Division Particle & Astroparticle Physics
 
 

Publications of the division since 2006


1.E. Aprile et al., The XENONnT Dark Matter Experiment (2024).; Retrieved from https://arxiv.org/abs/2402.10446
2.R. Hammann, K. Böse, L. Hötzsch, F. Jörg and T. Marrodán Undagoitia, Investigating the slow component of the infrared scintillation time response in gaseous xenon (2024).; Retrieved from https://arxiv.org/abs/2401.09262
3.M. Agostini et al., An improved limit on the neutrinoless double-electron capture of \(^{36}\)Ar with GERDA, Eur. Phys. J. C 84 (2024) 34.; DOI:10.1140/epjc/s10052-023-12280-6
4.D. Basilico et al., Novel techniques for alpha/beta pulse shape discrimination in Borexino (2023).; Retrieved from https://arxiv.org/abs/2310.11826
5.M. Mukhopadhyay and M. Sen, On probing turbulence in core-collapse supernovae in upcoming neutrino detectors (2023).; Retrieved from https://arxiv.org/abs/2310.08627
6.M. Shaposhnikov and A. Y. Smirnov, Sterile Neutrino Dark Matter, Matter-Antimatter Separation, and the QCD Phase Transition (2023).; Retrieved from https://arxiv.org/abs/2309.13376
7.E. Aprile et al., Design and performance of the field cage for the XENONnT experiment, Eur. Phys. J. C 84 (2024) 138.; DOI:10.1140/epjc/s10052-023-12296-y
8.A. Ahmed, M. Lindner and P. Saake, Conformal Little Higgs (2023).; Retrieved from https://arxiv.org/abs/2309.07845
9.A. Angelescu, A. Bally, F. Goertz and M. Hager, Restoring Naturalness via Conjugate Fermions (2023).; Retrieved from https://arxiv.org/abs/2309.05698
10.Y. Chung, A Naturalness motivated Top Yukawa Model for the Composite Higgs (2023).; Retrieved from https://arxiv.org/abs/2309.00072
11.F. Goertz and Á. Pastor-Gutiérrez, New Phases of the Standard Model Higgs Potential (2023).; Retrieved from https://arxiv.org/abs/2308.13594
12.H. Bonet et al., Pulse shape discrimination for the CONUS experiment in the keV and sub-keV regime, Eur. Phys. J. C 84 (2024) 139.; DOI:10.1140/epjc/s10052-024-12470-w
13.M. Agostini et al., Final Results of GERDA on the Two-Neutrino Double-\(\beta\) Decay Half-Life of Ge76, Phys. Rev. Lett. 131 (2023) 142501.; DOI:10.1103/PhysRevLett.131.142501
14.S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino Mass Sum Rules from Modular \(\mathcal{A}_4\) Symmetry (2023).; Retrieved from https://arxiv.org/abs/2308.08981
15.J. Kubo and T. Kugo, Unitarity violation in field theories of LeeWick’s complex ghost, PTEP 2023 (2023) 123B02.; DOI:10.1093/ptep/ptad143
16.S. Jana and S. Klett, Muonic Force and Neutrino Non-Standard Interactions at Muon Colliders (2023).; Retrieved from https://arxiv.org/abs/2308.07375
17.Y. F. Perez-Gonzalez and M. Sen, From Dirac to Majorana: The cosmic neutrino background capture rate in the minimally extended Standard Model, Phys. Rev. D 109 (2024) 023022.; DOI:10.1103/PhysRevD.109.023022
18.A. de Gouvêa, J. Weill and M. Sen, Solar neutrinos and \(\nu\)2 visible decays to \(\nu\)1, Phys. Rev. D 109 (2024) 013003.; DOI:10.1103/PhysRevD.109.013003
19.M. Agostini et al., Search for tri-nucleon decays of \(^{76}\)Ge in GERDA, Eur. Phys. J. C 83 (2023) 778.; DOI:10.1140/epjc/s10052-023-11862-8
20.M. P. Bento, J. P. Silva and A. Trautner, The basis invariant flavor puzzle, JHEP 01 (2024) 024.; DOI:10.1007/JHEP01(2024)024
21.J. Herms, S. Jana, V. P. K. and S. Saad, Light neutrinophilic dark matter from a scotogenic model, Phys. Lett. B 845 (2023) 138167.; DOI:10.1016/j.physletb.2023.138167
22.G. Huang, Discovery potential of the Glashow resonance in an air shower neutrino telescope (2023).; Retrieved from https://arxiv.org/abs/2307.12153
23.F. Goertz, Á. Pastor-Gutiérrez and J. M. Pawlowski, Flavor hierarchies from emergent fundamental partial compositeness, Phys. Rev. D 108 (2023) 095019.; DOI:10.1103/PhysRevD.108.095019
24.N. Bernal, Y. Farzan and A. Yu. Smirnov, Neutrinos from GRB 221009A: producing ALPs and explaining LHAASO anomalous \(\gamma\) event, JCAP 11 (2023) 098.; DOI:10.1088/1475-7516/2023/11/098
25.M. D. Astros, S. Fabian and F. Goertz, Minimal Inert Doublet Benchmark for Dark Matter and the Baryon Asymmetry (2023).; Retrieved from https://arxiv.org/abs/2307.01270
26.P. F. Depta, K. Schmidt-Hoberg, P. Schwaller and C. Tasillo, Do pulsar timing arrays observe merging primordial black holes? (2023).; Retrieved from https://arxiv.org/abs/2306.17836
27.M. Adrover et al., Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites, Eur. Phys. J. C 84 (2024) 88.; DOI:10.1140/epjc/s10052-023-12298-w
28.M. Sen and A. Y. Smirnov, Refractive neutrino masses, ultralight dark matter and cosmology, JCAP 01 (2024) 040.; DOI:10.1088/1475-7516/2024/01/040
29.E. Aprile et al., Search for events in XENON1T associated with gravitational waves, Phys. Rev. D 108 (2023) 072015.; DOI:10.1103/PhysRevD.108.072015
30.T. Bringmann, P. F. Depta, T. Konstandin, K. Schmidt-Hoberg and C. Tasillo, Does NANOGrav observe a dark sector phase transition?, JCAP 11 (2023) 053.; DOI:10.1088/1475-7516/2023/11/053
31.F. Jörg, S. Li, J. Schreiner, H. Simgen and R. F. Lang, Characterization of a \(^{220}\)Rn source for low-energy electronic recoil calibration of the XENONnT detector, JINST 18 (2023) P11009.; DOI:10.1088/1748-0221/18/11/P11009
32.L. Angel et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 055030.; DOI:10.1103/PhysRevD.108.055030
33.A. Ahmed, Z. Chacko, N. Desai, S. Doshi, C. Kilic and S. Najjari, Composite Dark Matter and Neutrino Masses from a Light Hidden Sector (2023).; Retrieved from https://arxiv.org/abs/2305.09719
34.A. Bally, Y. Chung and F. Goertz, The Hierarchy Problem and the Top Yukawa, 57th Rencontres de Moriond on QCD and High Energy Interactions.; Retrieved from https://arxiv.org/abs/2304.11891
35.E. Aprile et al., Searching for Heavy Dark Matter near the Planck Mass with XENON1T, Phys. Rev. Lett. 130 (2023) 261002.; DOI:10.1103/PhysRevLett.130.261002
36.O. Scholer, J. de Vries and L. Gráf, \(\nu\)DoBe A Python tool for neutrinoless double beta decay, JHEP 08 (2023) 043.; DOI:10.1007/JHEP08(2023)043
37.E. Aprile et al., Detector signal characterization with a Bayesian network in XENONnT, Phys. Rev. D 108 (2023) 012016.; DOI:10.1103/PhysRevD.108.012016
38.E. Aprile et al., First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment, Phys. Rev. Lett. 131 (2023) 041003.; DOI:10.1103/PhysRevLett.131.041003
39.S. Jana and Y. Porto, New Resonances of Supernova Neutrinos in Twisting Magnetic Fields (2023).; Retrieved from https://arxiv.org/abs/2303.13572
40.G. Huang, M. Lindner and N. Volmer, Inferring astrophysical neutrino sources from the Glashow resonance, JHEP 11 (2023) 164.; DOI:10.1007/JHEP11(2023)164
41.M. Piotter, D. Cichon, R. Hammann, F. Jörg, L. Hötzsch and T. Marrodán Undagoitia, First time-resolved measurement of infrared scintillation light in gaseous xenon, Eur. Phys. J. C 83 (2023) 482.; DOI:10.1140/epjc/s10052-023-11618-4
42.C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83 (2023) 864.; DOI:10.1140/epjc/s10052-023-11889-x
43.A. Trautner, Modular Flavor Symmetries and CP from the top down, PoS DISCRETE2022 (2024) 013.; DOI:10.22323/1.431.0013
44.O. Medina, C. Bonilla, J. Herms and E. Peinado, Neutrino mass hierarchy from the discrete dark matter model, PoS DISCRETE2022 (2024) 076.; DOI:10.22323/1.431.0076
45.C. Bonilla, J. Herms, O. Medina and E. Peinado, Discrete dark matter mechanism as the source of neutrino mass scales, JHEP 06 (2023) 078.; DOI:10.1007/JHEP06(2023)078
46.N. Ackermann et al., Monte Carlo simulation of background components in low level Germanium spectrometry, Appl. Radiat. Isot. 194 (2023) 110652.; DOI:10.1016/j.apradiso.2023.110652
47.J. Hakenmüller and G. Heusser, CONRADA low level germanium test detector for the CONUS experiment, Appl. Radiat. Isot. 194 (2023) 110669.; DOI:10.1016/j.apradiso.2023.110669
48.K. L. Unger, S. Bähr, J. Becker, A. C. Knoll, C. Kiesling, F. Meggendorfer and S. Skambraks, Operation of the Neural z-Vertex Track Trigger for Belle II in 2021 - a Hardware Perspective, J. Phys. Conf. Ser. 2438 (2023) 012056.; DOI:10.1088/1742-6596/2438/1/012056
49.S. Jana, Y. P. Porto-Silva and M. Sen, Signal of neutrino magnetic moments from a galactic supernova burst at upcoming detectors, PoS ICHEP2022 (2022) 597.; DOI:10.22323/1.414.0597
50.E. Aprile et al., The triggerless data acquisition system of the XENONnT experiment, JINST 18 (2023) P07054.; DOI:10.1088/1748-0221/18/07/P07054
51.S. Blasi, J. Bollig and F. Goertz, Holographic composite Higgs model building: soft breaking, maximal symmetry, and the Higgs mass, JHEP 07 (2023) 048.; DOI:10.1007/JHEP07(2023)048
52.I. Bischer, C. Döring and A. Trautner, Telling compositeness at a distance with outer automorphisms and CP, J. Phys. A 56 (2023) 285401.; DOI:10.1088/1751-8121/acded4
53.M. Agostini et al., Liquid argon light collection and veto modeling in GERDA Phase II, Eur. Phys. J. C 83 (2023) 319.; DOI:10.1140/epjc/s10052-023-11354-9
54.A. Bally, Y. Chung and F. Goertz, Hierarchy problem and the top Yukawa coupling: An alternative to top partner solutions, Phys. Rev. D 108 (2023) 055008.; DOI:10.1103/PhysRevD.108.055008
55.T. Rink and M. Sen, Constraints on pseudo-Dirac neutrinos using high-energy neutrinos from NGC 1068 (2022).; Retrieved from https://arxiv.org/abs/2211.16520
56.E. Aprile et al., Low-energy calibration of XENON1T with an internal \(^{{\textbf {37}}}\)Ar source, Eur. Phys. J. C 83 (2023) 542.; DOI:10.1140/epjc/s10052-023-11512-z
57.A. Y. Smirnov and A. Trautner, GRB 221009A Gamma Rays from the Radiative Decay of Heavy Neutrinos?, Phys. Rev. Lett. 131 (2023) 021002.; DOI:10.1103/PhysRevLett.131.021002
58.Y. Chung, Explaining the \(R_{K^{(*)}}\) anomalies and the CDF \(M_W\) in Flavorful Top Seesaw Models with Gauged \(U(1)_{L(-R)}\) (2022).; Retrieved from https://arxiv.org/abs/2210.13402
59.T. Cheng, M. Lindner and M. Sen, Implications of a matter-antimatter mass asymmetry in Penning-trap experiments, Phys. Lett. B 844 (2023) 138068.; DOI:10.1016/j.physletb.2023.138068
60.H. Almazán et al., STEREO neutrino spectrum of \(^{235}\)U fission rejects sterile neutrino hypothesis, Nature 613 (2023) 257–261.; DOI:10.1038/s41586-022-05568-2
61.E. Aprile et al., Effective Field Theory and Inelastic Dark Matter Results from XENON1T (2022).; Retrieved from https://arxiv.org/abs/2210.07591
62.E. Aprile et al., An approximate likelihood for nuclear recoil searches with XENON1T data, Eur. Phys. J. C 82 (2022) 989.; DOI:10.1140/epjc/s10052-022-10913-w
63.E. Akhmedov and A. Y. Smirnov, Reply to ”Comment on ”Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets”” (2022).; Retrieved from https://arxiv.org/abs/2210.01547
64.J. Herms, S. Jana, V. P. K. and S. Saad, Light thermal relics enabled by a second Higgs, SciPost Phys. Proc. 12 (2023) 046.; DOI:10.21468/SciPostPhysProc.12.046
65.I. Oda and P. Saake, BRST formalism of Weyl conformal gravity, Phys. Rev. D 106 (2022) 106007.; DOI:10.1103/PhysRevD.106.106007
66.A. de Gouvêa et al., Theory of Neutrino Physics – Snowmass TF11 (aka NF08) Topical Group Report (2022).; Retrieved from https://arxiv.org/abs/2209.07983
67.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, Moscow Univ. Phys. Bull. 77 (2022) 371–374.; DOI:10.3103/S0027134922020461
68.M. Agostini et al., Search for exotic physics in double-\(\beta\) decays with GERDA Phase II, JCAP 12 (2022) 012.; DOI:10.1088/1475-7516/2022/12/012
69.A. Angelescu, A. Bally, F. Goertz and S. Weber, SU(6) gauge-Higgs grand unification: minimal viable models and flavor, JHEP 04 (2023) 012.; DOI:10.1007/JHEP04(2023)012
70.J. Kubo and J. Kuntz, Spontaneous conformal symmetry breaking and quantum quadratic gravity, Phys. Rev. D 106 (2022) 126015.; DOI:10.1103/PhysRevD.106.126015
71.A. N. Khan, Extra dimensions with light and heavy neutral leptons: an application to CE\(\nu\)NS, JHEP 01 (2023) 052.; DOI:10.1007/JHEP01(2023)052
72.A. S. Aasen, S. Floerchinger, G. Giacalone and D. Guenduez, Thermal fluctuations on the freeze-out surface of heavy-ion collisions and their impact on particle correlations, Phys. Rev. C 108 (2023) 014904.; DOI:10.1103/PhysRevC.108.014904
73.E. Akhmedov and A. Y. Smirnov, Damping of neutrino oscillations, decoherence and the lengths of neutrino wave packets, JHEP 11 (2022) 082.; DOI:10.1007/JHEP11(2022)082
74.A. N. Khan, Light new physics and neutrino electromagnetic interactions in XENONnT, Phys. Lett. B 837 (2023) 137650.; DOI:10.1016/j.physletb.2022.137650
75.J. Kubo, J. Kuntz, J. Rezacek and P. Saake, Inflation with massive spin-2 ghosts, JCAP 11 (2022) 049.; DOI:10.1088/1475-7516/2022/11/049
76.Y.-M. Chen, M. Sen, W. Tangarife, D. Tuckler and Y. Zhang, Core-collapse supernova constraint on the origin of sterile neutrino dark matter via neutrino self-interactions, JCAP 11 (2022) 014.; DOI:10.1088/1475-7516/2022/11/014
77.A. Ahmed, B. Grzadkowski and A. Socha, Higgs boson induced reheating and ultraviolet frozen-in dark matter, JHEP 02 (2023) 196.; DOI:10.1007/JHEP02(2023)196
78.H. Almazan et al., Improved FIFRELIN de-excitation model for neutrino applications, Eur. Phys. J. A 59 (2023) 75.; DOI:10.1140/epja/s10050-023-00977-x
79.E. Aprile et al., Search for New Physics in Electronic Recoil Data from XENONnT, Phys. Rev. Lett. 129 (2022) 161805.; DOI:10.1103/PhysRevLett.129.161805
80.C. Jaramillo, Reviving keV sterile neutrino dark matter, JCAP 10 (2022) 093.; DOI:10.1088/1475-7516/2022/10/093
81.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, The first string-derived eclectic flavor model with realistic phenomenology, JHEP 09 (2022) 224.; DOI:10.1007/JHEP09(2022)224
82.Á. Pastor-Gutiérrez, J. M. Pawlowski and M. Reichert, The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking, SciPost Phys. 15 (2023) 105.; DOI:10.21468/SciPostPhys.15.3.105
83.B. Batell et al., Dark Sector Studies with Neutrino Beams, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.06898
84.M. Aker et al., Search for Lorentz-invariance violation with the first KATRIN data, Phys. Rev. D 107 (2023) 082005.; DOI:10.1103/PhysRevD.107.082005
85.M. Aker et al., Search for keV-scale sterile neutrinos with the first KATRIN data, Eur. Phys. J. C 83 (2023) 763.; DOI:10.1140/epjc/s10052-023-11818-y
86.E. Akhmedov and P. Martı́nez-Miravé, Solar \({\overline{\nu}}_e\) flux: revisiting bounds on neutrino magnetic moments and solar magnetic field, JHEP 10 (2022) 144.; DOI:10.1007/JHEP10(2022)144
87.S. Richers and M. Sen, Fast Flavor Transformations, In I. Tanihata, H. Toki, & T. Kajino (Eds.), Handbook of Nuclear Physics (pp. 1–17).; DOI:10.1007/978-981-15-8818-1_125-1
88.J. Berger et al., Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments, Snowmass 2021.; Retrieved from https://arxiv.org/abs/2207.02882
89.G. Huang, Double and multiple bangs at tau neutrino telescopes, Eur. Phys. J. C 82 (2022) 1089.; DOI:10.1140/epjc/s10052-022-11052-y
90.G. Huang, S. Jana, A. S. de Jesus, F. S. Queiroz and W. Rodejohann, Search for leptophilic dark matter at the LHeC, J. Phys. G 50 (2023) 065001.; DOI:10.1088/1361-6471/accc4a
91.S. Centelles Chuliá, R. Srivastava and S. Yadav, CDF-II W boson mass in the Dirac Scotogenic model, Mod. Phys. Lett. A 38 (2023).; DOI:10.1142/S0217732323500499
92.T. Bringmann, P. F. Depta, M. Hufnagel, J. Kersten, J. T. Ruderman and K. Schmidt-Hoberg, Minimal sterile neutrino dark matter, Phys. Rev. D 107 (2023) L071702.; DOI:10.1103/PhysRevD.107.L071702
93.G. Huang and N. Nath, Inference of neutrino nature and Majorana CP phases from \(\mathbf{0}{\nu \beta \beta }\) decays with inverted mass ordering, Eur. Phys. J. C 82 (2022) 838.; DOI:10.1140/epjc/s10052-022-10811-1
94.S. Jana, Horizontal Symmetry and Large Neutrino Magnetic Moments, PoS DISCRETE2020-2021 (2022) 037.; DOI:10.22323/1.405.0037
95.L. Duarte, L. Lin, M. Lindner, V. Kozhuharov, S. V. Kuleshov, A. S. de Jesus, F. S. Queiroz, Y. Villamizar and H. Westfahl, Search for dark sector by repurposing the UVX Brazilian synchrotron, Eur. Phys. J. C 83 (2023) 514.; DOI:10.1140/epjc/s10052-023-11603-x
96.A. Schneider et al., Direct measurement of the \(^{3}\)He\(^{+}\) magnetic moments, Nature 606 (2022) 878–883.; DOI:10.1038/s41586-022-04761-7
97.F. Jörg, G. Eurin and H. Simgen, Production and characterization of a 222Rn-emanating stainless steel source, Appl. Radiat. Isot. 194 (2023) 110666.; DOI:10.1016/j.apradiso.2023.110666
98.A. Bonhomme, C. Buck, B. Gramlich and M. Raab, Safe liquid scintillators for large scale detectors, JINST 17 (2022) P11025.; DOI:10.1088/1748-0221/17/11/P11025
99.S. Klett, M. Lindner and A. Trautner, Generating the electro-weak scale by vector-like quark condensation, SciPost Phys. 14 (2023) 076.; DOI:10.21468/SciPostPhys.14.4.076
100.Á. Pastor-Gutiérrez and M. Yamada, UV completion of extradimensional Yang-Mills theory for Gauge-Higgs unification, SciPost Phys. 15 (2023) 101.; DOI:10.21468/SciPostPhys.15.3.101
101.M. Sen, Constraining pseudo-Dirac neutrinos from a galactic core-collapse supernova.; Retrieved from https://arxiv.org/abs/2205.13291
102.G. Huang, M. Lindner, P. Martı́nez-Miravé and M. Sen, Cosmology-friendly time-varying neutrino masses via the sterile neutrino portal, Phys. Rev. D 106 (2022) 033004.; DOI:10.1103/PhysRevD.106.033004
103.T. Rink, Coherent elastic neutrino-nucleus scattering – First constraints/observations and future potential, 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories.; Retrieved from https://arxiv.org/abs/2205.06712
104.F. Capozzi, M. Chakraborty, S. Chakraborty and M. Sen, Supernova fast flavor conversions in 1+1D: Influence of mu-tau neutrinos, Phys. Rev. D 106 (2022) 083011.; DOI:10.1103/PhysRevD.106.083011
105.E. Aprile et al., Double-Weak Decays of \(^{124}\)Xe and \(^{136}\)Xe in the XENON1T and XENONnT Experiments, Phys. Rev. C 106 (2022) 024328.; DOI:10.1103/PhysRevC.106.024328
106.A. de Gouvêa, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, Diffuse supernova neutrino background as a probe of late-time neutrino mass generation, Phys. Rev. D 106 (2022) 103026.; DOI:10.1103/PhysRevD.106.103026
107.S. Weber, Quantum Field Theory and Phenomenology in 5D Warped Space-Time: Gauge-Higgs Grand Unification (Master’s thesis). Heidelberg U.
