. Ishida, Mixing of
Active and Sterile Neutrinos, JHEP04
(2011) 011.; DOI:10.1007/JHEP04(2011)011
1101.R. Abbasi et al., First search for atmospheric
and extraterrestrial neutrino-induced cascades with the IceCube
detector, Phys. Rev. D84 (2011)
072001.; DOI:10.1103/PhysRevD.84.072001
1102.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, Renormalization Group Running of the Neutrino Mass
Operator in Extra Dimensions, JHEP04
(2011) 052.; DOI:10.1007/JHEP04(2011)052
1103.G. Bellini et al., Muon and Cosmogenic Neutron
Detection in Borexino, JINST6 (2011)
P05005.; DOI:10.1088/1748-0221/6/05/P05005
1104.R. Abbasi et al., Search for dark matter from
the Galactic halo with the IceCube Neutrino Telescope, Phys.
Rev. D84 (2011) 022004.; DOI:10.1103/PhysRevD.84.022004
1105.R. Abbasi et al., Search for neutrino-induced
cascades with five years of AMANDA data, Astropart.
Phys.34 (2011) 420–430.; DOI:10.1016/j.astropartphys.2010.10.007
1106.R. Abbasi et al., Constraints on high-energy
neutrino emission from SN 2008D, Astron. Astrophys.527 (2011) A28.; DOI:10.1051/0004-6361/201015770
1107.E. Aprile et al., Study of the electromagnetic
background in the XENON100 experiment, Phys. Rev. D83 (2011) 082001.; DOI:10.1103/PhysRevD.83.082001
1109.W. Rodejohann and H. Zhang, Extension of an
empirical charged lepton mass relation to the neutrino sector,
Phys. Lett. B698 (2011) 152–156.; DOI:10.1016/j.physletb.2011.03.007
1110.Y. Sestayo, Search strategies for discovering
extraterrestrial neutrinos with IceCube, (E. G. Anassontzis, P.
A. Rapidis, & L. K. Resvanis, Eds.)Nucl. Instrum. Meth. A626-627 (2011) S196–S199.; DOI:10.1016/j.nima.2010.06.264
1111.M. Weber, A study of radon background in the
XENON100 experiment, (R. Ford, Ed.)AIP Conf. Proc.1338 (2011) 208–213.; DOI:10.1063/1.3579583
1113.L. Perasso et al., Neutrino interactions at
few MeV: Results from Borexino at Gran Sasso, (R. Caruso, A.
Insolia, M. C. Maccarone, & V. Pirronello, Eds.)Nucl. Phys. B
Proc. Suppl.212-213 (2011) 121–127.; DOI:10.1016/j.nuclphysbps.2011.03.017
1114.M. Lindner and C. Weinheimer, Den
Geisterteilchen auf der Spur, Physik J.10N7 (2011) 31–37.
1115.E. Kh. Akhmedov and T. Schwetz, New MiniBooNE
results and non-standard neutrino interactions, (P. Bernardini,
G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.217 (2011) 217–219.; DOI:10.1016/j.nuclphysbps.2011.04.106
1116.W. Rodejohann and M. Shiozawa, Messengers of
new physics, (P. Bernardini, G. Fogli, & E. Lisi,
Eds.)Nucl. Phys. B Proc. Suppl.217 (2011)
383–387.; DOI:10.1016/j.nuclphysbps.2011.04.143
1117.C. Aberle, C. Buck, F. X. Hartmann, S. Schonert and S. Wagner,
Light output of Double Chooz scintillators for low
energy electrons, JINST6 (2011)
P11006.; DOI:10.1088/1748-0221/6/11/P11006
1118.S. Schonert, New techniques in 0nu beta beta
germanium experiments, (G. Mills, S. Elliott, T. Goldman, &
T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl.221
(2011) 244–247.; DOI:10.1016/j.nuclphysbps.2011.09.011
1119.C. Buck, A. Di Vacri, G. Mention and D. Motta, Scintillator \& and construction of a prototype for
the Double Chooz experiment, (G. Mills, S. Elliott, T. Goldman,
& T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl.221 (2011) 372.; DOI:10.1016/j.nuclphysbps.2011.10.020
1120.P. Huber, J. Kopp, M. Lindner, A. Merle, W. Rodejohann, M. Rolinec,
T. Schwetz and W. Winter, Physics potential of
future reactor neutrino experiments, (G. Mills, S. Elliott, T.
Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl.221 (2011) 360.; DOI:10.1016/j.nuclphysbps.2011.10.010
1121.S. Odrowski, E. Resconi and Y. Sestayo, Search
for Galactic Cosmic Ray Accelerators with the combined IceCube
40-strings and AMANDA detector, 32nd International
Cosmic Ray Conference (Vol. 4, p. 157).; DOI:10.7529/ICRC2011/V04/0320
1122.E. Resconi, High Energy Neutrino Astronomy:
IceCube 22 and 40 Strings, (G. S. Tzanakos, Ed.)Nucl. Phys. B
Proc. Suppl.229-232 (2012) 267–273.; DOI:10.1016/j.nuclphysbps.2012.09.042
1123.G. Aad et al., Measurement of underlying event
characteristics using charged particles in pp collisions at \(\sqrt{s} = 900 GeV\) and 7 TeV with the
ATLAS detector, Phys. Rev. D83 (2011)
112001.; DOI:10.1103/PhysRevD.83.112001
1124.J. Barry, R. N. Mohapatra and W. Rodejohann, Testing the Bimodal/Schizophrenic Neutrino Hypothesis in
Neutrino-less Double Beta Decay and Neutrino Telescopes,
Phys. Rev. D83 (2011) 113012.; DOI:10.1103/PhysRevD.83.113012
1125.A. Adulpravitchai, K. Kojima and R. Takahashi, Cascade Textures and SUSY SO(10) GUT,
JHEP02 (2011) 086.; DOI:10.1007/JHEP02(2011)086
1126.J. Heeck and W. Rodejohann, Neutrino
Phenomenology of gauged \(L_\mu -
L_\tau\): MINOS and beyond, (B. S. Acharya, M. Goodman,
& N. K. Mondal, Eds.)AIP Conf. Proc.1382
(2011) 144–146.; DOI:10.1063/1.3644295
1127.R. Abbasi et al., Time-Integrated Searches for
Point-like Sources of Neutrinos with the 40-String IceCube
Detector, Astrophys. J.732 (2011) 18.;
DOI:10.1088/0004-637X/732/1/18
1128.M. Agostini, C. A. Ur, D. Budjas, E. Bellotti, R. Brugnera, C. M.
Cattadori, A. di Vacri, A. Garfagnini, L. Pandola and S. Schonert, Signal modeling of high-purity Ge detectors with a small
read-out electrode and application to neutrinoless double beta decay
search in Ge-76, JINST6 (2011)
P03005.; DOI:10.1088/1748-0221/6/03/P03005
1129.J. Kopp, V. Niro, T. Schwetz and J. Zupan, Leptophilic Dark Matter in Direct Detection Experiments
and in the Sun, PoSIDM2010 (2011)
118.; DOI:10.22323/1.110.0118
1130.P.-H. Gu, Double and Linear Seesaw from
Left-Right and Peccei-Quinn Symmetry Breaking (2010).; Retrieved
from https://arxiv.org/abs/1011.2380
1131.E. Kh. Akhmedov, Beta decay and other
processes in strong electromagnetic fields, Phys. Atom.
Nucl.74 (2011) 1299–1315.; DOI:10.1134/S1063778811080035
1132.W. Rodejohann and H. Zhang, Higgs triplets at
like-sign linear colliders and neutrino mixing, Phys. Rev.
D83 (2011) 073005.; DOI:10.1103/PhysRevD.83.073005
1133.F. Bezrukov, F. Kahlhoefer, M. Lindner, F. Kahlhoefer and M.
Lindner, Interplay between scintillation and
ionization in liquid xenon Dark Matter searches, Astropart.