108.S. Chuliá Centelles, R. Cepedello and O. Medina, Absolute neutrino mass scale and dark matter stability from flavour symmetry, JHEP 10 (2022) 080.; DOI:10.1007/JHEP10(2022)080
109.A. Das, Y. F. Perez-Gonzalez and M. Sen, Neutrino secret self-interactions: A booster shot for the cosmic neutrino background, Phys. Rev. D 106 (2022) 095042.; DOI:10.1103/PhysRevD.106.095042
110.T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111.; DOI:10.1007/JHEP08(2022)111
111.L. Gráf, M. Lindner and O. Scholer, Unraveling the 0\(\nu\)\(\beta\)\(\beta\) decay mechanisms, Phys. Rev. D 106 (2022) 035022.; DOI:10.1103/PhysRevD.106.035022
112.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing heavy sterile neutrinos at neutrino telescopes via the dipole portal, Phys. Lett. B 840 (2023) 137842.; DOI:10.1016/j.physletb.2023.137842
113.A. Trautner, Anatomy of a top-down approach to discrete and modular flavor symmetry, PoS DISCRETE2020-2021 (2022) 074.; DOI:10.22323/1.405.0074
114.K. S. Babu, S. Jana and V. P. K., Correlating W-Boson Mass Shift with Muon g-2 in the Two Higgs Doublet Model, Phys. Rev. Lett. 129 (2022) 121803.; DOI:10.1103/PhysRevLett.129.121803
115.J. Hakenmüller and W. Maneschg, Identification of radiopure tungsten for low background applications, J. Phys. G 49 (2022) 115201.; DOI:10.1088/1361-6471/ac9249
116.A. de Gouvêa, M. Sen and J. Weill, Visible neutrino decays and the impact of the daughter-neutrino mass, Phys. Rev. D 106 (2022) 013005.; DOI:10.1103/PhysRevD.106.013005
117.L. Althueser et al., GPU-based optical simulation of the DARWIN detector, JINST 17 (2022) P07018.; DOI:10.1088/1748-0221/17/07/P07018
118.A. N. Khan, \(\sin^2\theta_W\) and neutrino electromagnetic interactions in CE\(\bar{\nu}_e\)NS with different quenching factors (2022).; Retrieved from https://arxiv.org/abs/2203.08892
119.M. Aker et al., KATRIN: status and prospects for the neutrino mass and beyond, J. Phys. G 49 (2022) 100501.; DOI:10.1088/1361-6471/ac834e
120.N. Bartosik et al., Simulated Detector Performance at the Muon Collider (2022).; Retrieved from https://arxiv.org/abs/2203.07964
121.D. Stratakis et al., A Muon Collider Facility for Physics Discovery (2022).; Retrieved from https://arxiv.org/abs/2203.08033
122.S. Jindariani et al., Promising Technologies and R&D Directions for the Future Muon Collider Detectors (2022).; Retrieved from https://arxiv.org/abs/2203.07224
123.C. Awe et al., High Energy Physics Opportunities Using Reactor Antineutrinos (2022).; Retrieved from https://arxiv.org/abs/2203.07214
124.C. Aime et al., Muon Collider Physics Summary (2022).; Retrieved from https://arxiv.org/abs/2203.07256
125.J. de Blas et al., The physics case of a 3 TeV muon collider stage (2022).; Retrieved from https://arxiv.org/abs/2203.07261
126.M. Abdullah et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications (2022).; Retrieved from https://arxiv.org/abs/2203.07361
127.J. Herms, S. Jana, V. P. K. and S. Saad, Minimal Realization of Light Thermal Dark Matter, Phys. Rev. Lett. 129 (2022) 091803.; DOI:10.1103/PhysRevLett.129.091803
128.R. Mammen Abraham et al., Tau neutrinos in the next decade: from GeV to EeV, J. Phys. G 49 (2022) 110501.; DOI:10.1088/1361-6471/ac89d2
129.J. L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, J. Phys. G 50 (2023) 030501.; DOI:10.1088/1361-6471/ac865e
130.S. Jana, K. S. Babu, M. Lindner and V. P. K., Correlating Muon \(g-2\) Anomaly with Neutrino Magnetic Moments, PoS EPS-HEP2021 (2022) 189.; DOI:10.22323/1.398.0189
131.J. Aalbers et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G 50 (2023) 013001.; DOI:10.1088/1361-6471/ac841a
132.S. Jana, Y. P. Porto-Silva and M. Sen, Exploiting a future galactic supernova to probe neutrino magnetic moments, JCAP 09 (2022) 079.; DOI:10.1088/1475-7516/2022/09/079
133.J. M. Berryman et al., Neutrino self-interactions: A white paper, Phys. Dark Univ. 42 (2023) 101267.; DOI:10.1016/j.dark.2023.101267
134.G. Busoni, Capture of DM in Compact Stars, PoS PANIC2021 (2022) 046.; DOI:10.22323/1.380.0046
135.M. Agostini et al., Pulse shape analysis in Gerda Phase II, Eur. Phys. J. C 82 (2022) 284.; DOI:10.1140/epjc/s10052-022-10163-w
136.J. Kubo and J. Kuntz, Analysis of unitarity in conformal quantum gravity, Class. Quant. Grav. 39 (2022) 175010.; DOI:10.1088/1361-6382/ac8199
137.K. S. Babu, P. S. B. Dev and S. Jana, Probing neutrino mass models through resonances at neutrino telescopes, Int. J. Mod. Phys. A 37 (2022) 2230003.; DOI:10.1142/S0217751X22300034
138.M. Aker et al., New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, Phys. Rev. Lett. 129 (2022) 011806.; DOI:10.1103/PhysRevLett.129.011806
139.A. Bonhomme et al., Direct measurement of the ionization quenching factor of nuclear recoils in germanium in the keV energy range, Eur. Phys. J. C 82 (2022) 815.; DOI:10.1140/epjc/s10052-022-10768-1
140.A. Ahmed, B. Grzadkowski and A. Socha, Higgs Boson-Induced Reheating and Dark Matter Production, Symmetry 14 (2022) 306.; DOI:10.3390/sym14020306
141.H. de Kerret et al., The Double Chooz antineutrino detectors, Eur. Phys. J. C 82 (2022) 804.; DOI:10.1140/epjc/s10052-022-10726-x
142.V. Padmanabhan Kovilakam, S. Jana and S. Saad, Electron and muon \((g-2)\) in the 2HDM, PoS EPS-HEP2021 (2022) 696.; DOI:10.22323/1.398.0696
143.H. Bonet et al., First upper limits on neutrino electromagnetic properties from the CONUS experiment, Eur. Phys. J. C 82 (2022) 813.; DOI:10.1140/epjc/s10052-022-10722-1
144.D. Cichon, G. Eurin, F. Jörg, T. M. Undagoitia and N. Rupp, Scintillation decay-time constants for alpha particles and electrons in liquid xenon, Rev. Sci. Instrum. 93 (2022) 113302.; DOI:10.1063/5.0087216
145.M. Aker et al., Improved eV-scale sterile-neutrino constraints from the second KATRIN measurement campaign, Phys. Rev. D 105 (2022) 072004.; DOI:10.1103/PhysRevD.105.072004
146.A. N. Khan, Neutrino millicharge and other electromagnetic interactions with COHERENT-2021 data, Nucl. Phys. B 986 (2023) 116064.; DOI:10.1016/j.nuclphysb.2022.116064
147.I. Brivio et al., Truncation, validity, uncertainties (2022).; Retrieved from https://arxiv.org/abs/2201.04974
148.A. Yu. Smirnov and X.-J. Xu, Neutrino bound states and bound systems, JHEP 08 (2022) 170.; DOI:10.1007/JHEP08(2022)170
149.L. Šerkšnytė et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105 (2022) 083021.; DOI:10.1103/PhysRevD.105.083021
150.G. Busoni, Capture of Dark Matter in Neutron Stars, Moscow Univ. Phys. Bull. 77 (2022) 301–305.; DOI:10.3103/S0027134922020205
151.A. Ahmed and S. Najjari, Ultraviolet freeze-in dark matter through the dilaton portal, Phys. Rev. D 107 (2023) 055020.; DOI:10.1103/PhysRevD.107.055020
152.K. S. Babu, S. Jana and A. Thapa, Vector boson dark matter from trinification, JHEP 02 (2022) 051.; DOI:10.1007/JHEP02(2022)051
153.I. Bischer, W. Rodejohann, P. S. B. Dev, X.-J. Xu and Y. Zhang, Searching for new physics from SMEFT and leptoquarks at the P2 experiment, Phys. Rev. D 105 (2022) 095016.; DOI:10.1103/PhysRevD.105.095016
154.L. Gráf, S. Jana, A. Kaladharan and S. Saad, Gravitational wave imprints of left-right symmetric model with minimal Higgs sector, JCAP 05 (2022) 003.; DOI:10.1088/1475-7516/2022/05/003
155.E. Aprile et al., Emission of single and few electrons in XENON1T and limits on light dark matter, Phys. Rev. D 106 (2022) 022001.; DOI:10.1103/PhysRevD.106.022001
156.A. Angelescu, F. Goertz and A. Tada, Z\(_{2}\) non-restoration and composite Higgs: singlet-assisted baryogenesis w/o topological defects, JHEP 10 (2022) 019.; DOI:10.1007/JHEP10(2022)019
157.E. Aprile et al., Application and modeling of an online distillation method to reduce krypton and argon in XENON1T, PTEP 2022 (2022) 053H01.; DOI:10.1093/ptep/ptac074
158.G. Huang, S. Jana, M. Lindner and W. Rodejohann, Probing new physics at future tau neutrino telescopes, JCAP 02 (2022) 038.; DOI:10.1088/1475-7516/2022/02/038
159.S. Jana, S. Klett and M. Lindner, Flavor seesaw mechanism, Phys. Rev. D 105 (2022) 115015.; DOI:10.1103/PhysRevD.105.115015
160.A. Baur, H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Top-down anatomy of flavor symmetry breakdown, Phys. Rev. D 105 (2022) 055018.; DOI:10.1103/PhysRevD.105.055018
161.E. Aprile et al., Material radiopurity control in the XENONnT experiment, Eur. Phys. J. C 82 (2022) 599.; DOI:10.1140/epjc/s10052-022-10345-6
162.F. Goertz, Lepton Flavor in Composite Higgs Models, PoS PANIC2021 (2022) 149.; DOI:10.22323/1.380.0149
163.C. Benso, W. Rodejohann, M. Sen and A. U. Ramachandran, Sterile neutrino dark matter production in presence of nonstandard neutrino self-interactions: An EFT approach, Phys. Rev. D 105 (2022) 055016.; DOI:10.1103/PhysRevD.105.055016
164.G. Huang and N. Nath, Neutrino meets ultralight dark matter: 0\(\nu\)\(\beta\)\(\beta\) decay and cosmology, JCAP 05 (2022) 034.; DOI:10.1088/1475-7516/2022/05/034
165.M. Sajjad Athar et al., Status and perspectives of neutrino physics, Prog. Part. Nucl. Phys. 124 (2022) 103947.; DOI:10.1016/j.ppnp.2022.103947
166.A. Ahmed, B. Grzadkowski and A. Socha, Implications of time-dependent inflaton decay on reheating and dark matter production, Phys. Lett. B 831 (2022) 137201.; DOI:10.1016/j.physletb.2022.137201
167.H. Almazán et al., Searching for Hidden Neutrons with a Reactor Neutrino Experiment: Constraints from the STEREO Experiment, Phys. Rev. Lett. 128 (2022) 061801.; DOI:10.1103/PhysRevLett.128.061801
168.O. Fischer, M. Lindner and S. van der Woude, Robustness of ARS leptogenesis in scalar extensions, JHEP 05 (2022) 149.; DOI:10.1007/JHEP05(2022)149
169.M. Sen, Sterile neutrino dark matter, neutrino secret self-interactions and extra radiation, J. Phys. Conf. Ser. 2156 (2021) 012018.; DOI:10.1088/1742-6596/2156/1/012018
170.G. Huang and W. Rodejohann, Tritium beta decay with modified neutrino dispersion relations: KATRIN in the dark sea, Nucl. Phys. B 993 (2023) 116262.; DOI:10.1016/j.nuclphysb.2023.116262
171.H. Bonet et al., Novel constraints on neutrino physics beyond the standard model from the CONUS experiment, JHEP 05 (2022) 085.; DOI:10.1007/JHEP05(2022)085
172.F. Goertz, A. Angelescu, A. Bally and S. Blasi, Unification of Gauge Symmetries ... including their breaking, PoS EPS-HEP2021 (2022) 698.; DOI:10.22323/1.398.0698
173.F. Jörg, D. Cichon, G. Eurin, L. Hötzsch, T. Undagoitia Marrodán and N. Rupp, Characterization of alpha and beta interactions in liquid xenon, Eur. Phys. J. C 82 (2022) 361.; DOI:10.1140/epjc/s10052-022-10259-3
174.E. Akhmedov, Nuclear fusion catalyzed by doubly charged scalars: Implications for energy production, Phys. Rev. D 106 (2022) 035013.; DOI:10.1103/PhysRevD.106.035013
175.L. A. Anchordoqui et al., The Forward Physics Facility: Sites, experiments, and physics potential, Phys. Rept. 968 (2022) 1–50.; DOI:10.1016/j.physrep.2022.04.004
176.M. Aoki, J. Kubo and J. Yang, Inflation and dark matter after spontaneous Planck scale generation by hidden chiral symmetry breaking, JCAP 01 (2022) 005.; DOI:10.1088/1475-7516/2022/01/005
177.A. Ismail, S. Jana and R. M. Abraham, Neutrino up-scattering via the dipole portal at forward LHC detectors, Phys. Rev. D 105 (2022) 055008.; DOI:10.1103/PhysRevD.105.055008
178.F. Anzuini, N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M. Virgato, Improved treatment of dark matter capture in neutron stars III: nucleon and exotic targets, JCAP 11 (2021) 056.; DOI:10.1088/1475-7516/2021/11/056
179.F. Goertz, Flavour observables and composite dynamics: leptons, Eur. Phys. J. ST 231 (2022) 1287–1298.; DOI:10.1140/epjs/s11734-021-00222-w
180.C. Döring, S. Centelles Chuliá, M. Lindner, B. M. Schaefer and M. Bartelmann, Gravitational wave induced baryon acoustic oscillations, SciPost Phys. 12 (2022) 114.; DOI:10.21468/SciPostPhys.12.3.114
181.Z.-C. Liang, Y.-M. Hu, Y. Jiang, J. Cheng, J. Zhang and J. Mei, Science with the TianQin Observatory: Preliminary results on stochastic gravitational-wave background, Phys. Rev. D 105 (2022) 022001.; DOI:10.1103/PhysRevD.105.022001
182.T. M. Undagoitia, W. Rodejohann, T. Wolf and C. E. Yaguna, Laboratory limits on the annihilation or decay of dark matter particles, PTEP 2022 (2022) 013F01.; DOI:10.1093/ptep/ptab139
183.H. Almazán et al., Joint Measurement of the \(^{235}\)U Antineutrino Spectrum by Prospect and Stereo, Phys. Rev. Lett. 128 (2022) 081802.; DOI:10.1103/PhysRevLett.128.081802
184.A. Y. Smirnov and V. B. Valera, Resonance refraction and neutrino oscillations, JHEP 09 (2021) 177.; DOI:10.1007/JHEP09(2021)177
185.C.-W. Chiang, S. Jana and D. Sengupta, Investigating new physics models with signature of same-sign diboson+\(+{E\!\!\!\!/}_{T}\), Phys. Rev. D 105 (2022) 055014.; DOI:10.1103/PhysRevD.105.055014
186.M. Aker et al., Direct neutrino-mass measurement with sub-electronvolt sensitivity, Nature Phys. 18 (2022) 160–166.; DOI:10.1038/s41567-021-01463-1
187.H. P. Nilles, S. Ramos-Sanchez, A. Trautner and P. K. S. Vaudrevange, Orbifolds from Sp(4,Z) and their modular symmetries, Nucl. Phys. B 971 (2021) 115534.; DOI:10.1016/j.nuclphysb.2021.115534
188.M. Aker et al., Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment, Eur. Phys. J. C 81 (2021) 579.; DOI:10.1140/epjc/s10052-021-09325-z
189.A. Trautner, Living on the Fermi edge: On baryon transport and Fermi condensation, Phys. Lett. B 833 (2022) 137365.; DOI:10.1016/j.physletb.2022.137365
190.V. C. Antochi et al., Improved quality tests of R11410-21 photomultiplier tubes for the XENONnT experiment, JINST 16 (2021) P08033.; DOI:10.1088/1748-0221/16/08/P08033
191.N. F. Bell, G. Busoni, M. E. Ramirez-Quezada, S. Robles and M. Virgato, Improved treatment of dark matter capture in white dwarfs, JCAP 10 (2021) 083.; DOI:10.1088/1475-7516/2021/10/083
192.Á. Pastor-Gutiérrez, H. Schoorlemmer, R. D. Parsons and M. Schmelling, Sub-TeV hadronic interaction model differences and their impact on air showers, Eur. Phys. J. C 81 (2021) 369.; DOI:10.1140/epjc/s10052-021-09160-2
193.A. Angelescu, A. Bally, S. Blasi and F. Goertz, Minimal SU(6) gauge-Higgs grand unification, Phys. Rev. D 105 (2022) 035026.; DOI:10.1103/PhysRevD.105.035026
194.K. S. Babu, S. Jana, M. Lindner and V. P. K, Muon g \(-\) 2 anomaly and neutrino magnetic moments, JHEP 10 (2021) 240.; DOI:10.1007/JHEP10(2021)240
195.V. Brdar, S. Jana, J. Kubo and M. Lindner, Semi-secretly interacting Axion-like particle as an explanation of Fermilab muon g \(-\) 2 measurement, Phys. Lett. B 820 (2021) 136529.; DOI:10.1016/j.physletb.2021.136529
196.A. N. Khan, D. W. McKay and W. Rodejohann, CP-violating and charged current neutrino nonstandard interactions in CE\(\nu\)NS, Phys. Rev. D 104 (2021) 015019.; DOI:10.1103/PhysRevD.104.015019
197.M. Agostini et al., Characterization of inverted coaxial \(^{76}\)Ge detectors in GERDA for future double-\(\beta\) decay experiments, Eur. Phys. J. C 81 (2021) 505.; DOI:10.1140/epjc/s10052-021-09184-8
198.M. Agostini et al., Calibration of the Gerda experiment, Eur. Phys. J. C 81 (2021) 682.; DOI:10.1140/epjc/s10052-021-09403-2
199.A. Angelescu, D. Bečirević, D. A. Faroughy, F. Jaffredo and O. Sumensari, Single leptoquark solutions to the B-physics anomalies, Phys. Rev. D 104 (2021) 055017.; DOI:10.1103/PhysRevD.104.055017
200.Y. P. Porto-Silva and A. Yu. Smirnov, Coherence of oscillations in matter and supernova neutrinos, JCAP 06 (2021) 029.; DOI:10.1088/1475-7516/2021/06/029
201.J. Herms and A. Ibarra, Production and signatures of multi-flavour dark matter scenarios with t-channel mediators, JCAP 10 (2021) 026.; DOI:10.1088/1475-7516/2021/10/026
202.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, Searching for Z’ bosons at the P2 experiment, JHEP 06 (2021) 039.; DOI:10.1007/JHEP06(2021)039
203.M. Aker et al., The design, construction, and commissioning of the KATRIN experiment, JINST 16 (2021) T08015.; DOI:10.1088/1748-0221/16/08/T08015
204.G. Huang, S. Jana, F. S. Queiroz and W. Rodejohann, Probing the RK(*) anomaly at a muon collider, Phys. Rev. D 105 (2022) 015013.; DOI:10.1103/PhysRevD.105.015013
205.G. Huang and W. Rodejohann, Solving the Hubble tension without spoiling Big Bang Nucleosynthesis, Phys. Rev. D 103 (2021) 123007.; DOI:10.1103/PhysRevD.103.123007
206.G. Huang, F. S. Queiroz and W. Rodejohann, Gauged \(L^{}_{\mu}{-}L^{}_{\tau}\) at a muon collider, Phys. Rev. D 103 (2021) 095005.; DOI:10.1103/PhysRevD.103.095005
207.K. S. Babu, D. Goncalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity between LHC and Oscillation Experiments, Beyond Standard Model: From Theory to Experiment.; DOI:10.31526/ACP.BSM-2021.28
208.S. Jana, V. P. K. and S. Saad, Light Scalar and Lepton Anomalous Magnetic Moments, Beyond Standard Model: From Theory to Experiment.; DOI:10.31526/ACP.BSM-2021.23
209.M. Schmelling, Á. Pastor Gutiérrez, H. Schoorlemmer and R. D. Parsons, Sub-TeV hadronic interaction model differences and their impact on air-showers, PoS ICRC2021 (2021) 476.; DOI:10.22323/1.395.0476
210.I. Bischer, C. Döring and A. Trautner, Simultaneous Block Diagonalization of Matrices of Finite Order, J. Phys. A 54 (2021) 085203.; DOI:10.1088/1751-8121/abd979
211.S. Fabian, F. Goertz and Y. Jiang, Dark matter and nature of electroweak phase transition with an inert doublet, JCAP 09 (2021) 011.; DOI:10.1088/1475-7516/2021/09/011
212.P. Baldi, L. Blecher, A. Butter, J. Collado, J. N. Howard, F. Keilbach, T. Plehn, G. Kasieczka and D. Whiteson, How to GAN Higher Jet Resolution, SciPost Phys. 13 (2022) 064.; DOI:10.21468/SciPostPhys.13.3.064
213.C. Bonilla, J. Herms, A. Ibarra and P. Strobl, Neutrino parameters in the Planck-scale lepton number breaking scenario with extended scalar sectors, Phys. Rev. D 103 (2021) 035010.; DOI:10.1103/PhysRevD.103.035010
214.J. Kubo, J. Kuntz, M. Lindner, J. Rezacek, P. Saake and A. Trautner, Unified emergence of energy scales and cosmic inflation, JHEP 08 (2021) 016.; DOI:10.1007/JHEP08(2021)016
215.N. F. Bell, G. Busoni, T. F. Motta, S. Robles, A. W. Thomas and M. Virgato, Nucleon Structure and Strong Interactions in Dark Matter Capture in Neutron Stars, Phys. Rev. Lett. 127 (2021) 111803.; DOI:10.1103/PhysRevLett.127.111803
216.O. Fischer, M. Reininghaus and R. Ulrich, Avenues to new-physics searches in cosmic ray air showers, PoS ICHEP2020 (2021) 602.; DOI:10.22323/1.390.0602
217.S. Jana, Non-Standard Interactions in Radiative Neutrino Mass Models, PoS ICHEP2020 (2021) 143.; DOI:10.22323/1.390.0143
218.E. Aprile et al., Search for Coherent Elastic Scattering of Solar \(^8\)B Neutrinos in the XENON1T Dark Matter Experiment, Phys. Rev. Lett. 126 (2021) 091301.; DOI:10.1103/PhysRevLett.126.091301
219.P. D. Bolton, F. F. Deppisch, L. Gráf and F. Šimkovic, Two-Neutrino Double Beta Decay with Sterile Neutrinos, Phys. Rev. D 103 (2021) 055019.; DOI:10.1103/PhysRevD.103.055019
220.X. Luo, W. Rodejohann and X.-J. Xu, Dirac neutrinos and N\(_{eff}\). Part II. The freeze-in case, JCAP 03 (2021) 082.; DOI:10.1088/1475-7516/2021/03/082
221.E. Aprile et al., Search for inelastic scattering of WIMP dark matter in XENON1T, Phys. Rev. D 103 (2021) 063028.; DOI:10.1103/PhysRevD.103.063028
222.H. Bonet et al., Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment, Phys. Rev. Lett. 126 (2021) 041804.; DOI:10.1103/PhysRevLett.126.041804
223.G. Huang and S. Zhou, Tentative sensitivity of future \(0\nu \beta\beta\)-decay experiments to neutrino masses and Majorana CP phases, JHEP 03 (2021) 084.; DOI:10.1007/JHEP03(2021)084
224.S. Al Kharusi et al., SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy, New J. Phys. 23 (2021) 031201.; DOI:10.1088/1367-2630/abde33
225.L. Graf, S. Jana, M. Lindner, W. Rodejohann and X.-J. Xu, Flavored neutrinoless double beta decay, Phys. Rev. D 103 (2021) 055007.; DOI:10.1103/PhysRevD.103.055007
226.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars II: Leptonic Targets, JCAP 03 (2021) 086.; DOI:10.1088/1475-7516/2021/03/086
227.H. Bonet et al., Large-size sub-keV sensitive germanium detectors for the CONUS experiment, Eur. Phys. J. C 81 (2021) 267.; DOI:10.1140/epjc/s10052-021-09038-3
228.E. Akhmedov, Neutrino oscillations in matter: from microscopic to macroscopic description, JHEP 02 (2021) 107.; DOI:10.1007/JHEP02(2021)107
229.J. L. Diaz-Cruz, U. J. Saldana-Salazar, K. M. Tame-Narvaez and V. T. Tenorth, Natural 2HDMs without FCNCs, Phys. Rev. D 104 (2021) 035018.; DOI:10.1103/PhysRevD.104.035018
230.H. Almazán et al., First antineutrino energy spectrum from \(^{235}\)U fissions with the STEREO detector at ILL, J. Phys. G 48 (2021) 075107.; DOI:10.1088/1361-6471/abd37a
231.E. Aprile et al., \(^{222}\)Rn emanation measurements for the XENON1T experiment, Eur. Phys. J. C 81 (2021) 337.; DOI:10.1140/epjc/s10052-020-08777-z
232.F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, Analysis of light neutrino exchange and short-range mechanisms in \(0\nu\beta\beta\) decay, Phys. Rev. D 102 (2020) 095016.; DOI:10.1103/PhysRevD.102.095016
233.S. Bruenner, D. Cichon, G. Eurin, P. Herrero Gómez, F. Jörg, T. Marrodán Undagoitia, H. Simgen and N. Rupp, Radon daughter removal from PTFE surfaces and its application in liquid xenon detectors, Eur. Phys. J. C 81 (2021) 343.; DOI:10.1140/epjc/s10052-021-09047-2
234.K. S. Babu, P. S. B. Dev, S. Jana and A. Thapa, Unified framework for \(B\)-anomalies, muon \(g − 2\) and neutrino masses, JHEP 03 (2021) 179.; DOI:10.1007/JHEP03(2021)179
235.S. Blasi, V. Brdar and K. Schmitz, Has NANOGrav found first evidence for cosmic strings?, Phys. Rev. Lett. 126 (2021) 041305.; DOI:10.1103/PhysRevLett.126.041305
236.M. Agostini et al., Final Results of GERDA on the Search for Neutrinoless Double-\(\beta\) Decay, Phys. Rev. Lett. 125 (2020) 252502.; DOI:10.1103/PhysRevLett.125.252502
237.T. Abrahão et al., Search for signatures of sterile neutrinos with Double Chooz, Eur. Phys. J. C 81 (2021) 775.; DOI:10.1140/epjc/s10052-021-09459-0
238.L. Graf, B. Henning, X. Lu, T. Melia and H. Murayama, 2, 12, 117, 1959, 45171, 1170086, : a Hilbert series for the QCD chiral Lagrangian, JHEP 01 (2021) 142.; DOI:10.1007/JHEP01(2021)142
239.M. P. Bento, R. Boto, J. P. Silva and A. Trautner, A fully basis invariant Symmetry Map of the 2HDM, JHEP 21 (2020) 229.; DOI:10.1007/JHEP02(2021)220
240.A. N. Khan, Constraints on general light mediators from PandaX-II electron recoil data, Phys. Lett. B 819 (2021) 136415.; DOI:10.1016/j.physletb.2021.136415
241.T. Alanne, N. Benincasa, M. Heikinheimo, K. Kannike, V. Keus, N. Koivunen and K. Tuominen, Pseudo-Goldstone dark matter: gravitational waves and direct-detection blind spots, JHEP 10 (2020) 080.; DOI:10.1007/JHEP10(2020)080
242.K. Cheung, O. Fischer, Z. S. Wang and J. Zurita, Exotic Higgs decays into displaced jets at the LHeC, JHEP 02 (2021) 161.; DOI:10.1007/JHEP02(2021)161
243.I. Bischer, T. Plehn and W. Rodejohann, Dark Matter EFT, the Third – Neutrino WIMPs, SciPost Phys. 10 (2021) 039.; DOI:10.21468/SciPostPhys.10.2.039
244.S. Jana, P. K. Vishnu, W. Rodejohann and S. Saad, Dark matter assisted lepton anomalous magnetic moments and neutrino masses, Phys. Rev. D 102 (2020) 075003.; DOI:10.1103/PhysRevD.102.075003
245.V. Brdar, A. Greljo, J. Kopp and T. Opferkuch, The Neutrino Magnetic Moment Portal: Cosmology, Astrophysics, and Direct Detection, JCAP 01 (2021) 039.; DOI:10.1088/1475-7516/2021/01/039
246.V. Brdar, O. Fischer and A. Yu. Smirnov, Model-independent bounds on the nonoscillatory explanations of the MiniBooNE excess, Phys. Rev. D 103 (2021) 075008.; DOI:10.1103/PhysRevD.103.075008
247.P. Agostini et al., The Large HadronElectron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501.; DOI:10.1088/1361-6471/abf3ba
248.T. Abrahão et al., Reactor rate modulation oscillation analysis with two detectors in Double Chooz, JHEP 01 (2021) 190.; DOI:10.1007/JHEP01(2021)190
249.E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031.; DOI:10.1088/1475-7516/2020/11/031
250.G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S. Vogl, EFT interpretation of XENON1T electron recoil excess: Neutrinos and dark matter, Phys. Rev. D 103 (2021) 023024.; DOI:10.1103/PhysRevD.103.023024
251.K. S. Babu, S. Jana and M. Lindner, Large Neutrino Magnetic Moments in the Light of Recent Experiments, JHEP 10 (2020) 040.; DOI:10.1007/JHEP10(2020)040
252.M. Aoki, V. Brdar and J. Kubo, Heavy dark matter, neutrino masses, and Higgs naturalness from a strongly interacting hidden sector, Phys. Rev. D 102 (2020) 035026.; DOI:10.1103/PhysRevD.102.035026
253.M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, XENON1T anomaly: A light Z’ from a Two Higgs Doublet Model, Phys. Lett. B 811 (2020) 135972.; DOI:10.1016/j.physletb.2020.135972
254.M. Andriamirado et al., Note on arXiv:2005.05301, ’Preparation of the Neutrino-4 experiment on search for sterile neutrino and the obtained results of measurements’ (2020).; Retrieved from https://arxiv.org/abs/2006.13147
255.A. N. Khan, Can Nonstandard Neutrino Interactions explain the XENON1T spectral excess?, Phys. Lett. B 809 (2020) 135782.; DOI:10.1016/j.physletb.2020.135782
256.A. Bally, S. Jana and A. Trautner, Neutrino self-interactions and XENON1T electron recoil excess, Phys. Rev. Lett. 125 (2020) 161802.; DOI:10.1103/PhysRevLett.125.161802
257.E. Aprile et al., Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004.; DOI:10.1103/PhysRevD.102.072004
258.T. Alanne, G. Arcadi, F. Goertz, V. Tenorth and S. Vogl, Model-independent constraints with extended dark matter EFT, JHEP 10 (2020) 172.; DOI:10.1007/JHEP10(2020)172
259.T. Rink, W. Rodejohann and K. Schmitz, Leptogenesis and low-energy CP violation in a type-II-dominated left-right seesaw model, Nucl. Phys. B 972 (2021) 115552.; DOI:10.1016/j.nuclphysb.2021.115552
260.J. Aalbers et al., Solar neutrino detection sensitivity in DARWIN via electron scattering, Eur. Phys. J. C 80 (2020) 1133.; DOI:10.1140/epjc/s10052-020-08602-7
261.M. Agostini et al., First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/\(c^2\) with GERDA, Phys. Rev. Lett. 125 (2020) 011801.; DOI:10.1103/PhysRevLett.125.011801
262.S. Centelles Chuliá, C. Döring, W. Rodejohann and U. J. Saldaña-Salazar, Natural axion model from flavour, JHEP 09 (2020) 137.; DOI:10.1007/JHEP09(2020)137
263.M. J. Zurowski, E. Barberio and G. Busoni, Inelastic Dark Matter and the SABRE Experiment, JCAP 12 (2020) 014.; DOI:10.1088/1475-7516/2020/12/014
264.D. Cichon, G. Eurin, F. Jörg, T. Marrodán Undagoitia and N. Rupp, Transmission of xenon scintillation light through PTFE, JINST 15 (2020) P09010.; DOI:10.1088/1748-0221/15/09/P09010
265.X. Luo, W. Rodejohann and X.-J. Xu, Dirac neutrinos and \(N_{{\rm eff}}\), JCAP 06 (2020) 058.; DOI:10.1088/1475-7516/2020/06/058
266.N. F. Bell, G. Busoni, S. Robles and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars, JCAP 09 (2020) 028.; DOI:10.1088/1475-7516/2020/09/028
267.C. Jaramillo, M. Lindner and W. Rodejohann, Seesaw neutrino dark matter by freeze-out, JCAP 04 (2021) 023.; DOI:10.1088/1475-7516/2021/04/023
268.M. Berbig, S. Jana and A. Trautner, The Hubble tension and a renormalizable model of gauged neutrino self-interactions, Phys. Rev. D 102 (2020) 115008.; DOI:10.1103/PhysRevD.102.115008
269.F. F. Deppisch, L. Graf, W. Rodejohann and X.-J. Xu, Neutrino Self-Interactions and Double Beta Decay, Phys. Rev. D 102 (2020) 051701.; DOI:10.1103/PhysRevD.102.051701
270.S. Blasi, C. Csaki and F. Goertz, A natural composite Higgs via universal boundary conditions, SciPost Phys. 10 (2021) 121.; DOI:10.21468/SciPostPhys.10.5.121
271.H. Almazán et al., Accurate Measurement of the Electron Antineutrino Yield of \(^{235}\)U Fissions from the STEREO Experiment with 119 Days of Reactor-On Data, Phys. Rev. Lett. 125 (2020) 201801.; DOI:10.1103/PhysRevLett.125.201801
272.S. Blasi, V. Brdar and K. Schmitz, Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum, Phys. Rev. Res. 2 (2020) 043321.; DOI:10.1103/PhysRevResearch.2.043321
273.S. Jana, N. Okada and D. Raut, Displaced vertex and disappearing track signatures in type-III seesaw, Eur. Phys. J. C 82 (2022) 927.; DOI:10.1140/epjc/s10052-022-10855-3
274.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and cosmological production of light sterile neutrinos, JCAP 08 (2020) 015.; DOI:10.1088/1475-7516/2020/08/015
275.F. F. Deppisch, L. Graf and F. Šimkovic, Searching for New Physics in Two-Neutrino Double Beta Decay, Phys. Rev. Lett. 125 (2020) 171801.; DOI:10.1103/PhysRevLett.125.171801
276.F. Agostini et al., Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of \(^{136}\)Xe, Eur. Phys. J. C 80 (2020) 808.; DOI:10.1140/epjc/s10052-020-8196-z
277.V. Brdar, M. Lindner, S. Vogl and X.-J. Xu, Revisiting neutrino self-interaction constraints from \(Z\) and \(\tau\) decays, Phys. Rev. D 101 (2020) 115001.; DOI:10.1103/PhysRevD.101.115001
278.E. Aprile et al., Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C 80 (2020) 785.; DOI:10.1140/epjc/s10052-020-8284-0
279.K. S. Babu, D. Gonçalves, S. Jana and P. A. N. Machado, Neutrino Non-Standard Interactions: Complementarity Between LHC and Oscillation Experiments, Phys. Lett. B 815 (2021) 136131.; DOI:10.1016/j.physletb.2021.136131
280.S. Jana, V. P. K. and S. Saad, Resolving electron and muon \(g-2\) within the 2HDM, Phys. Rev. D 101 (2020) 115037.; DOI:10.1103/PhysRevD.101.115037
281.Y. P. Porto-Silva, S. Prakash, O. L. G. Peres, H. Nunokawa and H. Minakata, Constraining visible neutrino decay at KamLAND and JUNO, Eur. Phys. J. C 80 (2020) 999.; DOI:10.1140/epjc/s10052-020-08573-9
282.A. Trautner, On the systematic construction of basis invariants, (E. Widmann, J. Marton, A. Pichler, M. Simon, & D. Murtagh, Eds.)J. Phys. Conf. Ser. 1586 (2020) 012005.; DOI:10.1088/1742-6596/1586/1/012005
283.Y. P. Porto-Silva and M. C. de Oliveira, Theory of Neutrino Detection – Flavor Oscillations and Weak Values, Eur. Phys. J. C 81 (2021) 330.; DOI:10.1140/epjc/s10052-021-09108-6
284.P. S. B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, MUonE sensitivity to new physics explanations of the muon anomalous magnetic moment, JHEP 05 (2020) 053.; DOI:10.1007/JHEP05(2020)053
285.G. Arcadi, G. Busoni, T. Hugle and V. T. Tenorth, Comparing 2HDM \(+\) Scalar and Pseudoscalar Simplified Models at LHC, JHEP 06 (2020) 098.; DOI:10.1007/JHEP06(2020)098
286.P. Bakhti and A. Yu. Smirnov, Oscillation tomography of the Earth with solar neutrinos and future experiments, Phys. Rev. D 101 (2020) 123031.; DOI:10.1103/PhysRevD.101.123031
287.A. E. Cárcamo Hernández, C. O. Dib and U. J. Saldaña-Salazar, When \(\tan \beta\) meets all the mixing angles, Phys. Lett. B 809 (2020) 135750.; DOI:10.1016/j.physletb.2020.135750
288.C. Buck et al., A novel experiment for coherent elastic neutrino nucleus scattering: CONUS, (K. Clark, C. Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser. 1342 (2020) 012094.; DOI:10.1088/1742-6596/1342/1/012094
289.S. Baumholzer, V. Brdar, P. Schwaller and A. Segner, Shining Light on the Scotogenic Model: Interplay of Colliders and Cosmology, JHEP 09 (2020) 136.; DOI:10.1007/JHEP09(2020)136
290.H. Almazán et al., Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data, Phys. Rev. D 102 (2020) 052002.; DOI:10.1103/PhysRevD.102.052002
291.S. Centelles Chuliá and A. Trautner, Asymmetric tri-bi-maximal mixing and residual symmetries, Mod. Phys. Lett. A 35 (2020) 2050292.; DOI:10.1142/S0217732320502922
292.A. Bonhomme, Latest results of the STEREO sterile neutrino search at the ILL Grenoble, PoS LeptonPhoton2019 (2019) 087.; DOI:10.22323/1.367.0087
293.J. Kawamura, S. Raby and A. Trautner, Complete vectorlike fourth family with U(1)’ : A global analysis, Phys. Rev. D 101 (2020) 035026.; DOI:10.1103/PhysRevD.101.035026
294.S. Centelles Chuliá, W. Rodejohann and U. J. Saldaña-Salazar, Two-Higgs-doublet models with a flavored \(\mathbb{Z}_2\) symmetry, Phys. Rev. D 101 (2020) 035013.; DOI:10.1103/PhysRevD.101.035013
295.C. Schwanenberger and O. Fischer, Beyond the Standard Model physics at the LHeC and the FCC-he, PoS EPS-HEP2019 (2020) 563.; DOI:10.22323/1.364.0563
296.C. Benso, V. Brdar, M. Lindner and W. Rodejohann, Prospects for Finding Sterile Neutrino Dark Matter at KATRIN, Phys. Rev. D 100 (2019) 115035.; DOI:10.1103/PhysRevD.100.115035
297.V. Brdar, A. J. Helmboldt and M. Lindner, Strong Supercooling as a Consequence of Renormalization Group Consistency, JHEP 12 (2019) 158.; DOI:10.1007/JHEP12(2019)158
298.A. N. Khan, H. Nunokawa and S. J. Parke, Why matter effects matter for JUNO, Phys. Lett. B 803 (2020) 135354.; DOI:10.1016/j.physletb.2020.135354
299.L. Graf, Particle physics of non-standard 0\(\nu \beta \beta\) decay, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 2165 (2019) 020009.; DOI:10.1063/1.5130970
300.J. Kotila, L. Graf, F. F. Deppisch and F. Iachello, Nuclear physics of non-standard \(0 \nu \beta\beta\)-decay, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 2165 (2019) 020017.; DOI:10.1063/1.5130978
301.A. Smolnikov, GERDA searches for 0\(\nu \beta\beta\) and other \(\beta\beta\) decay modes of \(^{76}\)Ge, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 2165 (2019) 020024.; DOI:10.1063/1.5130985
302.S. Jana, P. K. Vishnu and S. Saad, Minimal realizations of Dirac neutrino mass from generic one-loop and two-loop topologies at \(d = 5\), JCAP 04 (2020) 018.; DOI:10.1088/1475-7516/2020/04/018
303.G. Huang, W. Rodejohann and S. Zhou, Effective neutrino masses in KATRIN and future tritium beta-decay experiments, Phys. Rev. D 101 (2020) 016003.; DOI:10.1103/PhysRevD.101.016003
304.D. Aristizabal Sierra et al., Proceedings of The Magnificent CE\(\nu\)NS Workshop 2018.; DOI:10.5281/zenodo.3489190
305.J. Alison et al., Higgs boson potential at colliders: Status and perspectives, (B. Di Micco, M. Gouzevitch, J. Mazzitelli, & C. Vernieri, Eds.)Rev. Phys. 5 (2020) 100045.; DOI:10.1016/j.revip.2020.100045
306.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, A fresh look at the gravitational-wave signal from cosmological phase transitions, JHEP 03 (2020) 004.; DOI:10.1007/JHEP03(2020)004
307.F. Goertz, E. Madge, P. Schwaller and V. T. Tenorth, Discovering the \(h\to Z \gamma\) decay in \(t \bar t\) associated production, Phys. Rev. D 102 (2020) 053004.; DOI:10.1103/PhysRevD.102.053004
308.A. Y. Smirnov and X.-J. Xu, Wolfenstein potentials for neutrinos induced by ultra-light mediators, JHEP 12 (2019) 046.; DOI:10.1007/JHEP12(2019)046
309.M. Agostini et al., Modeling of GERDA Phase II data, JHEP 03 (2020) 139.; DOI:10.1007/JHEP03(2020)139
310.V. Brdar, L. Graf, A. J. Helmboldt and X.-J. Xu, Gravitational Waves as a Probe of Left-Right Symmetry Breaking, JCAP 12 (2019) 027.; DOI:10.1088/1475-7516/2019/12/027
311.S. Schoppmann, Search for eV Sterile Neutrinos The Stereo Experiment, (K. Clark, C. Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser. 1342 (2020) 012042.; DOI:10.1088/1742-6596/1342/1/012042
312.S. Schoppmann, Search for eV Sterile Neutrinos - The STEREO Experiment [Blois 2019], 31st Rencontres de Blois on Particle Physics and Cosmology.; Retrieved from https://arxiv.org/abs/1909.01017
313.L. Graf, Effective short-range contributions to neutrinoless double beta decay, (R. Maruyama, Ed.)AIP Conf. Proc. 2150 (2019) 040003.; DOI:10.1063/1.5124604
314.T. Hasegawa, N. Hiroshima, K. Kohri, R. S. L. Hansen, T. Tram and S. Hannestad, MeV-scale reheating temperature and thermalization of oscillating neutrinos by radiative and hadronic decays of massive particles, JCAP 12 (2019) 012.; DOI:10.1088/1475-7516/2019/12/012
315.C. Buck, B. Gramlich and S. Schoppmann, Novel Opaque Scintillator for Neutrino Detection, JINST 14 (2019) P11007.; DOI:10.1088/1748-0221/14/11/P11007
316.A. Cabrera et al., Neutrino Physics with an Opaque Detector, Commun. Phys. 4 (2021) 273.; DOI:10.1038/s42005-021-00763-5
317.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, A String Theory of Flavor and \(\mathscr {CP}\), Nucl. Phys. B 947 (2019) 114737.; DOI:10.1016/j.nuclphysb.2019.114737
318.E. Aprile et al., Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T, Phys. Rev. Lett. 123 (2019) 241803.; DOI:10.1103/PhysRevLett.123.241803
319.A. N. Khan and W. Rodejohann, New physics from COHERENT data with an improved quenching factor, Phys. Rev. D 100 (2019) 113003.; DOI:10.1103/PhysRevD.100.113003
320.W. Rodejohann and X.-J. Xu, Loop-enhanced rate of neutrinoless double beta decay, JHEP 11 (2019) 029.; DOI:10.1007/JHEP11(2019)029
321.E. Aprile et al., Light Dark Matter Search with Ionization Signals in XENON1T, Phys. Rev. Lett. 123 (2019) 251801.; DOI:10.1103/PhysRevLett.123.251801
322.P.-H. Gu, Double type II seesaw mechanism accompanied by Dirac fermionic dark matter, Phys. Rev. D 101 (2020) 015006.; DOI:10.1103/PhysRevD.101.015006
323.S. Biondini and S. Vogl, Scalar dark matter coannihilating with a coloured fermion, JHEP 11 (2019) 147.; DOI:10.1007/JHEP11(2019)147
324.C. Klein, M. Lindner and S. Vogl, Radiative neutrino masses and successful \(SU(5)\) unification, Phys. Rev. D 100 (2019) 075024.; DOI:10.1103/PhysRevD.100.075024
325.A. N. Khan, W. Rodejohann and X.-J. Xu, Borexino and general neutrino interactions, Phys. Rev. D 101 (2020) 055047.; DOI:10.1103/PhysRevD.101.055047
326.J. Kawamura, S. Raby and A. Trautner, Complete vectorlike fourth family and new U(1)’ for muon anomalies, Phys. Rev. D 100 (2019) 055030.; DOI:10.1103/PhysRevD.100.055030
327.G. Arcadi, C. Döring, C. Hasterok and S. Vogl, Inelastic dark matter nucleus scattering, JCAP 12 (2019) 053.; DOI:10.1088/1475-7516/2019/12/053
328.F. Goertz, K. Tame-Narvaez and V. T. Tenorth, Di-jet/\(e^+e^-\)+ MET to Probe \(Z_2-\)Odd Mediators to the Dark Sector, Eur. Phys. J. C 79 (2019) 860.; DOI:10.1140/epjc/s10052-019-7374-3
329.G. Arcadi, O. Lebedev, S. Pokorski and T. Toma, Real Scalar Dark Matter: Relativistic Treatment, JHEP 08 (2019) 050.; DOI:10.1007/JHEP08(2019)050
330.E. Aprile et al., XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection, Phys. Rev. D 100 (2019) 052014.; DOI:10.1103/PhysRevD.100.052014
331.G. Arcadi, M. Lindner, J. Martins and F. S. Queiroz, New physics probes: Atomic parity violation, polarized electron scattering and neutrino-nucleus coherent scattering, Nucl. Phys. B 959 (2020) 115158.; DOI:10.1016/j.nuclphysb.2020.115158
332.S. Böser, C. Buck, C. Giunti, J. Lesgourgues, L. Ludhova, S. Mertens, A. Schukraft and M. Wurm, Status of Light Sterile Neutrino Searches, Prog. Part. Nucl. Phys. 111 (2020) 103736.; DOI:10.1016/j.ppnp.2019.103736
333.E. Aprile et al., The XENON1T Data Acquisition System, JINST 14 (2019) P07016.; DOI:10.1088/1748-0221/14/07/P07016
334.R. S. L. Hansen and A. Y. Smirnov, Effect of extended \(\nu\) production region on collective oscillations in supernovae, JCAP 10 (2019) 027.; DOI:10.1088/1475-7516/2019/10/027
335.V. Brdar, A. J. Helmboldt, S. Iwamoto and K. Schmitz, Type-I Seesaw as the Common Origin of Neutrino Mass, Baryon Asymmetry, and the Electroweak Scale, Phys. Rev. D 100 (2019) 075029.; DOI:10.1103/PhysRevD.100.075029
336.H. Almazán Molina et al., Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN, Eur. Phys. J. A 55 (2019) 183.; DOI:10.1140/epja/i2019-12886-y
337.E. Akhmedov, Relic neutrino detection through angular correlations in inverse \(\beta\)-decay, JCAP 09 (2019) 031.; DOI:10.1088/1475-7516/2019/09/031
338.G. Alonso-Álvarez, T. Hugle and J. Jaeckel, Misalignment \& Co.: (Pseudo-)scalar and vector dark matter with curvature couplings, JCAP 02 (2020) 014.; DOI:10.1088/1475-7516/2020/02/014
339.I. Bischer and W. Rodejohann, General neutrino interactions from an effective field theory perspective, Nucl. Phys. B 947 (2019) 114746.; DOI:10.1016/j.nuclphysb.2019.114746
340.T. Alanne, S. Blasi and N. A. Dondi, Critical Look at \(\beta\) -Function Singularities at Large \(N\), Phys. Rev. Lett. 123 (2019) 131602.; DOI:10.1103/PhysRevLett.123.131602
341.T. Alanne, S. Blasi and F. Goertz, Axiflavon-Higgs Unification, 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 111–116).; Retrieved from https://arxiv.org/abs/1905.07285
342.C. Döring, R. S. L. Hansen and M. Lindner, Stability of three neutrino flavor conversion in supernovae, JCAP 08 (2019) 003.; DOI:10.1088/1475-7516/2019/08/003
343.A. Y. Smirnov, Neutrino Mixing via the Neutrino Portal, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1905.00838
344.R. S. L. Hansen, M. Lindner and O. Scholer, Timing the neutrino signal of a Galactic supernova, Phys. Rev. D 101 (2020) 123018.; DOI:10.1103/PhysRevD.101.123018
345.E. Aprile et al., Observation of two-neutrino double electron capture in \(^{124}\)Xe with XENON1T, Nature 568 (2019) 532–535.; DOI:10.1038/s41586-019-1124-4
346.N. F. Bell, G. Busoni and S. Robles, Capture of Leptophilic Dark Matter in Neutron Stars, JCAP 06 (2019) 054.; DOI:10.1088/1475-7516/2019/06/054
347.A. E. Cárcamo Hernández, J. Marchant González and U. J. Saldaña-Salazar, Viable low-scale model with universal and inverse seesaw mechanisms, Phys. Rev. D 100 (2019) 035024.; DOI:10.1103/PhysRevD.100.035024
348.A. J. Helmboldt, J. Kubo and S. van der Woude, Observational prospects for gravitational waves from hidden or dark chiral phase transitions, Phys. Rev. D 100 (2019) 055025.; DOI:10.1103/PhysRevD.100.055025
349.T. Alanne, S. Blasi and N. A. Dondi, Bubble-resummation and critical-point methods for \(\beta\)-functions at large \(N\), Eur. Phys. J. C 79 (2019) 689.; DOI:10.1140/epjc/s10052-019-7190-9
350.A. Acharyya et al., Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout, Astropart. Phys. 111 (2019) 35–53.; DOI:10.1016/j.astropartphys.2019.04.001
351.M. Garny, J. Heisig, M. Hufnagel, B. Lülf and S. Vogl, Conversion-driven freeze-out: Dark matter genesis beyond the WIMP paradigm, (K. Anagnostopoulos et al., Eds.)PoS CORFU2018 (2019) 092.; DOI:10.22323/1.347.0092
352.J. Hakenmüller et al., Neutron-induced background in the CONUS experiment, Eur. Phys. J. C 79 (2019) 699.; DOI:10.1140/epjc/s10052-019-7160-2
353.S. Blasi and F. Goertz, Softened Symmetry Breaking in Composite Higgs Models, Phys. Rev. Lett. 123 (2019) 221801.; DOI:10.1103/PhysRevLett.123.221801
354.I. Bischer, T. Grandou and R. Hofmann, Perturbative Peculiarities of Quantum Field Theories at High Temperatures, Universe 5 (2019) 81.; DOI:10.3390/universe5030081
355.D. Croon, T. E. Gonzalo, L. Graf, N. Košnik and G. White, GUT Physics in the era of the LHC, Front. in Phys. 7 (2019) 76.; DOI:10.3389/fphy.2019.00076
356.G. Arcadi, A. Djouadi and M. Raidal, Dark Matter through the Higgs portal, Phys. Rept. 842 (2020) 1–180.; DOI:10.1016/j.physrep.2019.11.003
357.W. Rodejohann and U. Saldaña-Salazar, Multi-Higgs-Doublet Models and Singular Alignment, JHEP 07 (2019) 036.; DOI:10.1007/JHEP07(2019)036
358.E. Aprile et al., XENON1T dark matter data analysis: Signal and background models and statistical inference, Phys. Rev. D 99 (2019) 112009.; DOI:10.1103/PhysRevD.99.112009
359.M. J. Dolinski, A. W. P. Poon and W. Rodejohann, Neutrinoless Double-Beta Decay: Status and Prospects, Ann. Rev. Nucl. Part. Sci. 69 (2019) 219–251.; DOI:10.1146/annurev-nucl-101918-023407
360.E. Aprile et al., Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, Phys. Rev. Lett. 122 (2019) 141301.; DOI:10.1103/PhysRevLett.122.141301
361.I. P. Ivanov, C. C. Nishi and A. Trautner, Beyond basis invariants, Eur. Phys. J. C 79 (2019) 315.; DOI:10.1140/epjc/s10052-019-6845-x
362.A. Y. Smirnov, The Mikheyev-Smirnov-Wolfenstein (MSW) Effect, International Conference on History of the Neutrino: 1930-2018.; Retrieved from https://arxiv.org/abs/1901.11473
363.R. S. L. Hansen, Extended neutrinosphere effects on SN nu oscillations, (A. Marrone, A. Mirizzi, & D. Montanino, Eds.)PoS NOW2018 (2019) 050.; DOI:10.22323/1.337.0050
364.H. de Kerret et al., Double Chooz \(\theta_{13}\) measurement via total neutron capture detection, Nature Phys. 16 (2020) 558–564.; DOI:10.1038/s41567-020-0831-y
365.M. Agostini et al., Characterization of 30\(^{76}\)Ge enriched Broad Energy Ge detectors for GERDA Phase II, Eur. Phys. J. C 79 (2019) 978.; DOI:10.1140/epjc/s10052-019-7353-8
366.E. Akhmedov, Quantum mechanics aspects and subtleties of neutrino oscillations, International Conference on History of the Neutrino: 1930-2018.; Retrieved from https://arxiv.org/abs/1901.05232
367.D. A. Camargo, M. D. Campos, T. B. de Melo and F. S. Queiroz, A Two Higgs Doublet Model for Dark Matter and Neutrino Masses, Phys. Lett. B 795 (2019) 319–326.; DOI:10.1016/j.physletb.2019.06.020
368.I. Bischer, T. Grandou and R. Hofmann, On Quantum Fields at High Temperature, Universe 5 (2019) 26.; DOI:10.3390/universe5010026
369.A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Unification of Flavor, CP, and Modular Symmetries, Phys. Lett. B 795 (2019) 7–14.; DOI:10.1016/j.physletb.2019.03.066
370.C. Klein, M. Lindner and S. Ohmer, Minimal Radiative Neutrino Masses, JHEP 03 (2019) 018.; DOI:10.1007/JHEP03(2019)018
371.T. A. Kirsten, GALLEX/GNO: Context and recollections, In M. Meyer & K. Zuber (Eds.), Proceedings, 5th International Solar Neutrino Conference: Dresden, Germany, June 11-14, 2018 (pp. 47–68).; DOI:10.1142/9789811204296_0003
372.A. Y. Smirnov, The MSW effect, solar neutrinos and searches for new physics, In M. Meyer & K. Zuber (Eds.), Proceedings, 5th International Solar Neutrino Conference: Dresden, Germany, June 11-14, 2018 (pp. 143–160).; DOI:10.1142/9789811204296_0007
373.C. K. M. Klein, Minimal radiative neutrino mass -A systematic study- (Master’s thesis). Heidelberg, Max Planck Inst.