Phys.35 (2011) 119–127.; DOI:10.1016/j.astropartphys.2011.06.008
1134.P.-H. Gu and M. Lindner, Natural Inflation and
Flavor Mixing from Peccei-Quinn Symmetry Breaking, Phys.
Lett. B697 (2011) 229–232.; DOI:10.1016/j.physletb.2011.02.005
1135.K. Kojima, H. Sawanaka and R. Takahashi, Cascade Hierarchy in SUSY SU(5) GUT (2010).;
Retrieved from https://arxiv.org/abs/1011.5678
1136.T. Schwetz, Direct detection data and possible
hints for low-mass WIMPs, PoSIDM2010
(2011) 070.; DOI:10.22323/1.110.0070
1137.M. Lindner, A. Merle and V. Niro, Soft \(L_e - L_\mu - L_\tau\) flavour symmetry
breaking and sterile neutrino keV Dark Matter, JCAP01 (2011) 034.; DOI:10.1088/1475-7516/2011/01/034
1138.W. Rodejohann, Neutrinoless Double Beta Decay
in Particle Physics, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc.
Suppl.229-232 (2012) 113–117.; DOI:10.1016/j.nuclphysbps.2012.09.018
1139.G. Bellini et al., Study of solar and other
unknown anti-neutrino fluxes with Borexino at LNGS, Phys.
Lett. B696 (2011) 191–196.; DOI:10.1016/j.physletb.2010.12.030
1140.S. Ray, W. Rodejohann and M. A. Schmidt, Lower
bounds on the smallest lepton mixing angle, Phys. Rev. D83 (2011) 033002.; DOI:10.1103/PhysRevD.83.033002
1141.K. L. McDonald, Light Neutrinos from a
Mini-Seesaw Mechanism in Warped Space, Phys. Lett. B696 (2011) 266–272.; DOI:10.1016/j.physletb.2010.12.059
1142.R. Abbasi et al., Measurement of the
atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with
IceCube, Phys. Rev. D83 (2011)
012001.; DOI:10.1103/PhysRevD.83.012001
1143.R. Abbasi et al., Search for a
Lorentz-violating sidereal signal with atmospheric neutrinos in
IceCube, Phys. Rev. D82 (2010)
112003.; DOI:10.1103/PhysRevD.82.112003
1144.P.-H. Gu and M. Lindner, Universal Seesaw from
Left-Right and Peccei-Quinn Symmetry Breaking, Phys. Lett.
B698 (2011) 40–43.; DOI:10.1016/j.physletb.2011.02.042
1145.P. Di Bari, S. F. King, C. Luhn, A. Merle and A. Schmidt-May, Radiative Inflation and Dark Energy, Phys.
Rev. D84 (2011) 083524.; DOI:10.1103/PhysRevD.84.083524
1146.K. L. McDonald and D. E. Morrissey, Low-Energy
Signals from Kinetic Mixing with a Warped Abelian Hidden Sector,
JHEP02 (2011) 087.; DOI:10.1007/JHEP02(2011)087
1147.R. Alonso et al., Summary Report of MINSIS
Workshop in Madrid, Madrid Neutrino NSI Workshop
(MINSIS).; Retrieved from https://arxiv.org/abs/1009.0476
1148.P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev.
D83 (2011) 055008.; DOI:10.1103/PhysRevD.83.055008
1149.R. Abbasi et al., The first search for
extremely-high energy cosmogenic neutrinos with the IceCube Neutrino
Observatory, Phys. Rev. D82 (2010)
072003.; DOI:10.1103/PhysRevD.82.072003
1150.Y. Shimizu and R. Takahashi, Deviations from
Tri-Bimaximality and Quark-Lepton Complementarity, EPL93 (2011) 61001.; DOI:10.1209/0295-5075/93/61001
1151.R. Abbasi et al., Search for relativistic
magnetic monopoles with the AMANDA-II neutrino telescope,
Eur. Phys. J. C69 (2010) 361–378.; DOI:10.1140/epjc/s10052-010-1411-6
1152.E. Kh. Akhmedov and A. Yu. Smirnov, Neutrino
oscillations: Entanglement, energy-momentum conservation and QFT,
Found. Phys.41 (2011) 1279–1306.; DOI:10.1007/s10701-011-9545-4
1153.S. S. C. Law and K. L. McDonald, Broken
Symmetry as a Stabilizing Remnant, Phys. Rev. D82 (2010) 104032.; DOI:10.1103/PhysRevD.82.104032
1154.F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations,
JHEP01 (2011) 016.; DOI:10.1007/JHEP01(2011)016
1155.A. Adulpravitchai, P.-H. Gu and M. Lindner, Connections between the Seesaw and Dark Matter
Searches, Phys. Rev. D82 (2010)
073013.; DOI:10.1103/PhysRevD.82.073013
1156.P.-H. Gu and U. Sarkar, Leptogenesis with
Linear, Inverse or Double Seesaw, Phys. Lett. B694 (2011) 226–232.; DOI:10.1016/j.physletb.2010.09.062
1157.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) and different Muon
Neutrino and Anti-Neutrino Oscillations: MINOS and beyond, J.
Phys. G38 (2011) 085005.; DOI:10.1088/0954-3899/38/8/085005
1158.E. Akhmedov and T. Schwetz, MiniBooNE and LSND
data: Non-standard neutrino interactions in a (3+1) scheme versus (3+2)
oscillations, JHEP10 (2010) 115.;
DOI:10.1007/JHEP10(2010)115
1159.J. Barry and W. Rodejohann, Neutrino Mass
Sum-rules in Flavor Symmetry Models, Nucl. Phys. B842 (2011) 33–50.; DOI:10.1016/j.nuclphysb.2010.08.015
1160.F. Bezrukov, Inflation in the standard model
and \(\nu\)MSM with non-minimal
coupling to gravity, (J.-M. Alimi & A. Fuzfa, Eds.)AIP
Conf. Proc.1241 (2010) 511–520.; DOI:10.1063/1.3462679
1161.R. Mehrem and A. Hohenegger, A Generalisation For The
Infinite Integral Over Three Spherical Bessel Functions, J.
Phys. A43 (2010) 9.; DOI:10.1088/1751-8113/43/45/455204
1162.A. Dueck, S. Petcov and W. Rodejohann, On
Leptonic Unitary Triangles and Boomerangs, Phys. Rev. D82 (2010) 013005.; DOI:10.1103/PhysRevD.82.013005
1163.T. Kobayashi, Y. Nakai and R. Takahashi, Revisiting superparticle spectra in superconformal flavor
models, JHEP09 (2010) 093.; DOI:10.1007/JHEP09(2010)093
1164.P.-H. Gu, Relations between Neutrino and
Charged Fermion Masses, Phys. Rev. Lett.105 (2010) 131802.; DOI:10.1103/PhysRevLett.105.131802
1165.P.-H. Gu, Large Lepton Asymmetry for Small
Baryon Asymmetry and Warm Dark Matter, Phys. Rev. D82 (2010) 093009.; DOI:10.1103/PhysRevD.82.093009
1166.J. Bernabeu et al., EURONU WP6 2009 Yearly
Report: Update of the Physics Potential of Nufact, Superbeams and
Betabeams (2010).; Retrieved from https://arxiv.org/abs/1005.3146
1167.M. Lindner, A. Merle and V. Niro, Enhancing
Dark Matter Annihilation into Neutrinos, Phys. Rev. D82 (2010) 123529.; DOI:10.1103/PhysRevD.82.123529
1168.R. Abbasi et al., Measurement of the
Anisotropy of Cosmic Ray Arrival Directions with IceCube,
Astrophys. J. Lett.718 (2010) L194.; DOI:10.1088/2041-8205/718/2/L194
1170.N. Haba, K. Oda and R. Takahashi, Phenomenological Aspects of Dirichlet Higgs Model from
Extra-Dimension, JHEP07 (2010) 079.;
DOI:10.1007/JHEP07(2010)079
1171.M. Garny, A. Hohenegger and A. Kartavtsev, Quantum corrections to leptogenesis from the gradient
expansion (2010).; Retrieved from https://arxiv.org/abs/1005.5385
1172.E. Akhmedov, Neutrino oscillations in quantum
mechanics and quantum field theory, Gribov-80 Memorial Workshop on Quantum Chromodynamics and
Beyond (pp. 377–391).; DOI:10.1142/9789814350198_0036
1173.P.-H. Gu, E. Ma and U. Sarkar, Pseudo-Majoron
as Dark Matter, Phys. Lett. B690
(2010) 145–148.; DOI:10.1016/j.physletb.2010.05.012
1174.R. Abbasi et al., Measurement of Acoustic
Attenuation in South Pole Ice, Astropart. Phys.34 (2011) 382–393.; DOI:10.1016/j.astropartphys.2010.10.003
1175.R. Abbasi et al., The Energy Spectrum of
Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II
Detector, Astropart. Phys.34 (2010)
48–58.; DOI:10.1016/j.astropartphys.2010.05.001
1176.A. Merle, The GSI oscillation mystery,
(A. Faessler & V. Rodin, Eds.)Prog. Part. Nucl. Phys.64 (2010) 445–447.; DOI:10.1016/j.ppnp.2009.12.071
1177.S. Choubey et al., International Design Study
for the Neutrino Factory: First Progress Report (2010).