374.H. Almazán et al., Search for light sterile neutrinos with the STEREO experiment, (T. Jenke, S. Degenkolb, P. Geltenbort, M. Jentschel, V. V. Nesvizhevsky, D. Rebreyend, S. Roccia, et al., Eds.)EPJ Web Conf. 219 (2019) 08001.; DOI:10.1051/epjconf/201921908001
375.T. A. Kirsten, Solar neutrinos: the pioneering experiments, International Conference on History of the Neutrino: 1930-2018.
376.A. Smolnikov, Fifty years of searching for neutrinoless double beta decay with Ge detectors, International Conference on History of the Neutrino: 1930-2018.
377.C. Buck, Latest results of the CONUS reactor neutrino experiment, 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 163–168).
378.G. Arcadi, A. Abada and M. Lucente, Leptogenesis from tiny violation of Lepton Number, (A. Marrone, A. Mirizzi, & D. Montanino, Eds.)PoS NOW2018 (2018) 090.; DOI:10.22323/1.337.0090
379.A. Abada et al., HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST 228 (2019) 1109–1382.; DOI:10.1140/epjst/e2019-900088-6
380.A. Abada et al., FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3, Eur. Phys. J. ST 228 (2019) 755–1107.; DOI:10.1140/epjst/e2019-900087-0
381.A. Abada et al., FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228 (2019) 261–623.; DOI:10.1140/epjst/e2019-900045-4
382.T. Alanne, M. Heikinheimo, V. Keus, N. Koivunen and K. Tuominen, Direct and indirect probes of Goldstone dark matter, Phys. Rev. D 99 (2019) 075028.; DOI:10.1103/PhysRevD.99.075028
383.A. Abada et al., FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474.; DOI:10.1140/epjc/s10052-019-6904-3
384.V. Brdar and R. S. L. Hansen, IceCube Flavor Ratios with Identified Astrophysical Sources: Towards Improving New Physics Testability, JCAP 02 (2019) 023.; DOI:10.1088/1475-7516/2019/02/023
385.T. Alanne, T. Hugle, M. Platscher and K. Schmitz, Low-scale leptogenesis assisted by a real scalar singlet, JCAP 03 (2019) 037.; DOI:10.1088/1475-7516/2019/03/037
386.J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-Standard Neutrino Interactions and Neutral Gauge Bosons, SciPost Phys. 6 (2019) 038.; DOI:10.21468/SciPostPhys.6.3.038
387.A. Trautner, Systematic construction of basis invariants in the 2HDM, JHEP 05 (2019) 208.; DOI:10.1007/JHEP05(2019)208
388.E. Aprile et al., First results on the scalar WIMP-pion coupling, using the XENON1T experiment, Phys. Rev. Lett. 122 (2019) 071301.; DOI:10.1103/PhysRevLett.122.071301
389.P. S. Bhupal Dev, R. N. Mohapatra, W. Rodejohann and X.-J. Xu, Vacuum structure of the left-right symmetric model, JHEP 02 (2019) 154.; DOI:10.1007/JHEP02(2019)154
390.M. Lucente, A. Abada, G. Arcadi, V. Domcke, M. Drewes and J. Klaric, Freeze-in leptogenesis with 3 right-handed neutrinos, PoS ICHEP2018 (2019) 306.; DOI:10.5281/zenodo.1289773
391.J. Kubo, M. Lindner, K. Schmitz and M. Yamada, Planck mass and inflation as consequences of dynamically broken scale invariance, Phys. Rev. D 100 (2019) 015037.; DOI:10.1103/PhysRevD.100.015037
392.G. Arcadi, J. Heeck, F. Heizmann, S. Mertens, F. S. Queiroz, W. Rodejohann, M. Slezák and K. Valerius, Tritium beta decay with additional emission of new light bosons, JHEP 01 (2019) 206.; DOI:10.1007/JHEP01(2019)206
393.R. Carr et al., Neutrino-based tools for nuclear verification and diplomacy in North Korea (2018).; DOI:10.1080/08929882.2019.1603007
394.S. Biondini and S. Vogl, Coloured coannihilations: Dark matter phenomenology meets non-relativistic EFTs, JHEP 02 (2019) 016.; DOI:10.1007/JHEP02(2019)016
395.I. P. Ivanov, C. C. Nishi, J. P. Silva and A. Trautner, Basis-invariant conditions for \(CP\) symmetry of order four, Phys. Rev. D 99 (2019) 015039.; DOI:10.1103/PhysRevD.99.015039
396.A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, Low-scale leptogenesis with three heavy neutrinos, JHEP 01 (2019) 164.; DOI:10.1007/JHEP01(2019)164
397.V. Brdar, A. J. Helmboldt and J. Kubo, Gravitational Waves from First-Order Phase Transitions: LIGO as a Window to Unexplored Seesaw Scales, JCAP 02 (2019) 021.; DOI:10.1088/1475-7516/2019/02/021
398.V. Brdar, W. Rodejohann and X.-J. Xu, Producing a new Fermion in Coherent Elastic Neutrino-Nucleus Scattering: from Neutrino Mass to Dark Matter, JHEP 12 (2018) 024.; DOI:10.1007/JHEP12(2018)024
399.I. Bischer and W. Rodejohann, General Neutrino Interactions at the DUNE Near Detector, Phys. Rev. D 99 (2019) 036006.; DOI:10.1103/PhysRevD.99.036006
400.V. Brdar and A. Y. Smirnov, Low Scale Left-Right Symmetry and Naturally Small Neutrino Mass, JHEP 02 (2019) 045.; DOI:10.1007/JHEP02(2019)045
401.A. Ibarra, E. Molinaro and S. Vogl, Potential for probing three-body decays of Long-Lived Particles with MATHUSLA, Phys. Lett. B 789 (2019) 127–131.; DOI:10.1016/j.physletb.2018.12.015
402.F. Goertz, Composite Higgs theory, PoS ALPS2018 (2018) 012.; DOI:10.22323/1.330.0012
403.T. Alanne, D. Buarque Franzosi, M. T. Frandsen and M. Rosenlyst, Dark matter in (partially) composite Higgs models, JHEP 12 (2018) 088.; DOI:10.1007/JHEP12(2018)088
404.T. Alanne and S. Blasi, Abelian gauge-Yukawa \(\beta\)-functions at large \(N_f\), Phys. Rev. D 98 (2018) 116004.; DOI:10.1103/PhysRevD.98.116004
405.J. Kubo and M. Yamada, Scale and confinement phase transitions in scale invariant \(SU(N)\) scalar gauge theory, JHEP 10 (2018) 003.; DOI:10.1007/JHEP10(2018)003
406.S. Ohmer, Spontaneous CP Violation and the Strong CP Problem in Left-Right Symmetric Theories, Phys. Rev. D 99 (2019) 115031.; DOI:10.1103/PhysRevD.99.115031
407.V. Brdar, Y. Emonds, A. J. Helmboldt and M. Lindner, Conformal Realization of the Neutrino Option, Phys. Rev. D 99 (2019) 055014.; DOI:10.1103/PhysRevD.99.055014
408.T. Alanne, S. Blasi and F. Goertz, Common source for scalars: Flavored axion-Higgs unification, Phys. Rev. D 99 (2019) 015028.; DOI:10.1103/PhysRevD.99.015028
409.I. Bischer, W. Rodejohann and X.-J. Xu, Loop-induced Neutrino Non-Standard Interactions, JHEP 10 (2018) 096.; DOI:10.1007/JHEP10(2018)096
410.E. Akhmedov, G. Arcadi, M. Lindner and S. Vogl, Coherent scattering and macroscopic coherence: Implications for neutrino, dark matter and axion detection, JHEP 10 (2018) 045.; DOI:10.1007/JHEP10(2018)045
411.S. Baumholzer, V. Brdar and P. Schwaller, The New \(\nu\)MSM (\(\nu\nu\)MSM): Radiative Neutrino Masses, keV-Scale Dark Matter and Viable Leptogenesis with sub-TeV New Physics, JHEP 08 (2018) 067.; DOI:10.1007/JHEP08(2018)067
412.T. Alanne and S. Blasi, The \(\beta\)-function for Yukawa theory at large \(N_f\), JHEP 08 (2018) 081.; DOI:10.1007/JHEP08(2018)081
413.K. Schmitz and T. T. Yanagida, Axion Isocurvature Perturbations in Low-Scale Models of Hybrid Inflation, Phys. Rev. D 98 (2018) 075003.; DOI:10.1103/PhysRevD.98.075003
414.H. Almazán et al., Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data, Phys. Rev. Lett. 121 (2018) 161801.; DOI:10.1103/PhysRevLett.121.161801
415.E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302.; DOI:10.1103/PhysRevLett.121.111302
416.F. Mackenroth, N. Kumar, N. Neitz and C. H. Keitel, Nonlinear Compton scattering of an ultraintense laser pulse in a plasma, Phys. Rev. E 99 (2019) 033205.; DOI:10.1103/PhysRevE.99.033205
417.T. Hugle, M. Platscher and K. Schmitz, Low-Scale Leptogenesis in the Scotogenic Neutrino Mass Model, Phys. Rev. D 98 (2018) 023020.; DOI:10.1103/PhysRevD.98.023020
418.N. Allemandou et al., The STEREO Experiment, JINST 13 (2018) P07009.; DOI:10.1088/1748-0221/13/07/P07009
419.G. Arcadi, 2HDM portal for Singlet-Doublet Dark Matter, Eur. Phys. J. C 78 (2018) 864.; DOI:10.1140/epjc/s10052-018-6327-6
420.M. Agostini et al., New Data Release of GERDA Phase II: Search for \(0\nu\beta\beta\) decay of \(^{76}\)Ge, KnE Energ. Phys. 3 (2018) 202–209.; DOI:10.18502/ken.v3i1.1745
421.M. Agostini et al., GERDA results and the future perspectives for the neutrinoless double beta decay search using \(^{76}\)Ge, Int. J. Mod. Phys. A 33 (2018) 1843004.; DOI:10.1142/S0217751X18430042
422.M. Lucente, A. Abada, G. Arcadi and V. Domcke, Leptogenesis, dark matter and neutrino masses, Prospects in Neutrino Physics (pp. 70–78).; Retrieved from https://arxiv.org/abs/1803.10826
423.M. Agostini et al., Improved Limit on Neutrinoless Double-\(\beta\) Decay of \(^{76}\)Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503.; DOI:10.1103/PhysRevLett.120.132503
424.J. M. Berryman, V. Brdar and P. Huber, Particle physics origin of the 5 MeV bump in the reactor antineutrino spectrum?, Phys. Rev. D 99 (2019) 055045.; DOI:10.1103/PhysRevD.99.055045
425.A. Y. Smirnov and X.-J. Xu, Neutrino mixing in SO(10) GUTs with a non-Abelian flavor symmetry in the hidden sector, Phys. Rev. D 97 (2018) 095030.; DOI:10.1103/PhysRevD.97.095030
426.G. Arcadi, T. Hugle and F. S. Queiroz, The Dark \(L_\mu - L_\tau\) Rises via Kinetic Mixing, Phys. Lett. B 784 (2018) 151–158.; DOI:10.1016/j.physletb.2018.07.028
427.M. Lindner, F. S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on Z\(^{′}\) and dark photon models, JHEP 05 (2018) 098.; DOI:10.1007/JHEP05(2018)098
428.H. de Kerret et al., Yields and production rates of cosmogenic \(^9\)Li and \(^8\)He measured with the Double Chooz near and far detectors, JHEP 11 (2018) 053.; DOI:10.1007/JHEP11(2018)053
429.Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066.; DOI:10.1007/JHEP05(2018)066
430.V. Brdar, M. Lindner and X.-J. Xu, Neutrino astronomy with supernova neutrinos, JCAP 04 (2018) 025.; DOI:10.1088/1475-7516/2018/04/025
431.R. S. L. Hansen and A. Y. Smirnov, Neutrino conversion in a neutrino flux: Towards an effective theory of collective oscillations, JCAP 04 (2018) 057.; DOI:10.1088/1475-7516/2018/04/057
432.T. Alanne, N. Bizot, G. Cacciapaglia and F. Sannino, Classification of NLO operators for composite Higgs models, Phys. Rev. D 97 (2018) 075028.; DOI:10.1103/PhysRevD.97.075028
433.M. Dutra, M. Lindner, S. Profumo, F. S. Queiroz, W. Rodejohann and C. Siqueira, MeV Dark Matter Complementarity and the Dark Photon Portal, JCAP 03 (2018) 037.; DOI:10.1088/1475-7516/2018/03/037
434.A. Y. Smirnov, Solar Neutrinos and Matter Effects, Adv. Ser. Direct. High Energy Phys. 28 (2018) 149–209.; DOI:10.1142/9789813226098_0004
435.V. Domcke, A. Abada, G. Arcadi and M. Lucente, Neutrino masses and leptogenesis from small lepton number violation, 53rd Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 285–290).
436.V. Domcke and K. Schmitz, Inflation from High-Scale Supersymmetry Breaking, Phys. Rev. D 97 (2018) 115025.; DOI:10.1103/PhysRevD.97.115025
437.N. Rupp, Radon background in liquid xenon detectors, JINST 13 (2018) C02001.; DOI:10.1088/1748-0221/13/02/C02001
438.T. Alanne and F. Goertz, Extended Dark Matter EFT, Eur. Phys. J. C 80 (2020) 446.; DOI:10.1140/epjc/s10052-020-7999-2
439.K. Max, M. Platscher and J. Smirnov, Decoherence of Gravitational Wave Oscillations in Bigravity, Phys. Rev. D 97 (2018) 064009.; DOI:10.1103/PhysRevD.97.064009
440.M. Bauer, M. Klassen and V. Tenorth, Universal properties of pseudoscalar mediators in dark matter extensions of 2HDMs, JHEP 07 (2018) 107.; DOI:10.1007/JHEP07(2018)107
441.A. Carmona and F. Goertz, Recent \(B\) physics anomalies: a first hint for compositeness?, Eur. Phys. J. C 78 (2018) 979.; DOI:10.1140/epjc/s10052-018-6437-1
442.G. Arcadi, C. P. Ferreira, F. Goertz, M. M. Guzzo, F. S. Queiroz and A. C. O. Santos, Lepton Flavor Violation Induced by Dark Matter, Phys. Rev. D 97 (2018) 075022.; DOI:10.1103/PhysRevD.97.075022
443.T. Alanne, D. Buarque Franzosi, M. T. Frandsen, M. L. A. Kristensen, A. Meroni and M. Rosenlyst, Partially composite Higgs models: Phenomenology and RG analysis, JHEP 01 (2018) 051.; DOI:10.1007/JHEP01(2018)051
444.G. Benato et al., Radon mitigation during the installation of the CUORE 0\(\nu\beta\beta\) decay detector, JINST 13 (2018) P01010.; DOI:10.1088/1748-0221/13/01/P01010
445.O. Yu. Smirnov et al., Borexino: Recent results and future plans, Phys. Part. Nucl. 48 (2017) 1026–1029.; DOI:10.1134/S1063779617060533
446.S. Profumo, F. S. Queiroz, J. Silk and C. Siqueira, Searching for Secluded Dark Matter with H.E.S.S., Fermi-LAT, and Planck, JCAP 03 (2018) 010.; DOI:10.1088/1475-7516/2018/03/010
447.F. Goertz, Indirect estimation of masses beyond collider reach in EFT, JHEP 05 (2019) 090.; DOI:10.1007/JHEP05(2019)090
448.G. Arcadi, M. Lindner, F. S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar Mediators: A WIMP model at the Neutrino Floor, JCAP 03 (2018) 042.; DOI:10.1088/1475-7516/2018/03/042
449.M. Agostini et al., Upgrade for Phase II of the Gerda experiment, Eur. Phys. J. C 78 (2018) 388.; DOI:10.1140/epjc/s10052-018-5812-2
450.M. Tavani et al., Science with e-ASTROGAM: A space mission for MeVGeV gamma-ray astrophysics, (A. De Angelis, V. Tatischeff, I. A. Grenier, J. McEnery, & M. Mallamaci, Eds.)JHEAp 19 (2018) 1–106.; DOI:10.1016/j.jheap.2018.07.001
451.A. Carvalho, F. Goertz, K. Mimasu, M. Gouzevitch and A. Aggarwal, On the reinterpretation of non-resonant searches for Higgs boson pairs, JHEP 02 (2021) 049.; DOI:10.1007/JHEP02(2021)049
452.F. S. Queiroz, WIMP Theory Review, (P. Checchia et al., Eds.)PoS EPS-HEP2017 (2017) 080.; DOI:10.22323/1.314.0080
453.M. Agostini et al., Searching for neutrinoless double beta decay with GERDA, (K. Clark, C. Jillings, C. Kraus, J. Saffin, & S. Scorza, Eds.)J. Phys. Conf. Ser. 1342 (2020) 012005.; DOI:10.1088/1742-6596/1342/1/012005
454.D. Barducci and A. J. Helmboldt, Quark flavour-violating Higgs decays at the ILC, JHEP 12 (2017) 105.; DOI:10.1007/JHEP12(2017)105
455.P. V. Dong, D. T. Huong, F. S. Queiroz, J. W. F. Valle and C. A. Vaquera-Araujo, The Dark Side of Flipped Trinification, JHEP 04 (2018) 143.; DOI:10.1007/JHEP04(2018)143
456.J. Haser, Light sterile neutrino searches, 29th Rencontres de Blois on Particle Physics and Cosmology.; Retrieved from https://arxiv.org/abs/1710.06330
457.M. Agostini et al., Search for Neutrinoless Double Beta Decay with GERDA Phase II, (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 1894 (2017) 020012.; DOI:10.1063/1.5007637
458.T. Abrahão et al., Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz, JINST 13 (2018) P01031.; DOI:10.1088/1748-0221/13/01/P01031
459.J. Haser, Search for eV Sterile Neutrinos - The Stereo Experiment, (P. Checchia et al., Eds.)PoS EPS-HEP2017 (2017) 113.; DOI:10.22323/1.314.0113
460.J. Heeck and W. Rodejohann, Lepton flavor violation with displaced vertices, Phys. Lett. B 776 (2018) 385–390.; DOI:10.1016/j.physletb.2017.11.067
461.V. Brdar, J. Kopp, J. Liu and X.-P. Wang, X-Ray Lines from Dark Matter Annihilation at the keV Scale, Phys. Rev. Lett. 120 (2018) 061301.; DOI:10.1103/PhysRevLett.120.061301
462.N. Fornengo, A. Masiero, F. S. Queiroz and C. E. Yaguna, On the Role of Neutrinos Telescopes in the Search for Dark Matter Annihilations in the Sun, JCAP 12 (2017) 012.; DOI:10.1088/1475-7516/2017/12/012
463.M. Lindner, W. Rodejohann and X.-J. Xu, Neutrino Parameters from Reactor and Accelerator Neutrino Experiments, Phys. Rev. D 97 (2018) 075024.; DOI:10.1103/PhysRevD.97.075024
464.T. Alanne, D. Buarque Franzosi and M. T. Frandsen, A partially composite Goldstone Higgs, Phys. Rev. D 96 (2017) 095012.; DOI:10.1103/PhysRevD.96.095012
465.A. N. Khan and D. W. McKay, Probing New Physics in Low Energy Solar Neutrino Oscillation Data.; Retrieved from https://arxiv.org/abs/1709.09961
466.E. Aprile et al., Signal Yields of keV Electronic Recoils and Their Discrimination from Nuclear Recoils in Liquid Xenon, Phys. Rev. D 97 (2018) 092007.; DOI:10.1103/PhysRevD.97.092007
467.B. S. Acharya et al., Science with the Cherenkov Telescope Array. WSP.; DOI:10.1142/10986
468.M. Agostini et al., First results from GERDA Phase II, J. Phys. Conf. Ser. 888 (2017) 012030.; DOI:10.1088/1742-6596/888/1/012030
469.C. Buck, M. Lindner and C. Roca, Scintillation light production, propagation and detection in the Stereo reactor antineutrino experiment, J. Phys. Conf. Ser. 888 (2017) 012187.; DOI:10.1088/1742-6596/888/1/012187
470.A. Vishneva et al., Test of the electron stability with the Borexino detector, J. Phys. Conf. Ser. 888 (2017) 012193.; DOI:10.1088/1742-6596/888/1/012193
471.M. Agostini et al., Active background suppression with the liquid argon scintillation veto of GERDA Phase II, J. Phys. Conf. Ser. 888 (2017) 012238.; DOI:10.1088/1742-6596/888/1/012238
472.M. Pallavicini et al., Solar neutrino detectors as sterile neutrino hunters, J. Phys. Conf. Ser. 888 (2017) 012018.; DOI:10.1088/1742-6596/888/1/012018
473.C. Buck, M. Lindner and C. Roca, Scintillation light production, propagation and detection in the Stereo reactor antineutrino experiment, J. Phys. Conf. Ser. 888 (2017) 012101.; DOI:10.1088/1742-6596/888/1/012101
474.M. Agostini et al., Study of the GERDA Phase II background spectrum, J. Phys. Conf. Ser. 888 (2017) 012106.; DOI:10.1088/1742-6596/888/1/012106
475.H. Almazan and D. Navas-Nicolás, Neutrino detection systematics in the two detector phase of the Double Chooz experiment, J. Phys. Conf. Ser. 888 (2017) 012135.; DOI:10.1088/1742-6596/888/1/012135
476.A. Caminata et al., Improvements in the simulation code of the SOX experiment, J. Phys. Conf. Ser. 888 (2017) 012145.; DOI:10.1088/1742-6596/888/1/012145
477.A. N. Khan, \(\sin ^{2}\theta _{W}\) Estimate and Neutrino Electromagnetic Properties from Low-Energy Solar Data, J. Phys. G 46 (2019) 035005.; DOI:10.1088/1361-6471/ab0057
478.E. Aprile et al., Search for Bosonic Super-WIMP Interactions with the XENON100 Experiment, Phys. Rev. D 96 (2017) 122002.; DOI:10.1103/PhysRevD.96.122002
479.N. Abgrall et al., The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), (O. Civitarese, I. Stekl, & J. Suhonen, Eds.)AIP Conf. Proc. 1894 (2017) 020027.; DOI:10.1063/1.5007652
480.A. Abada, G. Arcadi, V. Domcke and M. Lucente, Neutrino masses, leptogenesis and dark matter from small lepton number violation?, JCAP 12 (2017) 024.; DOI:10.1088/1475-7516/2017/12/024
481.E. Aprile et al., The XENON1T Dark Matter Experiment, Eur. Phys. J. C 77 (2017) 881.; DOI:10.1140/epjc/s10052-017-5326-3
482.E. Aprile et al., Intrinsic backgrounds from Rn and Kr in the XENON100 experiment, Eur. Phys. J. C 78 (2018) 132.; DOI:10.1140/epjc/s10052-018-5565-y
483.G. Arcadi, M. D. Campos, M. Lindner, A. Masiero and F. S. Queiroz, Dark sequential Z’ portal: Collider and direct detection experiments, Phys. Rev. D 97 (2018) 043009.; DOI:10.1103/PhysRevD.97.043009
484.A. Lubashevskiy et al., Mitigation of\(^{42}\) Ar/\(^{42}\) K background for the GERDA Phase II experiment, Eur. Phys. J. C 78 (2018) 15.; DOI:10.1140/epjc/s10052-017-5499-9
485.D. Jiménez, K. Kamada, K. Schmitz and X.-J. Xu, Baryon asymmetry and gravitational waves from pseudoscalar inflation, JCAP 12 (2017) 011.; DOI:10.1088/1475-7516/2017/12/011