1178.G. Bellini et al., Observation of
Geo-Neutrinos, Phys. Lett. B687 (2010)
299–304.; DOI:10.1016/j.physletb.2010.03.051
1179.K.-I. Izawa, Y. Nakai and R. Takahashi, Nonlinearly Realized
Extended Supergravity, Phys. Rev. D82
(2010) 075008.; DOI:10.1103/PhysRevD.82.075008
1180.J. Barry and W. Rodejohann, Deviations from
tribimaximal mixing due to the vacuum expectation value misalignment in
\(A_4\) models, Phys. Rev.
D81 (2010) 093002.; DOI:10.1103/PhysRevD.81.119901
1181.M. Mezzetto and T. Schwetz, \(\theta_{13}\): Phenomenology, present
status and prospect, J. Phys. G37
(2010) 103001.; DOI:10.1088/0954-3899/37/10/103001
1182.W. Rodejohann, Non-Unitary PMNS Matrix,
Leptogenesis and Low Energy CP Violation, (D. M. Kaplan, Z.
Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc.1222 (2010) 93–97.; DOI:10.1063/1.3399406
1183.M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in
leptogenesis, Phys. Rev. D81 (2010)
085028.; DOI:10.1103/PhysRevD.81.085028
1184.R. Abbasi et al., Calibration and
Characterization of the IceCube Photomultiplier Tube, Nucl.
Instrum. Meth. A618 (2010) 139–152.; DOI:10.1016/j.nima.2010.03.102
1185.P.-H. Gu, Resonant Leptogenesis and Verifiable
Seesaw from Large Extra Dimensions, Phys. Rev. D81 (2010) 073002.; DOI:10.1103/PhysRevD.81.073002
1186.P.-H. Gu, A Left-Right Symmetric Model for
Neutrino Masses, Baryon Asymmetry and Dark Matter, Phys. Rev.
D81 (2010) 095002.; DOI:10.1103/PhysRevD.81.095002
1187.F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source
experiments, Phys. Lett. B685 (2010)
47–54.; DOI:10.1016/j.physletb.2010.01.030
1188.A. Adulpravitchai and M. A. Schmidt, Flavored
Orbifold GUT - an SO(10) x S4 model, JHEP01 (2011) 106.; DOI:10.1007/JHEP01(2011)106
1189.E. Kh. Akhmedov and J. Kopp, Neutrino
Oscillations: Quantum Mechanics vs. Quantum Field Theory,
JHEP04 (2010) 008.; DOI:10.1007/JHEP04(2010)008
1190.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a
storage ring, (E. Coccia, L. Pandola, N. Fornengo, & R.
Aloisio, Eds.)J. Phys. Conf. Ser.203 (2010)
012098.; DOI:10.1088/1742-6596/203/1/012098
1191.A. Smolnikov, Development and installation of
the GERDA experiment, (E. Coccia, L. Pandola, N. Fornengo, &
R. Aloisio, Eds.)J. Phys. Conf. Ser.203
(2010) 012059.; DOI:10.1088/1742-6596/203/1/012059
1192.S. Schonert, Neutrinoless double beta
decay, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio,
Eds.)J. Phys. Conf. Ser.203 (2010) 012014.;
DOI:10.1088/1742-6596/203/1/012014
1193.W. Rodejohann, Scaling in the neutrino mass
matrix and the see-saw mechanism, (A. Faessler & V. Rodin,
Eds.)Prog. Part. Nucl. Phys.64 (2010)
321–323.; DOI:10.1016/j.ppnp.2009.12.041
1194.C. H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing,
Eur. Phys. J. C70 (2010) 1099–1110.; DOI:10.1140/epjc/s10052-010-1492-2
1195.M. Misiaszek et al., Results from the Borexino
experiment, (A. Zalewska, Ed.)Acta Phys. Polon. B41 (2010) 1603–1610.
1196.M. Barnabe-Heider, D. Budjas, K. Gusev and S. Schonert, Operation and performance of a bare broad-energy
germanium detector in liquid argon, JINST5 (2010) P10007.; DOI:10.1088/1748-0221/5/10/P10007
1197.A. Hohenegger, Finite density aspects of
leptogenesis, (S. Cabrera, M. Hirsch, V. Mitsou, C. Munoz, S.
Pastor, M. A. Tortola, J. W. F. Valle, et al., Eds.)J. Phys. Conf.
Ser.259 (2010) 012074.; DOI:10.1088/1742-6596/259/1/012074
1198.T. Schwetz, Neutrino physics: A theoretical
review, (F. Bianchi, Ed.)PoSFPCP2010
(2010) 051.; DOI:10.22323/1.116.0051
1199.H. Simgen, Observation of neutrinos from sun
and earth with the BOREXINO detector, (F. M. Rieger, C. van
Eldik, & W. Hofmann, Eds.)PoSTEXAS2010
(2010) 215.; DOI:10.22323/1.123.0215
1200.S. Riboldi, C. Cattadori, A. D’Andragora, A. Pullia, F. Zocca, M.
Barnabe-Heider and D. Budjas, A low-noise charge
sensitive preamplifier for Ge spectroscopy operating at cryogenic
temperature in the GERDA experiment, 2010 IEEE Nuclear Science Symposium, Medical Imaging
Conference, and 17th Room Temperature Semiconductor Detectors
Workshop (pp. 1386–1388).; DOI:10.1109/NSSMIC.2010.5873998
1201.D. Budjas, O. Chkvorets and S. Schonert, Background suppression using pulse shape analysis with a
BEGe detector for neutrinoless double beta decay search with
GERDA, (M. L. Marshak, Ed.)AIP Conf. Proc.1182 (2009) 96–99.; DOI:10.1063/1.3293966
1202.F. Bezrukov and D. Gorbunov, Light inflaton
Hunter’s Guide, JHEP05 (2010) 010.;
DOI:10.1007/JHEP05(2010)010
1203.M. Holthausen and R. Takahashi, GIMPs from
Extra Dimensions, Phys. Lett. B691
(2010) 56–59.; DOI:10.1016/j.physletb.2010.06.012
1204.W. Rodejohann, On Non-Unitary Lepton Mixing
and Neutrino Mass Observables, Phys. Lett. B684 (2010) 40–47.; DOI:10.1016/j.physletb.2009.12.031
1205.J. Kopp, T. Schwetz and J. Zupan, Global
interpretation of direct Dark Matter searches after CDMS-II
results, JCAP02 (2010) 014.; DOI:10.1088/1475-7516/2010/02/014
1206.F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of
the Standard Model, Phys. Rev. D81
(2010) 085032.; DOI:10.1103/PhysRevD.81.085032
1207.G. Bellini et al., New experimental limits on
the Pauli forbidden transitions in C-12 nuclei obtained with 485 days
Borexino data, Phys. Rev. C81 (2010)
034317.; DOI:10.1103/PhysRevC.81.034317
1208.M. Holthausen, M. Lindner and M. A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right
Symmetric Model, Phys. Rev. D82 (2010)
055002.; DOI:10.1103/PhysRevD.82.055002
1209.R. Abbasi et al., Extending the search for
neutrino point sources with IceCube above the horizon, Phys.