486.S.-F. Ge, W. Rodejohann and K. Zuber, Half-life Expectations for Neutrinoless Double Beta Decay in Standard and Non-Standard Scenarios, Phys. Rev. D 96 (2017) 055019.; DOI:10.1103/PhysRevD.96.055019
487.K. Harigaya and K. Schmitz, Unified Model of Chaotic Inflation and Dynamical Supersymmetry Breaking, Phys. Lett. B 773 (2017) 320–324.; DOI:10.1016/j.physletb.2017.08.050
488.B. J. Kavanagh, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Prospects for determining the particle/antiparticle nature of WIMP dark matter with direct detection experiments, JHEP 10 (2017) 059.; DOI:10.1007/JHEP10(2017)059
489.J. G. Ferreira, C. A. de S. Pires, P. S. Rodrigues da Silva and C. Siqueira, On the Higgs-like boson in the Minimal Supersymmetric 3-3-1 Model, Eur. Phys. J. C 78 (2018) 225.; DOI:10.1140/epjc/s10052-018-5705-4
490.G. Arcadi, P. Ghosh, Y. Mambrini, M. Pierre and F. S. Queiroz, \(Z'\) portal to Chern-Simons Dark Matter, JCAP 11 (2017) 020.; DOI:10.1088/1475-7516/2017/11/020
491.M. Lindner, B. Radovčić and J. Welter, Revisiting Large Neutrino Magnetic Moments, JHEP 07 (2017) 139.; DOI:10.1007/JHEP07(2017)139
492.R. S. L. Hansen and S. Vogl, Thermalizing sterile neutrino dark matter, Phys. Rev. Lett. 119 (2017) 251305.; DOI:10.1103/PhysRevLett.119.251305
493.G. Arcadi, F. S. Queiroz and C. Siqueira, The Semi-Hooperon: Gamma-ray and anti-proton excesses in the Galactic Center, Phys. Lett. B 775 (2017) 196–205.; DOI:10.1016/j.physletb.2017.10.065
494.A. Pierce, N. R. Shah and S. Vogl, Stop Co-Annihilation in the Minimal Supersymmetric Standard Model Revisited, Phys. Rev. D 97 (2018) 023008.; DOI:10.1103/PhysRevD.97.023008
495.C. Balázs, J. Conrad, B. Farmer, T. Jacques, T. Li, M. Meyer, F. S. Queiroz and M. A. Sánchez-Conde, Sensitivity of the Cherenkov Telescope Array to the detection of a dark matter signal in comparison to direct detection and collider experiments, Phys. Rev. D 96 (2017) 083002.; DOI:10.1103/PhysRevD.96.083002
496.M. Garny, J. Heisig, B. Lülf and S. Vogl, Coannihilation without chemical equilibrium, Phys. Rev. D 96 (2017) 103521.; DOI:10.1103/PhysRevD.96.103521
497.E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301.; DOI:10.1103/PhysRevLett.119.181301
498.M. D. Campos, D. Cogollo, M. Lindner, T. Melo, F. S. Queiroz and W. Rodejohann, Neutrino Masses and Absence of Flavor Changing Interactions in the 2HDM from Gauge Principles, JHEP 08 (2017) 092.; DOI:10.1007/JHEP08(2017)092
499.E. Aprile et al., Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector, Phys. Rev. D 96 (2017) 042004.; DOI:10.1103/PhysRevD.96.042004
500.E. Aprile et al., Material radioassay and selection for the XENON1T dark matter experiment, Eur. Phys. J. C 77 (2017) 890.; DOI:10.1140/epjc/s10052-017-5329-0
501.W. Rodejohann and X.-J. Xu, Trimaximal \(\mu\)-\(\tau\) reflection symmetry, Phys. Rev. D 96 (2017) 055039.; DOI:10.1103/PhysRevD.96.055039
502.E. Aprile et al., Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100, Phys. Rev. D 96 (2017) 022008.; DOI:10.1103/PhysRevD.96.022008
503.C. Buck, Sterile Neutrinos: Reactor Experiments, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08885
504.S.-F. Ge, Measuring the Leptonic Dirac CP Phase with TNT2K, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08518
505.W. Maneschg, Present status of neutrinoless double beta decay searches, Prospects in Neutrino Physics.; Retrieved from https://arxiv.org/abs/1704.08537
506.E. Aprile et al., Search for magnetic inelastic dark matter with XENON100, JCAP 10 (2017) 039.; DOI:10.1088/1475-7516/2017/10/039
507.G. Arcadi, M. Lindner, Y. Mambrini, M. Pierre and F. S. Queiroz, GUT Models at Current and Future Hadron Colliders and Implications to Dark Matter Searches, Phys. Lett. B 771 (2017) 508–514.; DOI:10.1016/j.physletb.2017.05.023
508.H. H. Patel and B. Radovcic, On the Decoupling Theorem for Vacuum Metastability, Phys. Lett. B 773 (2017) 527–533.; DOI:10.1016/j.physletb.2017.08.075
509.M. Lindner and S. Ohmer, Emerging Internal Symmetries from Effective Spacetimes, Phys. Lett. B 773 (2017) 231–235.; DOI:10.1016/j.physletb.2017.08.026
510.E. Akhmedov, Do non-relativistic neutrinos oscillate?, JHEP 07 (2017) 070.; DOI:10.1007/JHEP07(2017)070
511.K. Max, M. Platscher and J. Smirnov, Gravitational Wave Oscillations in Bigravity, Phys. Rev. Lett. 119 (2017) 111101.; DOI:10.1103/PhysRevLett.119.111101
512.G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and F. S. Queiroz, The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203.; DOI:10.1140/epjc/s10052-018-5662-y
513.M. Agostini et al., First results of GERDA Phase II and consistency with background models, (A. Galper, A. Petrukhin, A. Taranenko, I. Selyushenkov, M. Skorokhvatov, S. Rubin, V. Dmitrnko, et al., Eds.)J. Phys. Conf. Ser. 798 (2017) 012106.; DOI:10.1088/1742-6596/798/1/012106
514.D. Jeschke et al., Recent Results from Borexino, (A. Galper, A. Petrukhin, A. Taranenko, I. Selyushenkov, M. Skorokhvatov, S. Rubin, V. Dmitrnko, et al., Eds.)J. Phys. Conf. Ser. 798 (2017) 012114.; DOI:10.1088/1742-6596/798/1/012114
515.P. S. B. Dev, C. M. Vila and W. Rodejohann, Naturalness in testable type II seesaw scenarios, Nucl. Phys. B 921 (2017) 436–453.; DOI:10.1016/j.nuclphysb.2017.06.007
516.M. Agostini et al., Background-free search for neutrinoless double-\(\beta\) decay of \(^{76}\)Ge with GERDA, Nature 544 (2017) 47.; DOI:10.1038/nature21717
517.E. Akhmedov, J. Kopp and M. Lindner, Collective neutrino oscillations and neutrino wave packets, JCAP 09 (2017) 017.; DOI:10.1088/1475-7516/2017/09/017
518.E. Aprile et al., Online\(^{222}\) Rn removal by cryogenic distillation in the XENON100 experiment, Eur. Phys. J. C 77 (2017) 358.; DOI:10.1140/epjc/s10052-017-4902-x
519.V. D’Andrea et al., First Results of Gerda Phase II, PoS NOW2016 (2017) 098.; DOI:10.22323/1.283.0098
520.M. D. Campos, F. S. Queiroz, C. E. Yaguna and C. Weniger, Search for right-handed neutrinos from dark matter annihilation with gamma-rays, JCAP 07 (2017) 016.; DOI:10.1088/1475-7516/2017/07/016
521.W. Rodejohann, X.-J. Xu and C. E. Yaguna, Distinguishing between Dirac and Majorana neutrinos in the presence of general interactions, JHEP 05 (2017) 024.; DOI:10.1007/JHEP05(2017)024
522.P. Pasquini, S.-F. Ge, M. A. Tórtola and J. W. F. Valle, Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing, PoS NOW2016 (2017) 026.; DOI:10.22323/1.283.0026
523.S.-F. Ge, M. Lindner and W. Rodejohann, Atmospheric Trident Production for Probing New Physics, Phys. Lett. B 772 (2017) 164–168.; DOI:10.1016/j.physletb.2017.06.020
524.V. Domcke and K. Schmitz, Unified model of D-term inflation, Phys. Rev. D 95 (2017) 075020.; DOI:10.1103/PhysRevD.95.075020
525.E. Aprile et al., Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data, Phys. Rev. Lett. 118 (2017) 101101.; DOI:10.1103/PhysRevLett.118.101101
526.S. Marcocci et al., Real-time detection of solar neutrinos with Borexino, Nuovo Cim. C 40 (2017) 58.; DOI:10.1393/ncc/i2017-17058-9
527.G. Arcadi, Impact of next future Direct Detection experiments on Dark Portals and beyond, (A. Morselli, A. Capone, & G. Rodriguez Fernandez, Eds.)EPJ Web Conf. 136 (2017) 05003.; DOI:10.1051/epjconf/201713605003
528.T. Rink, K. Schmitz and T. T. Yanagida, Minimal Seesaw Model with a Discrete Heavy-Neutrino Exchange Symmetry (2016).; Retrieved from https://arxiv.org/abs/1612.08878
529.P. S. B. Dev, Testing Neutrino Mass Models at the LHC and beyond, PoS ICHEP2016 (2016) 487.; DOI:10.22323/1.282.0487
530.A. Alves, G. Arcadi, Y. Mambrini, S. Profumo and F. S. Queiroz, Augury of darkness: the low-mass dark Z\(^{′}\) portal, JHEP 04 (2017) 164.; DOI:10.1007/JHEP04(2017)164
531.P. Fileviez Perez and S. Ohmer, Unification and Local Baryon Number, Phys. Lett. B 768 (2017) 86–91.; DOI:10.1016/j.physletb.2017.02.049
532.M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions, JHEP 03 (2017) 097.; DOI:10.1007/JHEP03(2017)097
533.E. Aprile et al., Removing krypton from xenon by cryogenic distillation to the ppq level, Eur. Phys. J. C 77 (2017) 275.; DOI:10.1140/epjc/s10052-017-4757-1
534.A. Alves, G. Arcadi, P. V. Dong, L. Duarte, F. S. Queiroz and J. W. F. Valle, Matter-parity as a residual gauge symmetry: Probing a theory of cosmological dark matter, Phys. Lett. B 772 (2017) 825–831.; DOI:10.1016/j.physletb.2017.07.056
535.H. H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66–70.; DOI:10.1016/j.cpc.2017.04.015
536.R. S. L. Lundkvist, M. Archidiacono, S. Hannestad and T. Tram, How to make the short baseline sterile neutrino compatible with cosmology, PoS ICHEP2016 (2016) 478.; DOI:10.22323/1.282.0478
537.A. G. Hessler, A. Ibarra, E. Molinaro and S. Vogl, Probing the scotogenic FIMP at the LHC, JHEP 01 (2017) 100.; DOI:10.1007/JHEP01(2017)100
538.G. Arcadi, C. Gross, O. Lebedev, S. Pokorski and T. Toma, Evading Direct Dark Matter Detection in Higgs Portal Models, Phys. Lett. B 769 (2017) 129–133.; DOI:10.1016/j.physletb.2017.03.044
539.M. Platscher and J. Smirnov, Degravitation of the Cosmological Constant in Bigravity, JCAP 03 (2017) 051.; DOI:10.1088/1475-7516/2017/03/051
540.T. Abrahão et al., Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors, JCAP 02 (2017) 017.; DOI:10.1088/1475-7516/2017/02/017
541.A. Angelescu and G. Arcadi, Dark Matter Phenomenology of SM and Enlarged Higgs Sectors Extended with Vector Like Leptons, Eur. Phys. J. C 77 (2017) 456.; DOI:10.1140/epjc/s10052-017-5015-2
542.M. Agostini et al., Limits on uranium and thorium bulk content in GERDA Phase I detectors, Astropart. Phys. 91 (2017) 15–21.; DOI:10.1016/j.astropartphys.2017.03.003
543.T. Rink and K. Schmitz, Perturbed Yukawa Textures in the Minimal Seesaw Model, JHEP 03 (2017) 158.; DOI:10.1007/JHEP03(2017)158
544.M. Agostini et al., Search for Neutrinoless Double Beta Decay with the GERDA experiment: Phase II, PoS ICHEP2016 (2016) 493.; DOI:10.22323/1.282.0493
545.C. Buck, The Double Chooz experiment, PoS NOW2016 (2016) 007.; DOI:10.22323/1.283.0007
546.S. Bruenner, D. Cichon, S. Lindemann, T. Marrodán Undagoitia and H. Simgen, Radon depletion in xenon boil-off gas, Eur. Phys. J. C 77 (2017) 143.; DOI:10.1140/epjc/s10052-017-4676-1
547.G. Bambhaniya, P. S. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness, Vacuum Stability and Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D 95 (2017) 095016.; DOI:10.1103/PhysRevD.95.095016
548.E. Aprile et al., Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220, Phys. Rev. D 95 (2017) 072008.; DOI:10.1103/PhysRevD.95.072008
549.G. Arcadi, C. Gross, O. Lebedev, Y. Mambrini, S. Pokorski and T. Toma, Multicomponent Dark Matter from Gauge Symmetry, JHEP 12 (2016) 081.; DOI:10.1007/JHEP12(2016)081
550.C. E. Yaguna, Isospin-violating dark matter in the light of recent data, Phys. Rev. D 95 (2017) 055015.; DOI:10.1103/PhysRevD.95.055015
551.F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Is the dark matter particle its own antiparticle?, Phys. Rev. D 95 (2017) 095010.; DOI:10.1103/PhysRevD.95.095010
552.M. Lindner, M. Platscher and F. S. Queiroz, A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1–82.; DOI:10.1016/j.physrep.2017.12.001
553.S.-F. Ge, H.-J. He and R.-Q. Xiao, Testing Higgs coupling precision and new physics scales at lepton colliders, (L. R. Flores Castillo & K. Prokofiev, Eds.)Int. J. Mod. Phys. A 31 (2016) 1644004.; DOI:10.1142/S0217751X16440048
554.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Heavy right-handed neutrino dark matter in leftright models, Mod. Phys. Lett. A 32 (2017) 1740007.; DOI:10.1142/S0217732317400077
555.N. Priel, L. Rauch, H. Landsman, A. Manfredini and R. Budnik, A model independent safeguard against background mismodeling for statistical inference, JCAP 05 (2017) 013.; DOI:10.1088/1475-7516/2017/05/013
556.R. S. L. Hansen and A. Yu. Smirnov, The Liouville equation for flavour evolution of neutrinos and neutrino wave packets, JCAP 12 (2016) 019.; DOI:10.1088/1475-7516/2016/12/019
557.A. J. Helmboldt and M. Lindner, Prospects for three-body Higgs boson decays into extra light scalars, Phys. Rev. D 95 (2017) 055008.; DOI:10.1103/PhysRevD.95.055008
558.E. Aprile et al., XENON100 Dark Matter Results from a Combination of 477 Live Days, Phys. Rev. D 94 (2016) 122001.; DOI:10.1103/PhysRevD.94.122001
559.P. S. B. Dev, M. Lindner and S. Ohmer, Gravitational waves as a new probe of BoseEinstein condensate Dark Matter, Phys. Lett. B 773 (2017) 219–224.; DOI:10.1016/j.physletb.2017.08.043
560.W. Altmannshofer, S. Gori, S. Profumo and F. S. Queiroz, Explaining dark matter and B decay anomalies with an \(L_\mu - L_\tau\) model, JHEP 12 (2016) 106.; DOI:10.1007/JHEP12(2016)106
561.E. Aprile et al., Search for two-neutrino double electron capture of \(^{124}\)Xe with XENON100, Phys. Rev. C 95 (2017) 024605.; DOI:10.1103/PhysRevC.95.024605
562.P. Barrow et al., Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector, JINST 12 (2017) P01024.; DOI:10.1088/1748-0221/12/01/P01024
563.M. Herranen, A. Hohenegger, A. Osland and A. Tranberg, Quantum corrections to inflation: the importance of RG-running and choosing the optimal RG-scale, Phys. Rev. D 95 (2017) 023525.; DOI:10.1103/PhysRevD.95.023525
564.F. S. Queiroz, C. Siqueira and J. W. F. Valle, Constraining Flavor Changing Interactions from LHC Run-2 Dilepton Bounds with Vector Mediators, Phys. Lett. B 763 (2016) 269–274.; DOI:10.1016/j.physletb.2016.10.057
565.P. S. Bhupal Dev, R. N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark matter, JHEP 11 (2016) 077.; DOI:10.1007/JHEP11(2016)077
566.F. Björkeroth, S. F. King, K. Schmitz and T. T. Yanagida, Leptogenesis after Chaotic Sneutrino Inflation and the Supersymmetry Breaking Scale, Nucl. Phys. B 916 (2017) 688–708.; DOI:10.1016/j.nuclphysb.2017.01.017
567.S.-F. Ge and M. Lindner, Extracting Majorana properties from strong bounds on neutrinoless double beta decay, Phys. Rev. D 95 (2017) 033003.; DOI:10.1103/PhysRevD.95.033003
568.C. Buck and M. Yeh, Metal-loaded organic scintillators for neutrino physics, J. Phys. G 43 (2016) 093001.; DOI:10.1088/0954-3899/43/9/093001
569.M. Lindner, M. Platscher, C. E. Yaguna and A. Merle, Fermionic WIMPs and vacuum stability in the scotogenic model, Phys. Rev. D 94 (2016) 115027.; DOI:10.1103/PhysRevD.94.115027
570.S.-F. Ge and A. Yu. Smirnov, Non-standard interactions and the CP phase measurements in neutrino oscillations at low energies, JHEP 10 (2016) 138.; DOI:10.1007/JHEP10(2016)138
571.W. Altmannshofer, C.-Y. Chen, P. S. Bhupal Dev and A. Soni, Lepton flavor violating Z’ explanation of the muon anomalous magnetic moment, Phys. Lett. B 762 (2016) 389–398.; DOI:10.1016/j.physletb.2016.09.046
572.M. Klasen, F. Lyonnet and F. S. Queiroz, NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the BL model, Eur. Phys. J. C 77 (2017) 348.; DOI:10.1140/epjc/s10052-017-4904-8
573.M. Agostini et al., Borexino’s search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts, Astropart. Phys. 86 (2017) 11–17.; DOI:10.1016/j.astropartphys.2016.10.004
574.S. Patra, W. Rodejohann and C. E. Yaguna, A new B \(-\) L model without right-handed neutrinos, JHEP 09 (2016) 076.; DOI:10.1007/JHEP09(2016)076
575.A. Caminata et al., Short distance neutrino oscillations with Borexino, (P. Piattelli, A. Capone, R. Coniglione, G. De Bonis, M. De Vincenzi, C. Distefano, A. Morselli, et al., Eds.)EPJ Web Conf. 121 (2016) 01002.; DOI:10.1051/epjconf/201612101002
576.S. Davini et al., New results of the Borexino experiment: pp solar neutrino detection, (M. Greco, Ed.)Nuovo Cim. C 38 (2016) 120.; DOI:10.1393/ncc/i2015-15120-4
577.P. Fileviez Perez, C. Murgui and S. Ohmer, Simple Left-Right Theory: Lepton Number Violation at the LHC, Phys. Rev. D 94 (2016) 051701.; DOI:10.1103/PhysRevD.94.051701
578.R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies (2016).; DOI:10.23731/CYRM-2017-003.255
579.F. S. Queiroz, Comment on “Polarized window for left-right symmetry and a right-handed neutrino at the Large Hadron-Electron Collider”, Phys. Rev. D 93 (2016) 118701.; DOI:10.1103/PhysRevD.93.118701
580.R. Arnold et al., Measurement of the 2\(\nu\beta\beta\) decay half-life of \(^{150}\)Nd and a search for 0\(\nu\beta\beta\) decay processes with the full exposure from the NEMO-3 detector, Phys. Rev. D 94 (2016) 072003.; DOI:10.1103/PhysRevD.94.072003
581.M. Archidiacono, S. Gariazzo, C. Giunti, S. Hannestad, R. Hansen, M. Laveder and T. Tram, Pseudoscalarsterile neutrino interactions: reconciling the cosmos with neutrino oscillations, JCAP 08 (2016) 067.; DOI:10.1088/1475-7516/2016/08/067
582.E. Akhmedov, Atmospheric neutrinos, \(\nu_{e}-\nu_{s}\) oscillations and a novel neutrino evolution equation, JHEP 08 (2016) 153.; DOI:10.1007/JHEP08(2016)153
583.J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017.; DOI:10.1088/1475-7516/2016/11/017
584.A. Alves, D. A. Camargo, A. G. Dias, R. Longas, C. C. Nishi and F. S. Queiroz, Collider and Dark Matter Searches in the Inert Doublet Model from Peccei-Quinn Symmetry, JHEP 10 (2016) 015.; DOI:10.1007/JHEP10(2016)015
585.V. Wagner, Status of the GERDA Phase II upgrade, (B. Szczerbinska, R. Allahverdi, K. Babu, B. Balantekin, B. Dutta, T. Kamon, J. Kumar, et al., Eds.)AIP Conf. Proc. 1743 (2016) 060005.; DOI:10.1063/1.4953322
586.P. S. B. Dev, D. Kazanas, R. N. Mohapatra, V. L. Teplitz and Y. Zhang, Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube, JCAP 08 (2016) 034.; DOI:10.1088/1475-7516/2016/08/034
587.M. Archidiacono, S. Hannestad, R. S. Hansen and T. Tram, Secret neutrino interactions: a pseudoscalar model, J. Phys. Conf. Ser. 718 (2016) 032002.; DOI:10.1088/1742-6596/718/3/032002
588.J. Hakenmüller, W. Maneschg and G. Heusser, Simulation and verification of the cosmogenic background at the shallow depth GIOVE detector, J. Phys. Conf. Ser. 718 (2016) 042028.; DOI:10.1088/1742-6596/718/4/042028
589.J. Haser, Search for eV sterile neutrinos at a nuclear reactor the Stereo project, J. Phys. Conf. Ser. 718 (2016) 062023.; DOI:10.1088/1742-6596/718/6/062023
590.A. Ianni et al., High significance measurement of the terrestrial neutrino flux with the Borexino detector, J. Phys. Conf. Ser. 718 (2016) 062025.; DOI:10.1088/1742-6596/718/6/062025
591.G. Testera et al., Recent results from Borexino, J. Phys. Conf. Ser. 718 (2016) 062059.; DOI:10.1088/1742-6596/718/6/062059
592.M. Vivier et al., SOX: search for short baseline neutrino oscillations with Borexino, J. Phys. Conf. Ser. 718 (2016) 062066.; DOI:10.1088/1742-6596/718/6/062066
593.T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena (2016).; DOI:10.23731/CYRM-2017-003.441
594.S. Zavatarelli et al., Recent results from Borexino and the first real time measure of solar pp neutrinos, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1753–1759.; DOI:10.1016/j.nuclphysbps.2015.09.282
595.D. Bravo-Berguño et al., SOX: Short Distance Neutrino Oscillations with Borexino, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1760–1764.; DOI:10.1016/j.nuclphysbps.2015.09.283
596.J. Haser, Current status of the Double Chooz experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1915–1921.; DOI:10.1016/j.nuclphysbps.2015.09.309
597.A. P. Collin, J. I. Crespo-Anadón, J. Haser and G. Yang, Measurement of the detection systematic uncertainty in the Double Chooz experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 2645–2647.; DOI:10.1016/j.nuclphysbps.2015.10.017
598.M. Agostini et al., Search of Neutrinoless Double Beta Decay with the GERDA Experiment, (M. Aguilar-Benı́tez, J. Fuster, S. Martı́-Garcı́a, & A. Santamarı́a, Eds.)Nucl. Part. Phys. Proc. 273-275 (2016) 1876–1882.; DOI:10.1016/j.nuclphysbps.2015.09.303
599.P. S. B. Dev, D. K. Ghosh and W. Rodejohann, R-parity Violating Supersymmetry at IceCube, Phys. Lett. B 762 (2016) 116–123.; DOI:10.1016/j.physletb.2016.08.066
600.F. S. Queiroz, Dark Matter Overview: Collider, Direct and Indirect Detection Searches, 51st Rencontres de Moriond on EW Interactions and Unified Theories (pp. 427–436). ARISF.; Retrieved from https://arxiv.org/abs/1605.08788
601.E. Aprile et al., Low-mass dark matter search using ionization signals in XENON100, Phys. Rev. D 94 (2016) 092001.; DOI:10.1103/PhysRevD.94.092001
602.M. D. Campos and W. Rodejohann, Testing keV sterile neutrino dark matter in future direct detection experiments, Phys. Rev. D 94 (2016) 095010.; DOI:10.1103/PhysRevD.94.095010
603.S.-F. Ge, P. Pasquini, M. Tortola and J. W. F. Valle, Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing, Phys. Rev. D 95 (2017) 033005.; DOI:10.1103/PhysRevD.95.033005
604.M. Agostini et al., Limit on the radiative neutrinoless double electron capture of\(^{36}\) Ar from GERDA Phase I, Eur. Phys. J. C 76 (2016) 652.; DOI:10.1140/epjc/s10052-016-4454-5
605.M. Lindner, F. S. Queiroz, W. Rodejohann and C. E. Yaguna, Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider, JHEP 06 (2016) 140.; DOI:10.1007/JHEP06(2016)140
606.M. Lindner, F. S. Queiroz and W. Rodejohann, Dilepton bounds on leftright symmetry at the LHC run II and neutrinoless double beta decay, Phys. Lett. B 762 (2016) 190–195.; DOI:10.1016/j.physletb.2016.08.068
607.Y. Abe et al., Characterization of the Spontaneous Light Emission of the PMTs used in the Double Chooz Experiment, JINST 11 (2016) P08001.; DOI:10.1088/1748-0221/11/08/P08001
608.M. Duerr, P. Fileviez Perez and J. Smirnov, New Forces and the 750 GeV Resonance (2016).; Retrieved from https://arxiv.org/abs/1604.05319
609.K. Schmitz and T. T. Yanagida, Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation, Phys. Rev. D 94 (2016) 074021.; DOI:10.1103/PhysRevD.94.074021
610.X. Chu and A. Yu. Smirnov, Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries, JHEP 05 (2016) 135.; DOI:10.1007/JHEP05(2016)135
611.P. Fileviez Perez and C. Murgui, Renormalizable SU(5) Unification, Phys. Rev. D 94 (2016) 075014.; DOI:10.1103/PhysRevD.94.075014
612.P. O. Ludl and W. Rodejohann, Direct Neutrino Mass Experiments and Exotic Charged Current Interactions, JHEP 06 (2016) 040.; DOI:10.1007/JHEP06(2016)040
613.A. Merle, M. Platscher, N. Rojas, J. W. F. Valle and A. Vicente, Consistency of WIMP Dark Matter as radiative neutrino mass messenger, JHEP 07 (2016) 013.; DOI:10.1007/JHEP07(2016)013
614.A. J. Helmboldt, P. Humbert, M. Lindner and J. Smirnov, Minimal conformal extensions of the Higgs sector, JHEP 07 (2017) 113.; DOI:10.1007/JHEP07(2017)113
615.S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e\(^{+}\) e\(^{−}\) Higgs factory, JHEP 10 (2016) 007.; DOI:10.1007/JHEP10(2016)007
616.S. Profumo, F. S. Queiroz and C. E. Yaguna, Extending Fermi-LAT and H.E.S.S. Limits on Gamma-ray Lines from Dark Matter Annihilation, Mon. Not. Roy. Astron. Soc. 461 (2016) 3976–3981.; DOI:10.1093/mnras/stw1600
617.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders, JHEP 05 (2016) 174.; DOI:10.1007/JHEP05(2016)174
618.F. S. Queiroz, C. E. Yaguna and C. Weniger, Gamma-ray Limits on Neutrino Lines, JCAP 05 (2016) 050.; DOI:10.1088/1475-7516/2016/05/050
619.P. S. B. Dev and A. Mazumdar, Probing the Scale of New Physics by Advanced LIGO/VIRGO, Phys. Rev. D 93 (2016) 104001.; DOI:10.1103/PhysRevD.93.104001
620.S. Chakraborty, R. Hansen, I. Izaguirre and G. Raffelt, Collective neutrino flavor conversion: Recent developments, Nucl. Phys. B 908 (2016) 366–381.; DOI:10.1016/j.nuclphysb.2016.02.012
621.A. Caminata et al., Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement, J. Phys. Conf. Ser. 675 (2016) 012012.; DOI:10.1088/1742-6596/675/1/012012
622.A. Vishneva et al., Test of the electric charge conservation law with Borexino detector, J. Phys. Conf. Ser. 675 (2016) 012025.; DOI:10.1088/1742-6596/675/1/012025
623.O. Y. Smirnov et al., Measurement of Solar pp-neutrino flux with Borexino: results and implications, J. Phys. Conf. Ser. 675 (2016) 012027.; DOI:10.1088/1742-6596/675/1/012027
624.R. Roncin et al., Geo-neutrino results with Borexino, J. Phys. Conf. Ser. 675 (2016) 012029.; DOI:10.1088/1742-6596/675/1/012029
625.M. Durero et al., The \(^{144}\)Ce source for SOX, J. Phys. Conf. Ser. 675 (2016) 012032.; DOI:10.1088/1742-6596/675/1/012032
626.L. Di Noto et al., The high precision measurement of the \(^{144}\)Ce activity in the SOX experiment, J. Phys. Conf. Ser. 675 (2016) 012035.; DOI:10.1088/1742-6596/675/1/012035
627.G. Ranucci et al., Overview and accomplishments of the Borexino experiment, J. Phys. Conf. Ser. 675 (2016) 012036.; DOI:10.1088/1742-6596/675/1/012036
628.S. Davini et al., CNO and pep solar neutrino measurements and perspectives in Borexino, J. Phys. Conf. Ser. 675 (2016) 012040.; DOI:10.1088/1742-6596/675/1/012040
629.S.-F. Ge, H.-J. He, J. Ren and Z.-Z. Xianyu, Realizing Dark Matter and Higgs Inflation in Light of LHC Diphoton Excess, Phys. Lett. B 757 (2016) 480–492.; DOI:10.1016/j.physletb.2016.04.008
630.R. F. Lang, A. Brown, E. Brown, M. Cervantes, S. Macmullin, D. Masson, J. Schreiner and H. Simgen, A \(^{220}\)Rn source for the calibration of low-background experiments, JINST 11 (2016) P04004.; DOI:10.1088/1748-0221/11/04/P04004
631.S. Chakraborty, R. S. Hansen, I. Izaguirre and G. Raffelt, Self-induced neutrino flavor conversion without flavor mixing, JCAP 03 (2016) 042.; DOI:10.1088/1475-7516/2016/03/042
632.E. Akhmedov and A. Mirizzi, Another look at synchronized neutrino oscillations, Nucl. Phys. B 908 (2016) 382–407.; DOI:10.1016/j.nuclphysb.2016.02.011
633.M. Agostini et al., Flux Modulations seen by the Muon Veto of the GERDA Experiment, Astropart. Phys. 84 (2016) 29–35.; DOI:10.1016/j.astropartphys.2016.08.002
634.P. S. B. Dev and A. Ibarra, Heavy Neutrinos at Future Colliders, (G. Corcella, S. De Curtis, S. Moretti, & G. Pancheri, Eds.)Frascati Phys. Ser. 61 (2016) 40.; Retrieved from https://arxiv.org/abs/1601.01658
635.A. Ibarra, C. E. Yaguna and O. Zapata, Direct Detection of Fermion Dark Matter in the Radiative Seesaw Model, Phys. Rev. D 93 (2016) 035012.; DOI:10.1103/PhysRevD.93.035012
636.A. Caminata et al., Search for sterile neutrinos with the SOX experiment, Nuovo Cim. C 39 (2016) 236.; DOI:10.1393/ncc/i2016-16236-7
637.S. Marcocci et al., Measurement of solar neutrino fluxes with Borexino, Magellan Workshop: Connecting Neutrino Physics and Astronomy (pp. 95–104).; DOI:10.3204/DESY-PROC-2016-05/30
638.A. Caminata et al., Monte Carlo simulations in neutrino physics: the example of the SOX experiment, Magellan Workshop: Connecting Neutrino Physics and Astronomy (pp. 105–112).; DOI:10.3204/DESY-PROC-2016-05/21
639.A. Caminata et al., The SOX experiment: understanding the detector behavior using calibration sources, Magellan Workshop: Connecting Neutrino Physics and Astronomy (pp. 175–180).; DOI:10.3204/DESY-PROC-2016-05/22
640.K. Altenmüller et al., The search for sterile neutrinos with SOX-Borexino, Phys. Atom. Nucl. 79 (2016) 1481–1484.; DOI:10.1134/S106377881610001X
641.J. Kersten and A. Yu. Smirnov, Decoherence and oscillations of supernova neutrinos, Eur. Phys. J. C 76 (2016) 339.; DOI:10.1140/epjc/s10052-016-4187-5
642.P. S. B. Dev, R. N. Mohapatra and Y. Zhang, Quark Seesaw, Vectorlike Fermions and Diphoton Excess, JHEP 02 (2016) 186.; DOI:10.1007/JHEP02(2016)186
643.E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027.; DOI:10.1088/1475-7516/2016/04/027
644.Y. Abe et al., Muon capture on light isotopes measured with the Double Chooz detector, Phys. Rev. C 93 (2016) 054608.; DOI:10.1103/PhysRevC.93.054608
645.B. C. Allanach, P. S. B. Dev, S. A. Renner and K. Sakurai, 750 GeV diphoton excess explained by a resonant sneutrino in R-parity violating supersymmetry, Phys. Rev. D 93 (2016) 115022.; DOI:10.1103/PhysRevD.93.115022
646.C. Buck, The Double Chooz experiment, PoS NEUTEL2015 (2015) 015.; DOI:10.22323/1.244.0015
647.P. S. B. Dev and D. Teresi, Asymmetric dark matter in the Sun and diphoton excess at the LHC, Phys. Rev. D 94 (2016) 025001.; DOI:10.1103/PhysRevD.94.025001
648.C. Buck, A. P. Collin, J. Haser and M. Lindner, Investigating the Spectral Anomaly with Different Reactor Antineutrino Experiments, Phys. Lett. B 765 (2017) 159–162.; DOI:10.1016/j.physletb.2016.11.062
649.A. Y. Smirnov, Neutrino properties, mass hierarchy, and CP-violation, PoS ICRC2015 (2016) 004.; DOI:10.22323/1.236.0004
650.G. Bambhaniya, P. S. B. Dev, S. Goswami and M. Mitra, The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric Model, JHEP 04 (2016) 046.; DOI:10.1007/JHEP04(2016)046
651.B. Allanach, F. S. Queiroz, A. Strumia and S. Sun, \(Z′\) models for the LHCb and \(g-2\) muon anomalies, Phys. Rev. D 93 (2016) 055045.; DOI:10.1103/PhysRevD.93.055045
652.M. Lindner, H. H. Patel and B. Radovčić, Electroweak Absolute, Meta-, and Thermal Stability in Neutrino Mass Models, Phys. Rev. D 93 (2016) 073005.; DOI:10.1103/PhysRevD.93.073005
653.F. S. Queiroz and C. E. Yaguna, The CTA aims at the Inert Doublet Model, JCAP 02 (2016) 038.; DOI:10.1088/1475-7516/2016/02/038
654.L. Miramonti et al., Geo-neutrinos from 1353 Days with the Borexino Detector, (F. Avignone & W. Haxton, Eds.)Phys. Procedia 61 (2015) 340–344.; DOI:10.1016/j.phpro.2014.12.073
655.O. Smirnov et al., Short Distance Neutrino Oscillations with BoreXino: SOX, (F. Avignone & W. Haxton, Eds.)Phys. Procedia 61 (2015) 511–517.; DOI:10.1016/j.phpro.2014.12.115
656.Y. Abe et al., Measurement of \(\theta\)\(_{13}\) in Double Chooz using neutron captures on hydrogen with novel background rejection techniques, JHEP 01 (2016) 163.; DOI:10.1007/JHEP01(2016)163
657.M. Duerr, P. Fileviez Pérez and J. Smirnov, Gamma-Ray Excess and the Minimal Dark Matter Model, JHEP 06 (2016) 008.; DOI:10.1007/JHEP06(2016)008
658.C. E. Yaguna, Singlet-Doublet Dirac Dark Matter, Phys. Rev. D 92 (2015) 115002.; DOI:10.1103/PhysRevD.92.115002
659.M. Lindner, W. Rodejohann and X.-J. Xu, Sterile neutrinos in the light of IceCube, JHEP 01 (2016) 124.; DOI:10.1007/JHEP01(2016)124
660.A. Esmaili and A. Yu. Smirnov, Discrete symmetries and mixing of Dirac neutrinos, Phys. Rev. D 92 (2015) 093012.; DOI:10.1103/PhysRevD.92.093012
661.M. G. Baring, T. Ghosh, F. S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D 93 (2016) 103009.; DOI:10.1103/PhysRevD.93.103009
662.T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G 43 (2016) 013001.; DOI:10.1088/0954-3899/43/1/013001
663.G. Boireau et al., Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector, Phys. Rev. D 93 (2016) 112006.; DOI:10.1103/PhysRevD.93.112006
664.W. Rodejohann and C. E. Yaguna, Scalar dark matter in the B\(-\)L model, JCAP 12 (2015) 032.; DOI:10.1088/1475-7516/2015/12/032
665.M. Duerr, P. Fileviez Pérez and J. Smirnov, Scalar Dark Matter: Direct vs. Indirect Detection, JHEP 06 (2016) 152.; DOI:10.1007/JHEP06(2016)152
666.W. Rodejohann and X.-J. Xu, A leftright symmetric flavor symmetry model, Eur. Phys. J. C 76 (2016) 138.; DOI:10.1140/epjc/s10052-016-3992-1
667.C. Buck, B. Gramlich and S. Wagner, Light propagation and fluorescence quantum yields in liquid scintillators, JINST 10 (2015) P09007.; DOI:10.1088/1748-0221/10/09/P09007
668.A. Yu. Smirnov, Neutrinos: Projecting onto the Future, PoS NEUTEL2015 (2015) 004.; DOI:10.22323/1.244.0004
669.M. Agostini et al., A test of electric charge conservation with Borexino, Phys. Rev. Lett. 115 (2015) 231802.; DOI:10.1103/PhysRevLett.115.231802
670.S.-F. Ge, M. Lindner and S. Patra, New physics effects on neutrinoless double beta decay from right-handed current, JHEP 10 (2015) 077.; DOI:10.1007/JHEP10(2015)077
671.Y. Mambrini, S. Profumo and F. S. Queiroz, Dark Matter and Global Symmetries, Phys. Lett. B 760 (2016) 807–815.; DOI:10.1016/j.physletb.2016.07.076
672.F. F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann, N. Sahu and U. Sarkar, Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model, Phys. Rev. D 93 (2016) 013011.; DOI:10.1103/PhysRevD.93.013011
673.P. Mosteiro et al., Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Part. Phys. Proc. 265-266 (2015) 87–92.; DOI:10.1016/j.nuclphysbps.2015.06.023
674.W. Rodejohann and X.-J. Xu, Robustness of neutrino mass matrix predictions, Nucl. Phys. B 899 (2015) 463–475.; DOI:10.1016/j.nuclphysb.2015.08.014
675.M. Duerr, P. Fileviez Perez and J. Smirnov, Scalar Singlet Dark Matter and Gamma Lines, Phys. Lett. B 751 (2015) 119–122.; DOI:10.1016/j.physletb.2015.10.034
676.M. L. di Vacri, S. Nisi, C. Cattadori, J. Janicsko, A. Lubashevskiy, A. Smolnikov and M. Walter, ICP MS selection of radiopure materials for the GERDA experiment, (J. L. Orrell, Ed.)AIP Conf. Proc. 1672 (2015) 150001.; DOI:10.1063/1.4928024
677.M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma Lines from Majorana Dark Matter, Phys. Rev. D 93 (2016) 023509.; DOI:10.1103/PhysRevD.93.023509
678.E. Aprile et al., Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data, Science 349 (2015) 851–854.; DOI:10.1126/science.aab2069
679.E. Aprile et al., Search for Event Rate Modulation in XENON100 Electronic Recoil Data, Phys. Rev. Lett. 115 (2015) 091302.; DOI:10.1103/PhysRevLett.115.091302
680.S.-F. Ge and W. Rodejohann, JUNO and Neutrinoless Double Beta Decay, Phys. Rev. D 92 (2015) 093006.; DOI:10.1103/PhysRevD.92.093006
681.M. Maltoni and A. Yu. Smirnov, Solar neutrinos and neutrino physics, Eur. Phys. J. A 52 (2016) 87.; DOI:10.1140/epja/i2016-16087-0
682.G. Bellini et al., Neutrino measurements from the Sun and Earth: Results from Borexino, (E. Kearns, Ed.)AIP Conf. Proc. 1666 (2015) 090002.; DOI:10.1063/1.4915567
683.P. O. Ludl and A. Yu. Smirnov, Lepton mixing from the hidden sector, Phys. Rev. D 92 (2015) 073010.; DOI:10.1103/PhysRevD.92.073010
684.H.-J. He, W. Rodejohann and X.-J. Xu, Origin of Constrained Maximal CP Violation in Flavor Symmetry, Phys. Lett. B 751 (2015) 586–594.; DOI:10.1016/j.physletb.2015.10.066
685.G. Heusser, M. Weber, J. Hakenmüller, M. Laubenstein, M. Lindner, W. Maneschg, H. Simgen, D. Stolzenburg and H. Strecker, GIOVE - A new detector setup for high sensitivity germanium spectroscopy at shallow depth, Eur. Phys. J. C 75 (2015) 531.; DOI:10.1140/epjc/s10052-015-3704-2
686.O. Yu. Smirnov et al., Measurement of neutrino flux from the primary protonproton fusion process in the Sun with Borexino detector, Phys. Part. Nucl. 47 (2016) 995–1002.; DOI:10.1134/S106377961606023X
687.J. Heeck and S. Patra, Minimal Left-Right Symmetric Dark Matter, Phys. Rev. Lett. 115 (2015) 121804.; DOI:10.1103/PhysRevLett.115.121804
688.A. J. Long, H. H. Patel and M. Trodden, Electroweak vacuum angle at finite temperature and implications for baryogenesis, Phys. Rev. D 92 (2015) 043513.; DOI:10.1103/PhysRevD.92.043513
689.H. Päs and W. Rodejohann, Neutrinoless Double Beta Decay, New J. Phys. 17 (2015) 115010.; DOI:10.1088/1367-2630/17/11/115010
690.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dirac-fermionic dark matter in U(1)\(_{X}\) models, JHEP 10 (2015) 076.; DOI:10.1007/JHEP10(2015)076
691.J. Evslin, S.-F. Ge and K. Hagiwara, The leptonic CP phase from T2(H)K and \(\mu\)\(^{+}\) decay at rest, JHEP 02 (2016) 137.; DOI:10.1007/JHEP02(2016)137
692.M. Duerr, P. Fileviez Perez and J. Smirnov, Simplified Dirac Dark Matter Models and Gamma-Ray Lines, Phys. Rev. D 92 (2015) 083521.; DOI:10.1103/PhysRevD.92.083521
693.M. Agostini et al., Spectroscopy of geoneutrinos from 2056 days of Borexino data, Phys. Rev. D 92 (2015) 031101.; DOI:10.1103/PhysRevD.92.031101
694.M. Agostini et al., Limit on Neutrinoless Double Beta Decay of \(^{76}\)Ge by GERDA, (F. Avignone & W. Haxton, Eds.)Phys. Procedia 61 (2015) 828–837.; DOI:10.1016/j.phpro.2015.06.002
695.S. Patra, F. S. Queiroz and W. Rodejohann, Stringent Dilepton Bounds on Left-Right Models using LHC data, Phys. Lett. B 752 (2016) 186–190.; DOI:10.1016/j.physletb.2015.11.009
696.M. Agostini et al., \(2\nu\beta\beta\) decay of \(^{76}\)Ge into excited states with GERDA Phase I, J. Phys. G 42 (2015) 115201.; DOI:10.1088/0954-3899/42/11/115201
697.J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8–23.; DOI:10.1016/j.dark.2015.08.001
698.S. Ohmer and H. H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020.; DOI:10.1103/PhysRevD.92.055020
699.P. P. Povinec et al., Reference material for natural radionuclides in glass designed for underground experiments, J. Radioanal. Nucl. Chem. 307 (2016) 619–626.; DOI:10.1007/s10967-015-4202-6
700.P. Humbert, M. Lindner, S. Patra and J. Smirnov, Lepton Number Violation within the Conformal Inverse Seesaw, JHEP 09 (2015) 064.; DOI:10.1007/JHEP09(2015)064
701.M. Salathe and T. Kihm, Optimized digital filtering techniques for radiation detection with HPGe detectors, Nucl. Instrum. Meth. A 808 (2016) 150–155.; DOI:10.1016/j.nima.2015.11.051
702.E. Aprile et al., Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment, Eur. Phys. J. C 75 (2015) 546.; DOI:10.1140/epjc/s10052-015-3657-5
703.L. Ludhova et al., Geo-neutrinos and Borexino, Phys. Part. Nucl. 46 (2015) 174–181.; DOI:10.1134/S1063779615020148
704.P. Humbert, M. Lindner and J. Smirnov, The Inverse Seesaw in Conformal Electro-Weak Symmetry Breaking and Phenomenological Consequences, JHEP 06 (2015) 035.; DOI:10.1007/JHEP06(2015)035
705.W. Maneschg, Review of neutrinoless double beta decay experiments: Present status and near future, (A. Stahl & I. M. Nugent, Eds.)Nucl. Part. Phys. Proc. 260 (2015) 188–193.; DOI:10.1016/j.nuclphysbps.2015.02.039
706.M. Ahmad et al., CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector (2015).