Rev. Lett.103 (2009) 221102.; DOI:10.1103/PhysRevLett.103.221102
1210.J. Kopp and A. Merle, Ultra-low Q values for
neutrino mass measurements, Phys. Rev. C81 (2010) 045501.; DOI:10.1103/PhysRevC.81.045501
1211.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium
QFT: Self-energy contribution to the CP-violating parameter,
Phys. Rev. D81 (2010) 085027.; DOI:10.1103/PhysRevD.81.085027
1212.N. Haba, K. Oda and R. Takahashi, Dirichlet
Higgs in extra-dimension, consistent with electroweak data,
Acta Phys. Polon. B42 (2011) 33–44.; DOI:10.5506/APhysPolB.42.33
1213.M. Pallavicini et al., Solar neutrino results
from Borexino and main future perspectives, (A. Capone, M. De
Vincenzi, F. Lucarelli, A. Morselli, & V. Vitale, Eds.)Nucl.
Instrum. Meth. A630 (2011) 210–213.; DOI:10.1016/j.nima.2010.06.067
1214.T. Kobayashi, Y. Nakai and R. Takahashi, Fine
Tuning in General Gauge Mediation, JHEP01 (2010) 003.; DOI:10.1007/JHEP01(2010)003
1215.R. Abbasi et al., Limits on a muon flux from
Kaluza-Klein dark matter annihilations in the Sun from the IceCube
22-string detector, Phys. Rev. D81
(2010) 057101.; DOI:10.1103/PhysRevD.81.057101
1216.N. Haba, K. Oda and R. Takahashi, Diagonal
Kaluza-Klein expansion under brane localized potential, Acta
Phys. Polon. B41 (2010) 1291–1316.; Retrieved
from https://arxiv.org/abs/0910.4528
1217.T. Schwetz, Phenomenology of future neutrino
oscillation experiments, European
Strategy for Future Neutrino Physics (pp. 75–84).
1218.T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu
model, Phys. Lett. B681 (2009)
269–275.; DOI:10.1016/j.physletb.2009.10.025
1219.S. Choubey and W. Rodejohann, Flavor
Composition of UHE Neutrinos at Source and at Neutrino
Telescopes, Phys. Rev. D80 (2009)
113006.; DOI:10.1103/PhysRevD.80.113006
1220.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium
QFT: Vertex contribution to the CP-violating parameter, Phys.
Rev. D80 (2009) 125027.; DOI:10.1103/PhysRevD.80.125027
1221.V. Niro, A. Bottino, N. Fornengo and S. Scopel, Investigating light neutralinos at neutrino
telescopes, Phys. Rev. D80 (2009)
095019.; DOI:10.1103/PhysRevD.80.095019
1222.R. Abbasi et al., Measurement of sound speed
vs. depth in South Pole ice for neutrino astronomy,
Astropart. Phys.33 (2010) 277–286.; DOI:10.1016/j.astropartphys.2010.01.012
1223.J. Kopp, M. Lindner, V. Niro and T. E. J. Underwood, On the Consistency of Perturbativity and Gauge Coupling
Unification, Phys. Rev. D81 (2010)
025008.; DOI:10.1103/PhysRevD.81.025008
1224.D. Budjas, M. Barnabe Heider, O. Chkvorets, N. Khanbekov and S.
Schonert, Pulse shape discrimination studies with a
Broad-Energy Germanium detector for signal identification and background
suppression in the GERDA double beta decay experiment,
JINST4 (2009) P10007.; DOI:10.1088/1748-0221/4/10/P10007
1225.A. Adulpravitchai, M. Lindner, A. Merle and R. N. Mohapatra, Radiative Transmission of Lepton Flavor
Hierarchies, Phys. Lett. B680 (2009)
476–479.; DOI:10.1016/j.physletb.2009.09.042
1226.P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP violation in neutrino oscillations from
upcoming superbeam and reactor experiments, JHEP11 (2009) 044.; DOI:10.1088/1126-6708/2009/11/044
1227.A. Adulpravitchai, M. Lindner and A. Merle, Confronting Flavour Symmetries and extended Scalar
Sectors with Lepton Flavour Violation Bounds, Phys. Rev.
D80 (2009) 055031.; DOI:10.1103/PhysRevD.80.055031
1228.R. Abbasi et al., Search for muon neutrinos
from Gamma-Ray Bursts with the IceCube neutrino telescope,
Astrophys. J.710 (2010) 346–359.; DOI:10.1088/0004-637X/710/1/346
1229.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of
Continuous Flavor Symmetries, JHEP09
(2009) 018.; DOI:10.1088/1126-6708/2009/09/018
1230.S. Goswami, S. T. Petcov, S. Ray and W. Rodejohann, Large |U(e3)| and Tri-bimaximal Mixing, Phys.
Rev. D80 (2009) 053013.; DOI:10.1103/PhysRevD.80.053013
1231.J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark
Matter, Phys. Rev. D80 (2009) 083502.;
DOI:10.1103/PhysRevD.80.083502
1232.A. Merle, Why a splitting in the final state
cannot explain the GSI-Oscillations, Phys. Rev. C80 (2009) 054616.; DOI:10.1103/PhysRevC.80.054616
1233.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring Neutrino Mass with Radioactive Ions in a
Storage Ring, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman,
Eds.)AIP Conf. Proc.1222 (2010) 165–168.;
DOI:10.1063/1.3399282
1234.J. Kopp, T. Ota and W. Winter, Optimization
study for non-standard interaction search in a neutrino factory,
(D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf.
Proc.1222 (2010) 135–139.; DOI:10.1063/1.3399275
1235.S. Choubey, T. Schwetz and C. Walter, Working Group 1 Report
(Theory), (D. M. Kaplan, Z. Sullivan, & M. C. Goodman,
Eds.)AIP Conf. Proc.1222 (2010) 65–74.;
DOI:10.1063/1.3399397
1236.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Flavor Symmetries from T**2/Z(N)
Orbifolds, JHEP07 (2009) 053.; DOI:10.1088/1126-6708/2009/07/053
1237.D. Franco et al., The First year of
Borexino, Heavy Quarks and Leptons 2008
(HQ&L08).; Retrieved from https://arxiv.org/abs/0905.1044
1238.E. Kh. Akhmedov and A. Yu. Smirnov, Paradoxes
of neutrino oscillations, Phys. Atom. Nucl.72 (2009) 1363–1381.; DOI:10.1134/S1063778809080122
1239.A. S. Joshipura and W. Rodejohann, Scaling in
the Neutrino Mass Matrix, mu-tau Symmetry and the See-Saw
Mechanism, Phys. Lett. B678 (2009)
276–282.; DOI:10.1016/j.physletb.2009.06.035
1240.R. Abbasi et al., First Neutrino Point-Source
Results From the 22-String IceCube Detector, Astrophys. J.