707.M. Agostini et al., Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I, Eur. Phys. J. C 75 (2015) 255.; DOI:10.1140/epjc/s10052-015-3409-6
708.M. Agostini et al., LArGe: active background suppression using argon scintillation for the Gerda \(0\nu \beta \beta\) -experiment, Eur. Phys. J. C 75 (2015) 506.; DOI:10.1140/epjc/s10052-015-3681-5
709.A. Alves, A. Berlin, S. Profumo and F. S. Queiroz, Dark Matter Complementarity and the Z\(^\prime\) Portal, Phys. Rev. D 92 (2015) 083004.; DOI:10.1103/PhysRevD.92.083004
710.B. Allanach, A. Alves, F. S. Queiroz, K. Sinha and A. Strumia, Interpreting the CMS \(\ell^+\ell^- jj E\!\!\!\!/_{\rm T}\) Excess with a Leptoquark Model, Phys. Rev. D 92 (2015) 055023.; DOI:10.1103/PhysRevD.92.055023
711.W. Rodejohann and X.-J. Xu, Origin of Symmetric PMNS and CKM Matrices, Phys. Rev. D 91 (2015) 056004.; DOI:10.1103/PhysRevD.91.056004
712.M. Agostini et al., Results on \(\beta \beta\) decay with emission of two neutrinos or Majorons in\(^{76}\) Ge from GERDA Phase I, Eur. Phys. J. C 75 (2015) 416.; DOI:10.1140/epjc/s10052-015-3627-y
713.P. Fileviez Perez, New Paradigm for Baryon and Lepton Number Violation, Phys. Rept. 597 (2015) 1–30.; DOI:10.1016/j.physrep.2015.09.001
714.L. Di Noto et al., The SOX experiment in the neutrino physics, Nuovo Cim. C 38 (2015) 36.; DOI:10.1393/ncc/i2015-15036-y
715.S. Patra, N. Sahoo and N. Sahu, Dipolar dark matter in light of the 3.5 keV x-ray line, neutrino mass, and LUX data, Phys. Rev. D 91 (2015) 115013.; DOI:10.1103/PhysRevD.91.115013
716.J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs \(\mu\)\(\tau\) in Abelian and non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281–310.; DOI:10.1016/j.nuclphysb.2015.04.025
717.E. Akhmedov, Majorana neutrinos and other Majorana particles:Theory and experiment.; Retrieved from https://arxiv.org/abs/1412.3320
718.A. Collin, Reactor Antineutrino Experiments, PoS HQL2014 (2014) 018.; DOI:10.22323/1.223.0018
719.J. Smirnov, Gauge-Invariant Average of Einstein Equations for finite Volumes (2014).; Retrieved from https://arxiv.org/abs/1410.6480
720.N. Bozorgnia and T. Schwetz, What is the probability that direct detection experiments have observed Dark Matter?, JCAP 12 (2014) 015.; DOI:10.1088/1475-7516/2014/12/015
721.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, LHC Tests of Light Neutralino Dark Matter without Light Sfermions, JHEP 11 (2014) 106.; DOI:10.1007/JHEP11(2014)106
722.O. Smirnov et al., Solar neutrino with Borexino: results and perspectives, Phys. Part. Nucl. 46 (2015) 166–173.; DOI:10.1134/S1063779615020185
723.M. Agostini et al., Production, characterization and operation of \(^{76}\)Ge enriched BEGe detectors in GERDA, Eur. Phys. J. C 75 (2015) 39.; DOI:10.1140/epjc/s10052-014-3253-0
724.M. Duerr and P. Fileviez Perez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001.; DOI:10.1103/PhysRevD.91.095001
725.S. Benic and B. Radovcic, Majorana dark matter in a classically scale invariant model, JHEP 01 (2015) 143.; DOI:10.1007/JHEP01(2015)143
726.J. Heeck, Unbroken B L symmetry, Phys. Lett. B 739 (2014) 256–262.; DOI:10.1016/j.physletb.2014.10.067
727.S.-F. Ge, The Georgi Algorithms of Jet Clustering, JHEP 05 (2015) 066.; DOI:10.1007/JHEP05(2015)066
728.J. Kopp and J. Welter, The Not-So-Sterile 4th Neutrino: Constraints on New Gauge Interactions from Neutrino Oscillation Experiments, JHEP 12 (2014) 104.; DOI:10.1007/JHEP12(2014)104
729.Y. Abe et al., Ortho-positronium observation in the Double Chooz Experiment, JHEP 10 (2014) 032.; DOI:10.1007/JHEP10(2014)032
730.T. Marrodán Undagoitia, Liquid noble gases for direct dark matter searches, PoS TIPP2014 (2014) 011.; DOI:10.22323/1.213.0011
731.X.-J. Xu, H.-J. He and W. Rodejohann, Constraining Astrophysical Neutrino Flavor Composition from Leptonic Unitarity, JCAP 12 (2014) 039.; DOI:10.1088/1475-7516/2014/12/039
732.W. Rodejohann and H. Zhang, Signatures of Extra Dimensional Sterile Neutrinos, Phys. Lett. B 737 (2014) 81–89.; DOI:10.1016/j.physletb.2014.08.035
733.T. I. Banks et al., A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector, Nucl. Instrum. Meth. A 769 (2015) 88–96.; DOI:10.1016/j.nima.2014.09.068
734.Y. Abe et al., Improved measurements of the neutrino mixing angle \(\theta_{13}\) with the Double Chooz detector, JHEP 10 (2014) 086.; DOI:10.1007/JHEP02(2015)074
735.J. Kopp and M. Nardecchia, Flavor and CP violation in Higgs decays, JHEP 10 (2014) 156.; DOI:10.1007/JHEP10(2014)156
736.E. Aprile et al., Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment, JINST 9 (2014) P11006.; DOI:10.1088/1748-0221/9/11/P11006
737.D. D’Angelo et al., Recent Borexino results and prospects for the near future, (L. Bravina, Y. Foka, & S. Kabana, Eds.)EPJ Web Conf. 126 (2016) 02008.; DOI:10.1051/epjconf/201612602008
738.E. Akhmedov, J. Kopp and M. Lindner, Decoherence by wave packet separation and collective neutrino oscillations (2014).; Retrieved from https://arxiv.org/abs/1405.7275
739.I. Girardi, D. Meloni, T. Ohlsson, H. Zhang and S. Zhou, Constraining Sterile Neutrinos Using Reactor Neutrino Experiments, JHEP 08 (2014) 057.; DOI:10.1007/JHEP08(2014)057
740.Y. Abe et al., Precision Muon Reconstruction in Double Chooz, Nucl. Instrum. Meth. A 764 (2014) 330–339.; DOI:10.1016/j.nima.2014.07.058
741.M. Lindner, S. Schmidt and J. Smirnov, Neutrino Masses and Conformal Electro-Weak Symmetry Breaking, JHEP 10 (2014) 177.; DOI:10.1007/JHEP10(2014)177
742.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, A lower bound on light neutralino dark matter from LHC data, 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 205–2010).; Retrieved from https://arxiv.org/abs/1405.3884
743.N. Bozorgnia and T. Schwetz, Is the effect of the Sun’s gravitational potential on dark matter particles observable?, JCAP 08 (2014) 013.; DOI:10.1088/1475-7516/2014/08/013
744.P. Fileviez Perez and S. Ohmer, Low Scale Unification of Gauge Interactions, Phys. Rev. D 90 (2014) 037701.; DOI:10.1103/PhysRevD.90.037701
745.J. Kubo, K. S. Lim and M. Lindner, Gamma-ray Line from Nambu-Goldstone Dark Matter in a Scale Invariant Extension of the Standard Model, JHEP 09 (2014) 016.; DOI:10.1007/JHEP09(2014)016
746.J. Barry, J. Heeck and W. Rodejohann, Sterile neutrinos and right-handed currents in KATRIN, JHEP 07 (2014) 081.; DOI:10.1007/JHEP07(2014)081
747.E. Aprile et al., First Axion Results from the XENON100 Experiment, Phys. Rev. D 90 (2014) 062009.; DOI:10.1103/PhysRevD.90.062009
748.A. Greljo, J. F. Kamenik and J. Kopp, Disentangling Flavor Violation in the Top-Higgs Sector at the LHC, JHEP 07 (2014) 046.; DOI:10.1007/JHEP07(2014)046
749.B. Dasgupta and A. Yu. Smirnov, Leptonic CP Violation Phases, Quark-Lepton Similarity and Seesaw Mechanism, Nucl. Phys. B 884 (2014) 357–378.; DOI:10.1016/j.nuclphysb.2014.05.001
750.P. Fileviez Perez, S. Ohmer and H. H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283–287.; DOI:10.1016/j.physletb.2014.06.057
751.J. Kubo, K. S. Lim and M. Lindner, Electroweak Symmetry Breaking via QCD, Phys. Rev. Lett. 113 (2014) 091604.; DOI:10.1103/PhysRevLett.113.091604
752.A. Yu. Smirnov, Theory of neutrino masses and mixing, Nuovo Cim. C 037 (2014) 29–37.; DOI:10.1393/ncc/i2014-11761-y
753.P. Fileviez Perez and H. H. Patel, The Electroweak Vacuum Angle, Phys. Lett. B 732 (2014) 241–243.; DOI:10.1016/j.physletb.2014.03.064
754.D. Adey et al., Light sterile neutrino sensitivity at the nuSTORM facility, Phys. Rev. D 89 (2014) 071301.; DOI:10.1103/PhysRevD.89.071301
755.W. Rodejohann and H. Zhang, Reducing \(\theta_{13}\) to \(9^\circ\), Phys. Lett. B 732 (2014) 174–181.; DOI:10.1016/j.physletb.2014.03.040
756.D. Schmidt, T. Schwetz and H. Zhang, Status of the ZeeBabu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524–541.; DOI:10.1016/j.nuclphysb.2014.05.024
757.J. Smirnov, Regularization of Vacuum Fluctuations and Frame Dependence (2014).; Retrieved from https://arxiv.org/abs/1402.1490
758.P. Fileviez Perez and S. Spinner, Higgs mass and the Stueckelberg mechanism in supersymmetry, Phys. Rev. D 89 (2014) 095004.; DOI:10.1103/PhysRevD.89.095004
759.J. Kopp, L. Michaels and J. Smirnov, Loopy Constraints on Leptophilic Dark Matter and Internal Bremsstrahlung, JCAP 04 (2014) 022.; DOI:10.1088/1475-7516/2014/04/022
760.Y. Abe et al., Background-independent measurement of \(\theta_{13}\) in Double Chooz, Phys. Lett. B 735 (2014) 51–56.; DOI:10.1016/j.physletb.2014.04.045
761.C.-Y. Seng, J. de Vries, E. Mereghetti, H. H. Patel and M. Ramsey-Musolf, Nucleon electric dipole moments and the isovector parity- and time-reversal-odd pionnucleon coupling, Phys. Lett. B 736 (2014) 147–153.; DOI:10.1016/j.physletb.2014.07.014
762.N. Neitz, N. Kumar, F. Mackenroth, K. Z. Hatsagortsyan, C. H. Keitel and A. Di Piazza, Novel aspects of radiation reaction in the classical and the quantum regime, J. Phys. Conf. Ser. 497 (2014) 012015.; DOI:10.1088/1742-6596/497/1/012015
763.H. Simgen, G. Heusser, M. Laubenstein and G. Zuzel, Analysis of radioactive trace impurities with \(\mu\)Bq-sensitivity in Borexino, Int. J. Mod. Phys. A 29 (2014) 1442009.; DOI:10.1142/S0217751X14420093
764.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Sensitivity of oscillation experiments to the neutrino mass hierarchy, 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 121–128).
765.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Impact of TeV-scale sterile neutrinos on precision low-energy observables, 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories (pp. 389–394).
766.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving electroweak fit with TeV-scale sterile neutrinos, 18th International Seminar on High Energy Physics.
767.L. F. Rauch, Detector characterization, electronic-recoil energy scale and astrophysical independent results in XENON100 (Master’s thesis). Heidelberg U.
768.P. Fileviez Pérez and H. H. Patel, Baryon Asymmetry, Dark Matter and Local Baryon Number, Phys. Lett. B 731 (2014) 232–235.; DOI:10.1016/j.physletb.2014.02.047
769.K. S. Babu et al., Working Group Report: Baryon Number Violation, Snowmass 2013: Snowmass on the Mississippi.; Retrieved from https://arxiv.org/abs/1311.5285
770.M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028.; DOI:10.1007/JHEP03(2014)028
771.E. Aprile et al., Observation and applications of single-electron charge signals in the XENON100 experiment, J. Phys. G 41 (2014) 035201.; DOI:10.1088/0954-3899/41/3/035201
772.G. Bellini et al., New limits on heavy sterile neutrino mixing in B8 decay obtained with the Borexino detector, Phys. Rev. D 88 (2013) 072010.; DOI:10.1103/PhysRevD.88.072010
773.J. M. Arnold, P. Fileviez Pérez, B. Fornal and S. Spinner, B and L at the supersymmetry scale, dark matter, and R-parity violation, Phys. Rev. D 88 (2013) 115009.; DOI:10.1103/PhysRevD.88.115009
774.M. Lindner, D. Schmidt and A. Watanabe, Dark matter and U(1)’ symmetry for the right-handed neutrinos, Phys. Rev. D 89 (2014) 013007.; DOI:10.1103/PhysRevD.89.013007
775.B. Dasgupta and J. Kopp, Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure, Phys. Rev. Lett. 112 (2014) 031803.; DOI:10.1103/PhysRevLett.112.031803
776.T. Ohlsson, H. Zhang and S. Zhou, Nonstandard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments, Phys. Lett. B 728 (2014) 148–155.; DOI:10.1016/j.physletb.2013.11.052
777.M. Holthausen, J. Kubo, K. S. Lim and M. Lindner, Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector, JHEP 12 (2013) 076.; DOI:10.1007/JHEP12(2013)076
778.N. Bozorgnia, R. Catena and T. Schwetz, Anisotropic dark matter distribution functions and impact on WIMP direct detection, JCAP 12 (2013) 050.; DOI:10.1088/1475-7516/2013/12/050
779.L. Baudis, A. Ferella, A. Kish, A. Manalaysay, T. Marrodan Undagoitia and M. Schumann, Neutrino physics with multi-ton scale liquid xenon detectors, JCAP 01 (2014) 044.; DOI:10.1088/1475-7516/2014/01/044
780.M. Duerr and P. Fileviez Perez, Baryonic Dark Matter, Phys. Lett. B 732 (2014) 101–104.; DOI:10.1016/j.physletb.2014.03.011
781.S. Lindemann and H. Simgen, Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer, Eur. Phys. J. C 74 (2014) 2746.; DOI:10.1140/epjc/s10052-014-2746-1
782.W. Maneschg, GERDA phase II detectors: Behind the production and characterisation at low background conditions, (L. Miramonti & L. Pandola, Eds.)AIP Conf. Proc. 1549 (2013) 54–57.; DOI:10.1063/1.4818075
783.G. Bellini et al., Final results of Borexino Phase-I on low energy solar neutrino spectroscopy, Phys. Rev. D 89 (2014) 112007.; DOI:10.1103/PhysRevD.89.112007
784.P. Fileviez Perez and S. Spinner, Supersymmetry at the LHC and The Theory of R-parity, Phys. Lett. B 728 (2014) 489–495.; DOI:10.1016/j.physletb.2013.12.022
785.D. Adey et al., nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC (2013).; Retrieved from https://arxiv.org/abs/1308.6822
786.L. Lavoura, W. Rodejohann and A. Watanabe, Reproducing lepton mixing in a texture zero model, Phys. Lett. B 726 (2013) 352–355.; DOI:10.1016/j.physletb.2013.08.074
787.P. Fileviez Perez and M. B. Wise, Low Scale Quark-Lepton Unification, Phys. Rev. D 88 (2013) 057703.; DOI:10.1103/PhysRevD.88.057703
788.M. Agostini et al., Results on Neutrinoless Double-\(\beta\) Decay of \(^{76}\)Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 122503.; DOI:10.1103/PhysRevLett.111.122503
789.L. Calibbi, J. M. Lindert, T. Ota and Y. Takanishi, Cornering light Neutralino Dark Matter at the LHC, JHEP 10 (2013) 132.; DOI:10.1007/JHEP10(2013)132
790.M. Agostini et al., Pulse shape discrimination for GERDA Phase I data, Eur. Phys. J. C 73 (2013) 2583.; DOI:10.1140/epjc/s10052-013-2583-7
791.J. Heeck, Leptogenesis with Lepton-Number-Violating Dirac Neutrinos, Phys. Rev. D 88 (2013) 076004.; DOI:10.1103/PhysRevD.88.076004
792.S. Antusch, M. Holthausen, M. A. Schmidt and M. Spinrath, Solving the Strong CP Problem with Discrete Symmetries and the Right Unitarity Triangle, Nucl. Phys. B 877 (2013) 752–771.; DOI:10.1016/j.nuclphysb.2013.10.028
793.M. Agostini et al., The background in the \(0 \nu \beta \beta\) experiment GERDA, Eur. Phys. J. C 74 (2014) 2764.; DOI:10.1140/epjc/s10052-014-2764-z
794.A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024.; DOI:10.1007/JHEP09(2013)024
795.M. Holthausen and K. S. Lim, Quark and Leptonic Mixing Patterns from the Breakdown of a Common Discrete Flavor Symmetry, Phys. Rev. D 88 (2013) 033018.; DOI:10.1103/PhysRevD.88.033018
796.M. Blennow and T. Schwetz, Determination of the neutrino mass ordering by combining PINGU and Daya Bay II, JHEP 09 (2013) 089.; DOI:10.1007/JHEP09(2013)089
797.A. Merle, V. Niro and D. Schmidt, New Production Mechanism for keV Sterile Neutrino Dark Matter by Decays of Frozen-In Scalars, JCAP 03 (2014) 028.; DOI:10.1088/1475-7516/2014/03/028
798.E. Aprile et al., The neutron background of the XENON100 dark matter search experiment, J. Phys. G 40 (2013) 115201.; DOI:10.1088/0954-3899/40/11/115201
799.M. Duerr, P. Fileviez Perez and M. Lindner, Left-Right Symmetric Theory with Light Sterile Neutrinos, Phys. Rev. D 88 (2013) 051701.; DOI:10.1103/PhysRevD.88.051701
800.J. Heeck and W. Rodejohann, Neutrinoless Quadruple Beta Decay, EPL 103 (2013) 32001.; DOI:10.1209/0295-5075/103/32001
801.P. Fileviez Perez, On the Origin of R-parity Violation in Supersymmetry, Int. J. Mod. Phys. A 28 (2013) 1330024.; DOI:10.1142/S0217751X1330024X
802.N. Bozorgnia, J. Herrero-Garcia, T. Schwetz and J. Zupan, Halo-independent methods for inelastic dark matter scattering, JCAP 07 (2013) 049.; DOI:10.1088/1475-7516/2013/07/049
803.D. Adey et al., Neutrinos from Stored Muons nuSTORM: Expression of Interest (2013).; Retrieved from https://arxiv.org/abs/1305.1419
804.P. S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, Constraining Neutrino Mass from Neutrinoless Double Beta Decay, Phys. Rev. D 88 (2013) 091301.; DOI:10.1103/PhysRevD.88.091301
805.G. Bellini et al., SOX: Short distance neutrino Oscillations with BoreXino, JHEP 08 (2013) 038.; DOI:10.1007/JHEP08(2013)038
806.P.-H. Gu, Parity: from strong CP problem to dark matter, neutrino masses and baryon asymmetry (2013).; Retrieved from https://arxiv.org/abs/1304.7647
807.G. Bellini et al., Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth, JCAP 08 (2013) 049.; DOI:10.1088/1475-7516/2013/08/049
808.J. Heeck, How stable is the photon?, Phys. Rev. Lett. 111 (2013) 021801.; DOI:10.1103/PhysRevLett.111.021801
809.T. Frossard, A. Kartavtsev and D. Mitrouskas, Systematic approach to \(\Delta\)L=1 processes in thermal leptogenesis, Phys. Rev. D 87 (2013) 125006.; DOI:10.1103/PhysRevD.87.125006
810.E. Aprile et al., Response of the XENON100 Dark Matter Detector to Nuclear Recoils, Phys. Rev. D 88 (2013) 012006.; DOI:10.1103/PhysRevD.88.012006
811.J. Kopp, Constraints on dark matter annihilation from AMS-02 results, Phys. Rev. D 88 (2013) 076013.; DOI:10.1103/PhysRevD.88.076013
812.M. Duerr, P. Fileviez Perez and M. B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801.; DOI:10.1103/PhysRevLett.110.231801
813.D. Budjas et al., Isotopically modified Ge detectors for \sc Gerda: from production to operation, JINST 8 (2013) P04018.; DOI:10.1088/1748-0221/8/04/P04018
814.P.-H. Gu, Mirror symmetry: from active and sterile neutrino masses to baryonic and dark matter asymmetries, Nucl. Phys. B 874 (2013) 158–176.; DOI:10.1016/j.nuclphysb.2013.05.013
815.T. Ohlsson, H. Zhang and S. Zhou, Effects of nonstandard neutrino interactions at PINGU, Phys. Rev. D 88 (2013) 013001.; DOI:10.1103/PhysRevD.88.013001
816.J. Barry and W. Rodejohann, Lepton number and flavour violation in TeV-scale left-right symmetric theories with large left-right mixing, JHEP 09 (2013) 153.; DOI:10.1007/JHEP09(2013)153
817.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050.; DOI:10.1007/JHEP05(2013)050
818.G. Bellini et al., Measurement of geo-neutrinos from 1353 days of Borexino, Phys. Lett. B 722 (2013) 295–300.; DOI:10.1016/j.physletb.2013.04.030
819.P. Fileviez Perez and M. B. Wise, Baryon Asymmetry and Dark Matter Through the Vector-Like Portal, JHEP 05 (2013) 094.; DOI:10.1007/JHEP05(2013)094
820.L. Baudis, A. Behrens, A. Ferella, A. Kish, T. Marrodan Undagoitia, D. Mayani and M. Schumann, Performance of the Hamamatsu R11410 Photomultiplier Tube in cryogenic Xenon Environments, JINST 8 (2013) P04026.; DOI:10.1088/1748-0221/8/04/P04026
821.T. R. Edgecock et al., High Intensity Neutrino Oscillation Facilities in Europe, Phys. Rev. ST Accel. Beams 16 (2013) 021002.; DOI:10.1103/PhysRevSTAB.16.021002
822.E. Andreotti et al., HEROICA: an Underground Facility for the Fast Screening of Germanium Detectors, JINST 8 (2013) P06012.; DOI:10.1088/1748-0221/8/06/P06012
823.E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov, Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos, JHEP 05 (2013) 081.; DOI:10.1007/JHEP05(2013)081
824.J. Kopp, E. T. Neil, R. Primulando and J. Zupan, From Gamma Ray Line Signals of Dark Matter to the LHC, Phys. Dark Univ. 2 (2013) 22–34.; DOI:10.1016/j.dark.2013.02.001
825.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, S. Lucht, S. Roth, M. Schumann, A. Stahl, A. Stüken and C. Wiebusch, Afterpulse Measurements of R7081 Photomultipliers for the Double Chooz Experiment, JINST 8 (2013) P04029.; DOI:10.1088/1748-0221/8/04/P04029
826.Y. Abe et al., First Measurement of \(\theta_{13}\) from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment, Phys. Lett. B 723 (2013) 66–70.; DOI:10.1016/j.physletb.2013.04.050
827.N. Memenga, W. Rodejohann and H. Zhang, \(A_4\) flavor symmetry model for Dirac neutrinos and sizable \(U_{e3}\), Phys. Rev. D 87 (2013) 053021.; DOI:10.1103/PhysRevD.87.053021
828.T. Ohlsson, H. Zhang and S. Zhou, Probing the leptonic Dirac CP-violating phase in neutrino oscillation experiments, Phys. Rev. D 87 (2013) 053006.; DOI:10.1103/PhysRevD.87.053006
829.P.-H. Gu, Multi-component dark matter with magnetic moments for Fermi-LAT gamma-ray line, Phys. Dark Univ. 2 (2013) 35–40.; DOI:10.1016/j.dark.2013.03.001
830.E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301.; DOI:10.1103/PhysRevLett.111.021301
831.H. Zhang, Light sterile neutrinos from flavor symmetries, (A. Blondel, I. Efthymiopoulos, & G. Prior, Eds.)J. Phys. Conf. Ser. 408 (2013) 012029.; DOI:10.1088/1742-6596/408/1/012029
832.M. Blennow and A. Yu. Smirnov, Neutrino propagation in matter, Adv. High Energy Phys. 2013 (2013) 972485.; DOI:10.1155/2013/972485
833.S. Pascoli and T. Schwetz, Prospects for neutrino oscillation physics, Adv. High Energy Phys. 2013 (2013) 503401.; DOI:10.1155/2013/503401
834.M. Pallavicini et al., Recent results and future development of Borexino, (T. Kobayashi, M. Nakahata, & T. Nakaya, Eds.)Nucl. Phys. B Proc. Suppl. 235-236 (2013) 55–60.; DOI:10.1016/j.nuclphysbps.2013.03.011
835.T. Schwetz, Status of sterile neutrino oscillations, (T. Kobayashi, M. Nakahata, & T. Nakaya, Eds.)Nucl. Phys. B Proc. Suppl. 235-236 (2013) 229–235.; DOI:10.1016/j.nuclphysbps.2013.04.015
836.C. O’Shaughnessy et al., High voltage capacitors for low background experiments, Eur. Phys. J. C 73 (2013) 2445.; DOI:10.1140/epjc/s10052-013-2445-3