Lett.701 (2009) L47–L51.; DOI:10.1088/0004-637X/701/1/L47
1241.S. Goswami, S. Khan and W. Rodejohann, Minimal
Textures in Seesaw Mass Matrices and their low and high Energy
Phenomenology, Phys. Lett. B680 (2009)
255–262.; DOI:10.1016/j.physletb.2009.08.056
1242.F. Bezrukov and M. Shaposhnikov, Standard
Model Higgs boson mass from inflation: Two loop analysis,
JHEP07 (2009) 089.; DOI:10.1088/1126-6708/2009/07/089
1243.M. Garny and M. M. Muller, Kadanoff-Baym
Equations with Non-Gaussian Initial Conditions: The Equilibrium
Limit, Phys. Rev. D80 (2009) 085011.;
DOI:10.1103/PhysRevD.80.085011
1244.J. Kopp, Mossbauer neutrinos in quantum
mechanics and quantum field theory, JHEP06 (2009) 049.; DOI:10.1088/1126-6708/2009/06/049
1245.A. Adulpravitchai, A. Blum and W. Rodejohann, Golden Ratio Prediction for Solar Neutrino Mixing,
New J. Phys.11 (2009) 063026.; DOI:10.1088/1367-2630/11/6/063026
1246.W. Rodejohann, Non-Unitary Lepton Mixing
Matrix, Leptogenesis and Low Energy CP Violation, EPL88 (2009) 51001.; DOI:10.1209/0295-5075/88/51001
1247.G. Bellini et al., Low energy solar neutrino
signals in Borexino, 13th International
Workshop on Neutrino Telescopes: Un altro modo di guardare il cielo:
Tribute to Galileo (pp. 111–123).
1248.R. Abbasi et al., Search for high-energy muon
neutrinos from the ’naked-eye’ GRB 080319B with the IceCube neutrino
telescope, Astrophys. J.701 (2009)
1721–1731.; DOI:10.1088/0004-637X/701/2/1721
1249.R. Abbasi et al., Determination of the
Atmospheric Neutrino Flux and Searches for New Physics with
AMANDA-II, Phys. Rev. D79 (2009)
102005.; DOI:10.1103/PhysRevD.79.102005
1250.R. Abbasi et al., Limits on a muon flux from
neutralino annihilations in the Sun with the IceCube 22-string
detector, Phys. Rev. Lett.102 (2009)
201302.; DOI:10.1103/PhysRevLett.102.201302
1251.A. Blum and C. Hagedorn, The Cabibbo Angle in
a Supersymmetric D(14) Model, Nucl. Phys. B821 (2009) 327–353.; DOI:10.1016/j.nuclphysb.2009.06.028
1252.A. Gross and J. L. Bazo Alba, Search for
sources of astrophysical neutrinos with IceCube, (F. A.
Aharonian, W. Hofmann, & F. Rieger, Eds.)AIP Conf. Proc.1085 (2009) 779–782.; DOI:10.1063/1.3076795
1253.O. Schulz, The IceCube DeepCore, (F. A. Aharonian, W.
Hofmann, & F. Rieger, Eds.)AIP Conf. Proc.1085 (2009) 783–786.; DOI:10.1063/1.3076796
1254.W. Rodejohann, Deviations from tri-bimaximal
mixing, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl.
Phys. B Proc. Suppl.188 (2009) 336–338.; DOI:10.1016/j.nuclphysbps.2009.02.078
1255.E. Akhmedov, Neutrino oscillograms of the
Earth and CP violation in neutrino oscillations, (P. Bernardini,
G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl.188 (2009) 204–206.; DOI:10.1016/j.nuclphysbps.2009.02.048
1256.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a
storage ring, Eur. Phys. J. C64 (2009)
549–560.; DOI:10.1140/epjc/s10052-009-1168-y
1257.S. Choubey et al., Working group report:
Neutrino physics, (R. Basu, Ed.)Pramana72 (2009) 269–275.; DOI:10.1007/s12043-009-0023-x
1258.L. Ludhova et al., 200 days of Borexino
data, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl.
Phys. B Proc. Suppl.188 (2009) 90–95.; DOI:10.1016/j.nuclphysbps.2009.02.021
1259.S. Pastor and S. Schonert, Session I: Probing
low energy and mass scales, (P. Bernardini, G. Fogli, & E.
Lisi, Eds.)Nucl. Phys. B Proc. Suppl.188
(2009) 371–376.; DOI:10.1016/j.nuclphysbps.2009.02.087
1260.G. Alimonti et al., The liquid handling
systems for the Borexino solar neutrino detector, Nucl.
Instrum. Meth. A609 (2009) 58–78.; DOI:10.1016/j.nima.2009.07.028
1261.J. Kisiel et al., The LAGUNA project: Towards
the giant liquid based detectors for proton decay searches and for low
energy neutrino astrophysics, PoSEPS-HEP2009 (2009) 283.; DOI:10.22323/1.084.0283
1262.E. Resconi and F. Aharonian (Eds.), High-energy gamma-rays and neutrinos from extra-galactic
sources. Proceedings, International Workshop, Heidelberg, Germany,
January 13-16, 2009 (Vol. 18, pp. pp.1483–1664).
1263.A. D’Andragora et al., Spectroscopic
performances of the GERDA cryogenic Charge Sensitive Amplifier based on
JFET-CMOS ASIC, coupled to germanium detectors, 2009 IEEE Nuclear Science Symposium and Medical Imaging
Conference (pp. 396–400).; DOI:10.1109/NSSMIC.2009.5401678
1264.P. Grabmayr, L. Baudis, A. Caldwell, C. Cattadori, M. Hult, J.
Jochum, V. Kornoukhov, S. Schönert and K. Zuber, Production chain of isotopically modified ge-diodes for
the \(2\beta 0\nu\)-search with
GERDA, 2009 IEEE Nuclear Science
Symposium and Medical Imaging Conference (pp. 1758–1760).;
DOI:10.1109/NSSMIC.2009.5402216
1265.C. H. Albright and W. Rodejohann, Comparing
Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal
Mixing, Eur. Phys. J. C62 (2009)
599–608.; DOI:10.1140/epjc/s10052-009-1074-3
1266.W. Maneschg, A. Merle and W. Rodejohann, Statistical Analysis of future Neutrino Mass Experiments
including Neutrino-less Double Beta Decay, EPL85 (2009) 51002.; DOI:10.1209/0295-5075/85/51002
1267.T. Schwetz, Physics Potential of Future
Atmospheric Neutrino Searches, (P. Bernardini, G. Fogli, & E.
Lisi, Eds.)Nucl. Phys. B Proc. Suppl.188
(2009) 158–163.; DOI:10.1016/j.nuclphysbps.2009.02.037
1268.M. Maltoni and T. Schwetz, Three-flavour
neutrino oscillation update and comments on possible hints for a
non-zero \(\theta_{13}\),
PoSIDM2008 (2008) 072.; DOI:10.22323/1.064.0072
1269.F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang,
JCAP06 (2009) 029.; DOI:10.1088/1475-7516/2009/06/029
1270.A. Adulpravitchai, A. Blum and C. Hagedorn, A
Supersymmetric D4 Model for mu-tau Symmetry, JHEP03 (2009) 046.; DOI:10.1088/1126-6708/2009/03/046
1271.S. Schonert, T. K. Gaisser, E. Resconi and O. Schulz, Vetoing atmospheric neutrinos in a high energy neutrino
telescope, Phys. Rev. D79 (2009)
043009.; DOI:10.1103/PhysRevD.79.043009
1272.F. L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation,
Phys. Lett. B675 (2009) 88–92.; DOI:10.1016/j.physletb.2009.03.035
1273.F. L. Bezrukov and Y. Burnier, Towards a
solution of the strong CP problem by compact extra dimensions,
Phys. Rev. D80 (2009) 125004.; DOI:10.1103/PhysRevD.80.125004
1274.C. Hagedorn, M. A. Schmidt and A. Yu. Smirnov, Lepton Mixing and Cancellation of the Dirac Mass
Hierarchy in SO(10) GUTs with Flavor Symmetries T(7) and
Sigma(81), Phys. Rev. D79 (2009)
036002.; DOI:10.1103/PhysRevD.79.036002
1275.O. Smirnov et al., The first year of
Borexino, 18th International Conference
on Particles and Nuclei (pp. 788–790).
1276.G. Ranucci et al., Results and perspectives of
the solar neutrino experiment Borexino, 34th International Conference on High Energy
Physics.; Retrieved from https://arxiv.org/abs/0810.0176
1277.R. Abbasi et al., Solar Energetic Particle
Spectrum on 13 December 2006 Determined by IceTop, Astrophys.
J. Lett.689 (2008) L65–L68.; DOI:10.1086/595679
1278.E. Kh. Akhmedov and V. Niro, An Accurate
analytic description of neutrino oscillations in matter,
JHEP12 (2008) 106.; DOI:10.1088/1126-6708/2008/12/106
1279.F. L. Bezrukov, Non-minimal coupling in
inflation and inflating with the Higgs boson, 15th International Seminar on High Energy
Physics.; Retrieved from https://arxiv.org/abs/0810.3165
1280.R. Abbasi et al., The IceCube Data Acquisition
System: Signal Capture, Digitization, and Timestamping, Nucl.
Instrum. Meth. A601 (2009) 294–316.; DOI:10.1016/j.nima.2009.01.001
1281.W. Rodejohann, Unified Parametrization for
Quark and Lepton Mixing Angles, Phys. Lett. B671 (2009) 267–271.; DOI:10.1016/j.physletb.2008.12.010
1282.D. Budjas et al., Highly sensitive
gamma-spectrometers of GERDA for material screening. Part I.,
14th International School on Particles and
Cosmology.; Retrieved from https://arxiv.org/abs/0812.0723
1283.D. Budjas, M. Barnabe Heider, O. Chkvorets, S. Schonert and N.
Khanbekov, Pulse Shape Analysis with a Broad-Energy
Germanium Detector for the GERDA experiment, 2008 IEEE Nuclear Science Symposium and Medical Imaging
Conference and 16th International Workshop on Room-Temperature
Semiconductor X-Ray and Gamma-Ray Detectors (pp.
2513–2515).; DOI:10.1109/NSSMIC.2008.4774866
1284.M. Barnabe Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K.
Gusev, S. Schönert and M. Shirchenko, Performance
of bare high-purity germanium detectors in liquid argon for the GERDA
experiment, 2008 IEEE Nuclear Science
Symposium and Medical Imaging Conference and 16th International Workshop
on Room-Temperature Semiconductor X-Ray and Gamma-Ray
Detectors (pp. 3513–3516).; DOI:10.1109/NSSMIC.2008.4775094
1285.M. Garny, Particle Physics and Dark
Energy: Beyond Classical Dynamics (Other thesis).
1286.A. Pullia, F. Zocca, S. Riboldi, D. Budjáš, A. D’Andragora and C.
Cattadori, A cryogenic low-noise JFET-CMOS
preamplifier for the HPGe detectors of GERDA, 2008 IEEE Nuclear Science Symposium and Medical Imaging
Conference and 16th International Workshop on Room-Temperature
Semiconductor X-Ray and Gamma-Ray Detectors (pp.
2056–2060).; DOI:10.1109/NSSMIC.2008.4774881
1287.A. Anisimov, Y. Bartocci and F. L. Bezrukov, Inflaton mass in the nuMSM inflation, Phys.
Lett. B671 (2009) 211–215.; DOI:10.1016/j.physletb.2008.12.028
1288.R. Abbasi et al., Search for Point Sources of
High Energy Neutrinos with Final Data from AMANDA-II, Phys.
Rev. D79 (2009) 062001.; DOI:10.1103/PhysRevD.79.062001
1289.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Theory of the Neutrino Mass, Melbourne
Neutrino Theory Workshop (Neutrino 08).; Retrieved from https://arxiv.org/abs/0808.0812
1290.H. Kienert, J. Kopp, M. Lindner and A. Merle, The GSI anomaly, (J. Adams, F. Halzen, & S.
Parke, Eds.)J. Phys. Conf. Ser.136 (2008)
022049.; DOI:10.1088/1742-6596/136/2/022049
1291.G. Bellini et al., Measurement of the solar 8B
neutrino rate with a liquid scintillator target and 3 MeV energy
threshold in the Borexino detector, Phys. Rev. D82 (2010) 033006.; DOI:10.1103/PhysRevD.82.033006
1292.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A(4) Flavour
Symmetry, Nucl. Phys. B809 (2009)
218–243.; DOI:10.1016/j.nuclphysb.2008.10.002
1293.S. Choubey, W. Rodejohann and P. Roy, Phenomenological consequences of four zero neutrino
Yukawa textures, Nucl. Phys. B808
(2009) 272–291.; DOI:10.1016/j.nuclphysb.2009.04.021
1294.A. Hohenegger, A. Kartavtsev and M. Lindner, Deriving Boltzmann Equations from Kadanoff-Baym Equations
in Curved Space-Time, Phys. Rev. D78
(2008) 085027.; DOI:10.1103/PhysRevD.78.085027
1295.G. Alimonti et al., The Borexino detector at
the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth.
A600 (2009) 568–593.; DOI:10.1016/j.nima.2008.11.076
1296.C. Arpesella et al., Direct Measurement of the
Be-7 Solar Neutrino Flux with 192 Days of Borexino Data,
Phys. Rev. Lett.101 (2008) 091302.; DOI:10.1103/PhysRevLett.101.091302
1297.E. Kh. Akhmedov, M. Maltoni and A. Yu. Smirnov, Neutrino oscillograms of the Earth: Effects of 1-2 mixing
and CP-violation, JHEP06 (2008) 072.;
DOI:10.1088/1126-6708/2008/06/072
1298.J. Kopp, T. Ota and W. Winter, Neutrino
factory optimization for non-standard interactions, Phys.
Rev. D78 (2008) 053007.; DOI:10.1103/PhysRevD.78.053007
1299.W. Rodejohann, The See-saw mechanism: Neutrino
mixing, leptogenesis and lepton flavor violation, (R. Basu,
Ed.)Pramana72 (2009) 217–227.; DOI:10.1007/s12043-009-0018-7
1300.C. H. Albright and W. Rodejohann, Model-Independent Analysis of Tri-bimaximal Mixing: A
Softly-Broken Hidden or an Accidental Symmetry?, Phys. Lett.
B665 (2008) 378–383.; DOI:10.1016/j.physletb.2008.06.044
1301.E. Meroni et al., Borexino and solar
neutrinos, 4th International Workshop on
Neutrino Oscillations in Venice: Ten Years after the Neutrino
Oscillations (pp. 431–436).
1302.S. Choubey, V. Niro and W. Rodejohann, On
Probing \(\theta_{23}\) in Neutrino
Telescopes, Phys. Rev. D77 (2008)
113006.; DOI:10.1103/PhysRevD.77.113006
1303.E. Kh. Akhmedov, J. Kopp and M. Lindner, On
application of the time-energy uncertainty relation to Mossbauer
neutrino experiments, J. Phys. G36
(2009) 078001.; DOI:10.1088/0954-3899/36/7/078001
1304.E. Kh. Akhmedov and W. Rodejohann, A Yukawa
coupling parameterization for type I + II seesaw formula and
applications to lepton flavor violation and leptogenesis,
JHEP06 (2008) 106.; DOI:10.1088/1126-6708/2008/06/106
1305.A. Kartavtsev and D. Besak, Baryogenesis via
Leptogenesis in an inhomogeneous Universe, Phys. Rev. D78 (2008) 083001.; DOI:10.1103/PhysRevD.78.083001
1306.T. Ota, Non-standard neutrino interactions in
reactor and superbeam experiments, (O. Yasuda, N. Mondal, &
Chihiro. Ohmori, Eds.)AIP Conf. Proc.981
(2008) 231–233.; DOI:10.1063/1.2898943
1307.G. Altarelli, F. Feruglio and C. Hagedorn, A
SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A\(_4\), JHEP03 (2008) 052.; DOI:10.1088/1126-6708/2008/03/052
1308.E. Kh. Akhmedov, J. Kopp and M. Lindner, Oscillations of Mossbauer neutrinos, JHEP05 (2008) 005.; DOI:10.1088/1126-6708/2008/05/005
1309.H. O. Back et al., Study of phenylxylylethane
(PXE) as scintillator for low energy neutrino experiments,
Nucl. Instrum. Meth. A585 (2008) 48–60.;
DOI:10.1016/j.nima.2007.10.045
1310.G. Bellini et al., Search for solar axions
emitted in the M1-transition of Li-7* with Borexino CTF, Eur.
Phys. J. C54 (2008) 61–72.; DOI:10.1140/epjc/s10052-008-0530-9
1311.W. Maneschg, M. Laubenstein, D. Budjas, W. Hampel, G. Heusser, K.
T. Knopfle, B. Schwingenheuer and H. Simgen, Measurements of extremely low radioactivity levels in
stainless steel for GERDA, Nucl. Instrum. Meth. A593 (2008) 448–453.; DOI:10.1016/j.nima.2008.05.036
1312.P. Peiffer, T. Pollmann, S. Schonert, A. Smolnikov and S. Vasiliev,
Pulse shape analysis of scintillation signals from
pure and xenon-doped liquid argon for radioactive background
identification, JINST3 (2008) P08007.;
DOI:10.1088/1748-0221/3/08/P08007
1313.G. Bellini et al., First results on Be-7 solar
neutrinos from the Borexino real time detector, (K. Inoue, A.
Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser.120 (2008) 052006.; DOI:10.1088/1742-6596/120/5/052006
1314.T. Kirsten, Retrospect of GALLEX/GNO,
(K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser.120 (2008) 052013.; DOI:10.1088/1742-6596/120/5/052013
1315.G. Zuzel, Low-level techniques applied in
experiments looking for rare events, (K. Inoue, A. Suzuki, &
T. Mitsui, Eds.)J. Phys. Conf. Ser.120 (2008)
052015.; DOI:10.1088/1742-6596/120/5/052015
1316.H. Simgen, Status of the GERDA
experiment, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J.
Phys. Conf. Ser.120 (2008) 052052.; DOI:10.1088/1742-6596/120/5/052052
1317.C. Galbiati et al., New results on solar
neutrino fluxes from 192 days of Borexino data, (J. Adams, F.
Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser.136 (2008) 022001.; DOI:10.1088/1742-6596/136/2/022001
1318.P. Huber, J. Kopp, M. Lindner and W. Winter, GLoBES: General long baseline experiment
simulator, (A. Breskin, M. Henneaux, V. Mukhanov, & H.
Rubinstein, Eds.)PoSNUFACT08 (2008) 145.;
DOI:10.22323/1.074.0145
1319.J. Kopp, T. Ota and W. Winter, Neutrino
factory optimization for non-standard interactions, (A. Breskin,
M. Henneaux, V. Mukhanov, & H. Rubinstein, Eds.)PoSNUFACT08 (2008) 134.; DOI:10.22323/1.074.0134
1320.M. Barnabe-Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K.
Gusev, S. Schonert and M. Shirchenko, Operation of
bare HPGe detectors in LAr/LN(2) for the GERDA experiment, (J.
Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser.136 (2008) 042046.; DOI:10.1088/1742-6596/136/4/042046
1321.W. Rodejohann and K. A. Hochmuth, Lepton
flavor violation, leptogenesis and neutrino mixing in quark-lepton
complementarity scenarios, (S. Khalil, Ed.)Int. J. Mod. Phys.
A22 (2007) 5875–5888.; DOI:10.1142/S0217751X07039092
1322.S. Pakvasa, W. Rodejohann and T. J. Weiler, Unitary parametrization of perturbations to tribimaximal
neutrino mixing, Phys. Rev. Lett.100
(2008) 111801.; DOI:10.1103/PhysRevLett.100.111801
1323.M. Ackermann et al., Search for Ultra
High-Energy Neutrinos with AMANDA-II, Astrophys. J.675 (2008) 1014–1024.; DOI:10.1086/527046
1324.S. Pakvasa, W. Rodejohann and T. J. Weiler, Flavor Ratios of Astrophysical Neutrinos: Implications
for Precision Measurements, JHEP02
(2008) 005.; DOI:10.1088/1126-6708/2008/02/005
1325.J. Kopp, M. Lindner, T. Ota and J. Sato, Impact of non-standard neutrino interactions on future
oscillation experiments, 15th
International Conference on Supersymmetry and the Unification of
Fundamental Interactions (SUSY07) (pp. 756–759).; Retrieved
from https://arxiv.org/abs/0710.1867
1326.M. Lindner and M. M. Muller, Comparison of
Boltzmann kinetics with quantum dynamics for a chiral Yukawa model far
from equilibrium, Phys. Rev. D77
(2008) 025027.; DOI:10.1103/PhysRevD.77.025027
1327.A. Bandyopadhyay, Physics at a future Neutrino
Factory and super-beam facility, (S. Choubey et al.,
Eds.)Rept. Prog. Phys.72 (2009) 106201.;
DOI:10.1088/0034-4885/72/10/106201
1328.A. Blum, C. Hagedorn and A. Hohenegger, theta(C) from the Dihedral flavor symmetries D(7) and
D(14), JHEP03 (2008) 070.; DOI:10.1088/1126-6708/2008/03/070
1329.A. Blum and A. Merle, General Conditions for
Lepton Flavour Violation at Tree- and 1-Loop Level, Phys.
Rev. D77 (2008) 076005.; DOI:10.1103/PhysRevD.77.076005
1330.A. Blum, C. Hagedorn and M. Lindner, Fermion
Masses and Mixings from Dihedral Flavor Symmetries with Preserved
Subgroups, Phys. Rev. D77 (2008)
076004.; DOI:10.1103/PhysRevD.77.076004
1331.D. Budjas et al., Highly Sensitive
Gamma-Spectrometers of GERDA for Material Screening: Part 2
(2007).; Retrieved from https://arxiv.org/abs/0812.0768
1332.J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and
superbeam experiments, Phys. Rev. D77
(2008) 013007.; DOI:10.1103/PhysRevD.77.013007
1333.C. Arpesella et al., First real time detection
of Be-7 solar neutrinos by Borexino, Phys. Lett. B658 (2008) 101–108.; DOI:10.1016/j.physletb.2007.09.054
1334.A. Gross, C. H. Ha, C. Rott, M. Tluczykont, E. Resconi, T. DeYoung
and G. Wikstrom, The combined AMANDA and IceCube
Neutrino Telescope, 30th International Cosmic Ray
Conference (Vol. 3, pp. 1253–1256).
1335.J. K. Becker, W. Rhode, P. L. Biermann, A. Gross, K. Münich and J.
Dreyer, On the interpretation of high-energy
neutrino limits, 30th International Cosmic Ray
Conference (Vol. 3, pp. 1209–1212).
1337.S. Goswami and W. Rodejohann, MiniBooNE
results and neutrino schemes with 2 sterile neutrinos: Possible mass
orderings and observables related to neutrino masses,
JHEP10 (2007) 073.; DOI:10.1088/1126-6708/2007/10/073
1338.K. A. Hochmuth, S. T. Petcov and W. Rodejohann, U(PMNS) = U**dagger (l) U(nu), Phys. Lett.
B654 (2007) 177–188.; DOI:10.1016/j.physletb.2007.08.072
1339.A. Blum, R. N. Mohapatra and W. Rodejohann, Inverted mass hierarchy from scaling in the neutrino mass
matrix: Low and high energy phenomenology, Phys. Rev. D76 (2007) 053003.; DOI:10.1103/PhysRevD.76.053003
1340.D. Autiero et al., Large underground, liquid
based detectors for astro-particle physics in Europe: Scientific case
and prospects, JCAP11 (2007) 011.;
DOI:10.1088/1475-7516/2007/11/011
1341.A. Achterberg et al., The Search for Muon
Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA,
Astrophys. J.674 (2008) 357–370.; DOI:10.1086/524920
1342.A. Achterberg et al., Detection of Atmospheric
Muon Neutrinos with the IceCube 9-String Detector, Phys. Rev.
D76 (2007) 027101.; DOI:10.1103/PhysRevD.76.027101
1343.J. Kopp and M. Lindner, Detecting atmospheric
neutrino oscillations in the ATLAS detector at CERN, Phys.
Rev. D76 (2007) 093003.; DOI:10.1103/PhysRevD.76.093003
1344.M. A. Schmidt, Renormalization group evolution
in the type I+ II seesaw model, Phys. Rev. D76 (2007) 073010.; DOI:10.1103/PhysRevD.76.073010
1345.M. Wojcik and G. Zuzel, Behavior of the Rn-222
daughters on copper surfaces during cleaning, (P. Loaiza,
Ed.)AIP Conf. Proc.897 (2007) 53–58.; DOI:10.1063/1.2722068
1346.H. Simgen and G. Zuzel, Ultrapure gases: From
the production plant to the laboratory, (P. Loaiza, Ed.)AIP
Conf. Proc.897 (2007) 45–50.; DOI:10.1063/1.2722067
1347.M. Wojcik and G. Zuzel, A novel low background
cryogenic detector for radon in gas, (P. Loaiza, Ed.)AIP
Conf. Proc.897 (2007) 39–44.; DOI:10.1063/1.2722066
1348.S. Kanemura, K. Matsuda, T. Ota, S. Petcov, T. Shindou, E. Takasugi
and K. Tsumura, CP violation due to multi
Froggatt-Nielsen fields, Eur. Phys. J. C51 (2007) 927–931.; DOI:10.1140/epjc/s10052-007-0343-2
1349.K. A. Hochmuth, M. Lindner and G. G. Raffelt, Exploiting the directional sensitivity of the Double
Chooz near detector, Phys. Rev. D76
(2007) 073001.; DOI:10.1103/PhysRevD.76.073001
1350.M. Barnabe Heider et al., Operation of a GERDA
Phase I prototype detector in liquid argon and nitrogen,
14th International School on Particles and
Cosmology.; Retrieved from https://arxiv.org/abs/0812.3976
1351.J. Kopp, M. Lindner and A. Merle, Self-Calibration of Neutrino Detectors using
characteristic Backgrounds, Nucl. Instrum. Meth. A582 (2007) 456–461.; DOI:10.1016/j.nima.2007.08.239
1352.A. Merle and W. Rodejohann, Getting
Information on |U(e3)|**2 from Neutrino-less Double Beta Decay,
Adv. High Energy Phys.2007 (2007) 82674.;
DOI:10.1155/2007/82674
1353.M. Lindner and W. Rodejohann, Large and almost
maximal neutrino mixing within the type II see-saw mechanism,
JHEP05 (2007) 089.; DOI:10.1088/1126-6708/2007/05/089
1354.W. Rodejohann, Broken mu - tau symmetry and
leptonic CP violation, 12th
International Workshop on Neutrinos Telescopes: Twenty Years after the
Supernova 1987A Neutrino Bursts Discovery (pp. 313–328).
1355.M. I. Adamovich et al., Observation of a
resonance in the K(s)p decay channel at a mass of 1765 MeV/c**2,
Eur. Phys. J. C50 (2007) 535–538.; DOI:10.1140/epjc/s10052-007-0284-9
1356.J. Kopp, M. Lindner and T. Ota, Discovery
reach for non-standard interactions in a neutrino factory,
Phys. Rev. D76 (2007) 013001.; DOI:10.1103/PhysRevD.76.013001
1357.M. Di Marco, P. Peiffer and S. Schonert, LArGe: Background suppression using liquid argon (LAr)
scintillation for 0 nu beta beta decay search with enriched germanium
(Ge) detectors, (P. S. Marrocchesi, F. L. Navarria, M. Paganoni,
& P. G. Pelfer, Eds.)Nucl. Phys. B Proc. Suppl.172 (2007) 45–48.; DOI:10.1016/j.nuclphysbps.2007.07.019
1358.S. Funk et al., XMM-Newton observations reveal
the X-ray counterpart of the very-high-energy gamma-ray source
HESSJ1640-465, Astrophys. J.662 (2007)
517–524.; DOI:10.1086/516567
1359.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation
experiments with GLoBES 3.0: General Long Baseline Experiment
Simulator, Comput. Phys. Commun.177
(2007) 432–438.; DOI:10.1016/j.cpc.2007.05.004
1360.E. Resconi, IceCube: Multiwavelength search
for neutrinos from transient point sources, (F. Halzen, A. Karle,
& T. Montaruli, Eds.)J. Phys. Conf. Ser.60 (2007) 223–226.; DOI:10.1088/1742-6596/60/1/047
1361.A. Kappes, J. Hinton, C. Stegmann and F. A. Aharonian, Potential neutrino signals from galactic gamma-ray
sources, (F. Halzen, A. Karle, & T. Montaruli, Eds.)J.
Phys. Conf. Ser.60 (2007) 243–246.; DOI:10.1088/1742-6596/60/1/052
1362.C. Cattadori, O. Chkvorets, C. Tomei, M. Junker, L. Pandola, K.
Kroninger, A. Pullia, F. Zocca, V. Re and C. Ur, The GERmanium Detector Array read-out: Status and
developments, (F. Cervelli, F. Forti, R. Paoletti, & A.
Scribano, Eds.)Nucl. Instrum. Meth. A572
(2007) 479–480.; DOI:10.1016/j.nima.2006.10.226
1363.M. I. Adamovich et al., Production of V0 pairs
in the hyperon experiment WA89, Eur. Phys. J. C52 (2007) 857–874.; DOI:10.1140/epjc/s10052-007-0436-y
1364.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter,
GLoBES: General Long Baseline Experiment Simulator,
Comput. Phys. Commun.177 (2007) 439–440.;
DOI:10.1016/j.cpc.2007.05.007
1367.A. Dighe, S. Goswami and W. Rodejohann, Corrections to Tri-bimaximal Neutrino Mixing:
Renormalization and Planck Scale Effects, Phys. Rev. D75 (2007) 073023.; DOI:10.1103/PhysRevD.75.073023
1368.A. Achterberg et al., Five years of searches
for point sources of astrophysical neutrinos with the AMANDA-II neutrino
telescope, Phys. Rev. D75 (2007)
102001.; DOI:10.1103/PhysRevD.75.102001
1369.K. A. Hochmuth and W. Rodejohann, On Symmetric Lepton Mixing
Matrices, Phys. Lett. B644 (2007)
147–152.; DOI:10.1016/j.physletb.2006.11.042
1370.J. Kopp, Efficient numerical diagonalization
of hermitian 3 x 3 matrices, Int. J. Mod. Phys. C19 (2008) 523–548.; DOI:10.1142/S0129183108012303
1371.P. Huber, M. Lindner, M. Rolinec and W. Winter, Optimization of a neutrino factory oscillation
experiment, Phys. Rev. D74 (2006)
073003.; DOI:10.1103/PhysRevD.74.073003
1372.J. Kopp, M. Lindner, A. Merle and M. Rolinec, Reactor Neutrino Experiments with a Large Liquid
Scintillator Detector, JHEP01 (2007)
053.; DOI:10.1088/1126-6708/2007/01/053
1373.A. Achterberg et al., First Year Performance
of The IceCube Neutrino Telescope, Astropart. Phys.26 (2006) 155–173.; DOI:10.1016/j.astropartphys.2006.06.007
1374.C. Hagedorn, M. Lindner and F. Plentinger, The
Discrete flavor symmetry D(5), Phys. Rev. D74 (2006) 025007.; DOI:10.1103/PhysRevD.74.025007