837.J. Heeck, Gauged Flavor Symmetries, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 336–338.; DOI:10.1016/j.nuclphysbps.2013.04.121
838.M. Duerr, Lepton number violating new physics and neutrinoless double beta decay, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 24–27.; DOI:10.1016/j.nuclphysbps.2013.04.048
839.A. Ianni et al., Neutrinos from the sun and from radioactive sources, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 77–81.; DOI:10.1016/j.nuclphysbps.2013.04.061
840.D. Franco et al., Solar neutrino results from Borexino, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 237-238 (2013) 104–106.; DOI:10.1016/j.nuclphysbps.2013.04.068
841.C. Buck, The Double Chooz experiment, PoS EPS-HEP2013 (2013) 514.; DOI:10.22323/1.180.0514
842.T. Ohlsson, H. Zhang and S. Zhou, Leptonic CP Violation in Neutrino Oscillations, PoS EPS-HEP2013 (2013) 538.; DOI:10.22323/1.180.0538
843.J. Kopp, P. A. N. Machado, M. Maltoni and T. Schwetz, Global Status of Sterile Neutrino Scenarios, PoS Neutel2013 (2013) 019.; DOI:10.22323/1.196.0019
844.R. Brugnera et al., Status of the GERDA experiment, PoS Neutel2013 (2013) 039.; DOI:10.22323/1.196.0039
845.T. Marrodán Undagoitia, Direct Dark Matter Search with XENON, 9th Patras Workshop on Axions, WIMPs and WISPs (pp. 189–194).; DOI:10.3204/DESY-PROC-2013-04/marrodan_undagoitia_teresa
846.T. Asaka, S. Eijima and A. Watanabe, Heavy neutrino search in accelerator-based experiments, JHEP 03 (2013) 125.; DOI:10.1007/JHEP03(2013)125
847.G. Bellini et al., Lifetime measurements of 214Po and 212Po with the CTF liquid scintillator detector at LNGS, Eur. Phys. J. A 49 (2013) 92.; DOI:10.1140/epja/i2013-13092-9
848.M. Holthausen, K. S. Lim and M. Lindner, Lepton Mixing Patterns from a Scan of Finite Discrete Groups, Phys. Lett. B 721 (2013) 61–67.; DOI:10.1016/j.physletb.2013.02.047
849.M. Agostini et al., Measurement of the half-life of the two-neutrino double beta decay of Ge-76 with the Gerda experiment, J. Phys. G 40 (2013) 035110.; DOI:10.1088/0954-3899/40/3/035110
850.K. H. Ackermann et al., The GERDA experiment for the search of \(0\nu\beta\beta\) decay in \(^{76}\)Ge, Eur. Phys. J. C 73 (2013) 2330.; DOI:10.1140/epjc/s10052-013-2330-0
851.J. Heeck and H. Zhang, Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos, JHEP 05 (2013) 164.; DOI:10.1007/JHEP05(2013)164
852.P. Fileviez Pérez and S. Spinner, Higgs mass via type II seesaw mechanism, Phys. Rev. D 87 (2013) 031702.; DOI:10.1103/PhysRevD.87.031702
853.T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D. Mitrouskas, Systematic approach to thermal leptogenesis, Phys. Rev. D 87 (2013) 085009.; DOI:10.1103/PhysRevD.87.085009
854.T. Ohlsson, H. Zhang and S. Zhou, Radiative corrections to the leptonic Dirac \(CP\)-violating phase, Phys. Rev. D 87 (2013) 013012.; DOI:10.1103/PhysRevD.87.013012
855.J. Heeck and W. Rodejohann, Sterile neutrino anarchy, Phys. Rev. D 87 (2013) 037301.; DOI:10.1103/PhysRevD.87.037301
856.M. Holthausen, M. Lindner and M. A. Schmidt, Lepton flavor at the electroweak scale: A complete \(A_{4}\) model, Phys. Rev. D 87 (2013) 033006.; DOI:10.1103/PhysRevD.87.033006
857.J. Haser, F. Kaether, C. Langbrandtner, M. Lindner, B. Reinhold and S. Schonert, PMT Test Facility at MPIK Heidelberg and Double Chooz Super Vertical Slice, (G. S. Tzanakos, Ed.)Nucl. Phys. Proc. Supl. 229-232 (2012) 456.; DOI:10.1016/j.nuclphysbps.2012.09.093
858.M. Holthausen, M. Lindner and M. A. Schmidt, CP and Discrete Flavour Symmetries, JHEP 04 (2013) 122.; DOI:10.1007/JHEP04(2013)122
859.J. Kopp, New Signals in Dark Matter Detectors, (M. Mondragón, A. Bashir, D. Delepine, F. Larios, O. Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J. Phys. Conf. Ser. 485 (2014) 012032.; DOI:10.1088/1742-6596/485/1/012032
860.Y. Abe et al., Direct Measurement of Backgrounds using Reactor-Off Data in Double Chooz, Phys. Rev. D 87 (2013) 011102.; DOI:10.1103/PhysRevD.87.011102
861.R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026.; DOI:10.1007/JHEP03(2013)026
862.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, On the interpretation of IceCube cascade events in terms of the Glashow resonance (2012).; Retrieved from https://arxiv.org/abs/1209.2422
863.S. K. Agarwalla et al., EUROnu-WP6 2010 Report (2012).; Retrieved from https://arxiv.org/abs/1209.2825
864.M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123.; DOI:10.1007/JHEP12(2012)123
865.P.-H. Gu, From Dirac neutrino masses to baryonic and dark matter asymmetries, Nucl. Phys. B 872 (2013) 38–61.; DOI:10.1016/j.nuclphysb.2013.03.014
866.P. Fileviez Perez, Baryon and Lepton Numbers: Life in the Desert, (M. Mondragón, A. Bashir, D. Delepine, F. Larios, O. Loaiza, A. de la Macorra, L. Nellen, et al., Eds.)J. Phys. Conf. Ser. 485 (2014) 012009.; DOI:10.1088/1742-6596/485/1/012009
867.Y. Abe et al., First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment, Phys. Rev. D 86 (2012) 112009.; DOI:10.1103/PhysRevD.86.112009
868.P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large \(θ_{13}\), Phys. Rev. D 87 (2013) 033004.; DOI:10.1103/PhysRevD.87.033004
869.P. Fileviez Perez and S. Spinner, On the Higgs Mass and Perturbativity, Phys. Lett. B 723 (2013) 371–383.; DOI:10.1016/j.physletb.2013.05.052
870.S. Clesse, L. Lopez-Honorez, C. Ringeval, H. Tashiro and M. H. G. Tytgat, Background reionization history from omniscopes, Phys. Rev. D 86 (2012) 123506.; DOI:10.1103/PhysRevD.86.123506
871.L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Phys. Rev. D 87 (2013) 093006.; DOI:10.1103/PhysRevD.87.093006
872.F. Kaether and C. Langbrandtner, Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs, JINST 7 (2012) P09002.; DOI:10.1088/1748-0221/7/09/P09002
873.W. Rodejohann and H. Zhang, Simple two Parameter Description of Lepton Mixing, Phys. Rev. D 86 (2012) 093008.; DOI:10.1103/PhysRevD.86.093008
874.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015.; DOI:10.1103/PhysRevD.86.076015
875.E. Aprile et al., Analysis of the XENON100 Dark Matter Search Data, Astropart. Phys. 54 (2014) 11–24.; DOI:10.1016/j.astropartphys.2013.10.002
876.P. Grothaus, M. Lindner and Y. Takanishi, Naturalness of Neutralino Dark Matter, JHEP 07 (2013) 094.; DOI:10.1007/JHEP07(2013)094
877.H. Back et al., Borexino calibrations: Hardware, Methods, and Results, JINST 7 (2012) P10018.; DOI:10.1088/1748-0221/7/10/P10018
878.J. Heeck, Seesaw parametrization for n right-handed neutrinos, Phys. Rev. D 86 (2012) 093023.; DOI:10.1103/PhysRevD.86.093023
879.E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301.; DOI:10.1103/PhysRevLett.109.181301
880.Y. Abe et al., Reactor electron antineutrino disappearance in the Double Chooz experiment, Phys. Rev. D 86 (2012) 052008.; DOI:10.1103/PhysRevD.86.052008
881.P. Alvarez Sanchez et al., Measurement of CNGS muon neutrino speed with Borexino, Phys. Lett. B 716 (2012) 401–405.; DOI:10.1016/j.physletb.2012.08.052
882.M. Duerr, Neutrinoless Double Beta Decay and Neutrino Masses, (T. Fukuyama & R. N. Mohapatra, Eds.)AIP Conf. Proc. 1467 (2012) 235–238.; DOI:10.1063/1.4742106
883.B. Dumont, G. Belanger, S. Fichet, S. Kraml and T. Schwetz, Mixed sneutrino dark matter in light of the 2011 XENON and LHC results, JCAP 09 (2012) 013.; DOI:10.1088/1475-7516/2012/09/013
884.W. Rodejohann, Neutrinoless double beta decay and neutrino physics, J. Phys. G 39 (2012) 124008.; DOI:10.1088/0954-3899/39/12/124008
885.M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the Inert Doublet Model and the Role of multileptons at the LHC, Phys. Rev. D 86 (2012) 075019.; DOI:10.1103/PhysRevD.86.075019
886.M. Aoki, M. Duerr and J. Kubo, Multi-component dark matter system with non-standard annihilation processes of dark matter, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 169–176).
887.M. Holthausen, Vacuum alignment from group theory, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 115–122).
888.J. Heeck, Local flavor symmetries, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 99–106).
889.J. Barry, Sterile neutrinos for warm dark matter and the reactor anomaly in flavor symmetry models, 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (pp. 1–10).
890.J. Herrero-Garcia, T. Schwetz and J. Zupan, Astrophysics independent bounds on the annual modulation of dark matter signals, Phys. Rev. Lett. 109 (2012) 141301.; DOI:10.1103/PhysRevLett.109.141301
891.L. Ludhova et al., Solar neutrino physics with Borexino I, 47th Rencontres de Moriond on Electroweak Interactions and Unified Theories (p. 341).; Retrieved from https://arxiv.org/abs/1205.2989
892.A. Donini, P. Hernandez, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3+2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161.; DOI:10.1007/JHEP07(2012)161
893.E. Kh. Akhmedov and A. Wilhelm, Quantum field theoretic approach to neutrino oscillations in matter, JHEP 01 (2013) 165.; DOI:10.1007/JHEP01(2013)165
894.E. Kh. Akhmedov, S. Razzaque and A. Yu. Smirnov, Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors, JHEP 02 (2013) 082.; DOI:10.1007/JHEP02(2013)082
895.J. Chakrabortty, P. Ghosh and W. Rodejohann, Lower Limits on \(\mu \to e \gamma\) from New Measurements on \(U_{e3}\), Phys. Rev. D 86 (2012) 075020.; DOI:10.1103/PhysRevD.86.075020
896.S. S. C. Law and K. L. McDonald, Inverse seesaw and dark matter in models with exotic lepton triplets, Phys. Lett. B 713 (2012) 490–494.; DOI:10.1016/j.physletb.2012.06.044
897.R. Abbasi et al., An absence of neutrinos associated with cosmic-ray acceleration in \(\gamma\)-ray bursts, Nature 484 (2012) 351–353.; DOI:10.1038/nature11068
898.K. N. Abazajian et al., Light Sterile Neutrinos: A White Paper (2012).; Retrieved from https://arxiv.org/abs/1204.5379
899.F. Bezrukov, A. Kartavtsev and M. Lindner, Leptogenesis in models with keV sterile neutrino dark matter, J. Phys. G 40 (2013) 095202.; DOI:10.1088/0954-3899/40/9/095202
900.L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179–185.; DOI:10.1016/j.physletb.2012.07.017
901.J. Heeck and W. Rodejohann, Neutrino Hierarchies from a Gauge Symmetry, Phys. Rev. D 85 (2012) 113017.; DOI:10.1103/PhysRevD.85.113017
902.M. Blennow and T. Schwetz, Identifying the Neutrino mass Ordering with INO and NOvA, JHEP 08 (2012) 058.; DOI:10.1007/JHEP08(2012)058
903.J. Barry, L. Dorame and W. Rodejohann, Linear Collider Test of a Neutrinoless Double Beta Decay Mechanism in left-right Symmetric Theories, Eur. Phys. J. C 72 (2012) 2023.; DOI:10.1140/epjc/s10052-012-2023-0
904.W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022.; DOI:10.1007/JHEP06(2012)022
905.P.-H. Gu, From dark matter to neutrinoless double beta decay (2012).; Retrieved from https://arxiv.org/abs/1203.4165
906.T. Araki, J. Heeck and J. Kubo, Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries, JHEP 07 (2012) 083.; DOI:10.1007/JHEP07(2012)083
907.M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, Asymmetric Dark Matter and Dark Radiation, JCAP 07 (2012) 022.; DOI:10.1088/1475-7516/2012/07/022
908.G. Bellini et al., Search for Solar Axions Produced in \(p(d,\rm{^3He})A\) Reaction with Borexino Detector, Phys. Rev. D 85 (2012) 092003.; DOI:10.1103/PhysRevD.85.092003
909.K. L. McDonald, Sommerfeld Enhancement from Multiple Mediators, JHEP 07 (2012) 145.; DOI:10.1007/JHEP07(2012)145
910.B. von Harling and K. L. McDonald, Secluded Dark Matter Coupled to a Hidden CFT, JHEP 08 (2012) 048.; DOI:10.1007/JHEP08(2012)048
911.T. Asaka and A. Watanabe, Atmospheric Sterile Neutrinos, JHEP 07 (2012) 112.; DOI:10.1007/JHEP07(2012)112
912.G. Bellini et al., Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth, JCAP 05 (2012) 015.; DOI:10.1088/1475-7516/2012/05/015
913.D. Schmidt, T. Schwetz and T. Toma, Direct Detection of Leptophilic Dark Matter in a Model with Radiative Neutrino Masses, Phys. Rev. D 85 (2012) 073009.; DOI:10.1103/PhysRevD.85.073009
914.S. Choubey, M. Duerr, M. Mitra and W. Rodejohann, Lepton Number and Lepton Flavor Violation through Color Octet States, JHEP 05 (2012) 017.; DOI:10.1007/JHEP05(2012)017
915.P.-H. Gu, Mirror left-right symmetry, Phys. Lett. B 713 (2012) 485–489.; DOI:10.1016/j.physletb.2012.06.042
916.E. Akhmedov, D. Hernandez and A. Smirnov, Neutrino production coherence and oscillation experiments, JHEP 04 (2012) 052.; DOI:10.1007/JHEP04(2012)052
917.W. Rodejohann, M. Tanimoto and A. Watanabe, Relating large \(U_{e3}\) to the ratio of neutrino mass-squared differences, Phys. Lett. B 710 (2012) 636–640.; DOI:10.1016/j.physletb.2012.03.037
918.C. Buck et al., Measuring the (14)C isotope concentration in a liquid organic scintillator at a small-volume setup, Instrum. Exp. Tech. 55 (2012) 34–37.; DOI:10.1134/S0020441212010022
919.W. Rodejohann, Neutrino-less double beta decay: Neutrino physics, Acta Phys. Polon. B 43 (2012) 71–78.; DOI:10.5506/APhysPolB.43.71
920.M. Agostini et al., LArGe \& for active background suppression in GERDA, (L. Oberauer, G. Raffelt, & R. Wagner, Eds.)J. Phys. Conf. Ser. 375 (2012) 042009.; DOI:10.1088/1742-6596/375/1/042009
921.L. Lopez Honorez, Coupled quintessence through dark energy density, (L. Oberauer, G. Raffelt, & R. Wagner, Eds.)J. Phys. Conf. Ser. 375 (2012) 032007.; DOI:10.1088/1742-6596/375/1/032007
922.G. Testera et al., High precision Be-7 solar neutrinos measurement and day night effect obtained with Borexino, (A. Capone, G. De Bonis, M. De Vincenzi, & A. Morselli, Eds.)Nucl. Instrum. Meth. A 692 (2012) 258–261.; DOI:10.1016/j.nima.2012.01.006
923.T. Schwetz, Neutrino mass and mixing: Status, (R. Godbole & N. K. Mondal, Eds.)Pramana 79 (2012) 979–992.; DOI:10.1007/s12043-012-0414-2
924.M. Aoki, M. Duerr, J. Kubo and H. Takano, Multicomponent dark matter system with nonstandard annihilation processes of dark matter, (B. Szczerbinska, K. Babu, B. Balantekin, B. Dutta, & R. N. Mohapatra, Eds.)AIP Conf. Proc. 1534 (2013) 31–38.; DOI:10.1063/1.4807340
925.M. Barnabe Heider, Semiconductor-based experiments for neutrinoless double beta decay search, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 141–145.; DOI:10.1016/j.nuclphysbps.2012.09.023
926.C. Aberle, C. Buck, F. X. Hartmann, M. Lindner, S. Schönert, S. Wagner and H. Watanabe, Large Scale Production of the Liquid Scintillator for the Double Chooz Experiment, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 448–448.; DOI:10.1016/j.nuclphysbps.2012.09.085
927.M. Agostini et al., Procurement, production and testing of BEGe detectors depleted in \(^{76}Ge\), (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 489–489.; DOI:10.1016/j.nuclphysbps.2012.09.126
928.L. Lopez-Honorez, Biases on cosmological parameters by general relativity effects, 47th Rencontres de Moriond on Cosmology (pp. 29–32).
929.J. Herrero-Garcia, T. Schwetz and J. Zupan, On the annual modulation signal in dark matter direct detection, JCAP 03 (2012) 005.; DOI:10.1088/1475-7516/2012/03/005
930.R. Abbasi et al., Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors, Phys. Rev. D 85 (2012) 042002.; DOI:10.1103/PhysRevD.85.042002
931.M. Holthausen, K. S. Lim and M. Lindner, Planck scale Boundary Conditions and the Higgs Mass, JHEP 02 (2012) 037.; DOI:10.1007/JHEP02(2012)037
932.Z. Xing, H. Zhang and S. Zhou, Impacts of the Higgs mass on vacuum stability, running fermion masses and two-body Higgs decays, Phys. Rev. D 86 (2012) 013013.; DOI:10.1103/PhysRevD.86.013013
933.J. Heeck and W. Rodejohann, Hidden O(2) and SO(2) Symmetry in Lepton Mixing, JHEP 02 (2012) 094.; DOI:10.1007/JHEP02(2012)094
934.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, RG running in a minimal UED model in light of recent LHC Higgs mass bounds, Phys. Lett. B 712 (2012) 419–424.; DOI:10.1016/j.physletb.2012.05.029
935.T. Asaka, S. Eijima and H. Ishida, Kinetic Equations for Baryogenesis via Sterile Neutrino Oscillation, JCAP 02 (2012) 021.; DOI:10.1088/1475-7516/2012/02/021
936.Y. Abe et al., Indication of Reactor \(\bar{\nu}_e\) Disappearance in the Double Chooz Experiment, Phys. Rev. Lett. 108 (2012) 131801.; DOI:10.1103/PhysRevLett.108.131801
937.M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26–63.; DOI:10.1016/j.aop.2012.10.007
938.C. Aberle, C. Buck, B. Gramlich, F. X. Hartmann, M. Lindner, S. Schonert, U. Schwan, S. Wagner and H. Watanabe, Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection, JINST 7 (2012) P06008.; DOI:10.1088/1748-0221/7/06/P06008
939.A. Kartavtsev, A Remark on the Koide relation for quarks (2011).; Retrieved from https://arxiv.org/abs/1111.0480
940.M. Holthausen and M. A. Schmidt, Natural Vacuum Alignment from Group Theory: The Minimal Case, JHEP 01 (2012) 126.; DOI:10.1007/JHEP01(2012)126
941.R. Abbasi et al., The IceCube Neutrino Observatory V: Future Developments, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2742
942.R. Abbasi et al., The IceCube Neutrino Observatory IV: Searches for Dark Matter and Exotic Particles, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2738
943.R. Abbasi et al., IceCube - Astrophysics and Astroparticle Physics at the South Pole (2011).; Retrieved from https://arxiv.org/abs/1111.5188
944.R. Abbasi et al., Searching for soft relativistic jets in Core-collapse Supernovae with the IceCube Optical Follow-up Program, Astron. Astrophys. 539 (2012) A60.; DOI:10.1051/0004-6361/201118071
945.C. Aberle, C. Buck, F. X. Hartmann and S. Schonert, Light yield and energy transfer in a new Gd-loaded liquid scintillator, Chem. Phys. Lett. 516 (2011) 257–262.; DOI:10.1016/j.cplett.2011.09.067
946.E. Akhmedov and T. Schwetz, LSND and MiniBooNE within (3+1) plus NSI, (B. S. Acharya, M. Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc. 1382 (2011) 94–96.; DOI:10.1063/1.3644278
947.S. Choubey, T. Schwetz and P. Vahle, Summary of the Oscillation Physics Working Group, (B. S. Acharya, M. Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc. 1382 (2011) 77–81.; DOI:10.1063/1.3644274
948.W. Maneschg et al., Production and characterization of a custom-made \(^{228}Th\) source with reduced neutron source strength for the Borexino experiment, Nucl. Instrum. Meth. A 680 (2012) 161–167.; DOI:10.1016/j.nima.2012.04.019
949.J. Kopp, T. Schwetz and J. Zupan, Light Dark Matter in the light of CRESST-II, JCAP 03 (2012) 001.; DOI:10.1088/1475-7516/2012/03/001
950.P.-H. Gu and U. Sarkar, Inflationary Baryogenesis with Low Reheating Temperature and Testable Neutron-Antineutron Oscillation (2011).; Retrieved from https://arxiv.org/abs/1110.2926
951.G. Bellini et al., First evidence of pep solar neutrinos by direct detection in Borexino, Phys. Rev. Lett. 108 (2012) 051302.; DOI:10.1103/PhysRevLett.108.051302
952.C. H. Kom and W. Rodejohann, Four-jet final state in same-sign lepton colliders and neutrinoless double beta decay mechanisms, Phys. Rev. D 85 (2012) 015013.; DOI:10.1103/PhysRevD.85.015013
953.P.-H. Gu and U. Sarkar, Common Origin of Baryon Asymmetry and Proton Decay, Mod. Phys. Lett. A 28 (2013) 1350159.; DOI:10.1142/S0217732313501599
954.P.-H. Gu, A left-right symmetric model with SU(2)-triplet fermions, Phys. Rev. D 84 (2011) 097301.; DOI:10.1103/PhysRevD.84.097301
955.J. Barry, W. Rodejohann and H. Zhang, Sterile Neutrinos for Warm Dark Matter and the Reactor Anomaly in Flavor Symmetry Models, JCAP 01 (2012) 052.; DOI:10.1088/1475-7516/2012/01/052
956.H. Zhang, Light Sterile Neutrino in the Minimal Extended Seesaw, Phys. Lett. B 714 (2012) 262–266.; DOI:10.1016/j.physletb.2012.06.074
957.R. Abbasi et al., Observation of an Anisotropy in the Galactic Cosmic Ray arrival direction at 400 TeV with IceCube, Astrophys. J. 746 (2012) 33.; DOI:10.1088/0004-637X/746/1/33
958.J. Heeck and W. Rodejohann, Kinetic and mass mixing with three abelian groups, Phys. Lett. B 705 (2011) 369–374.; DOI:10.1016/j.physletb.2011.10.050
959.R. Abbasi et al., The Design and Performance of IceCube DeepCore, Astropart. Phys. 35 (2012) 615–624.; DOI:10.1016/j.astropartphys.2012.01.004
960.R. Abbasi et al., IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae, Astron. Astrophys. 535 (2011) A109.; DOI:10.1051/0004-6361/201117810e
961.T. Schwetz, M. Tortola and J. W. F. Valle, Where we are on \(\theta_{13}\): addendum to “Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters”, New J. Phys. 13 (2011) 109401.; DOI:10.1088/1367-2630/13/10/109401
962.R. Abbasi et al., Searches for periodic neutrino emission from binary systems with 22 and 40 strings of IceCube, Astrophys. J. 748 (2012) 118.; DOI:10.1088/0004-637X/748/2/118
963.A. Bhattacharya, R. Gandhi, W. Rodejohann and A. Watanabe, The Glashow resonance at IceCube: signatures, event rates and \(pp\) vs. \(p\gamma\) interactions, JCAP 10 (2011) 017.; DOI:10.1088/1475-7516/2011/10/017
964.W. Rodejohann and J. W. F. Valle, Symmetrical Parametrizations of the Lepton Mixing Matrix, Phys. Rev. D 84 (2011) 073011.; DOI:10.1103/PhysRevD.84.073011
965.R. Abbasi et al., The IceCube Neutrino Observatory I: Point Source Searches, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2741
966.R. Abbasi et al., The IceCube Neutrino Observatory II: All Sky Searches: Atmospheric, Diffuse and EHE, 32nd International Cosmic Ray Conference.; Retrieved from https://arxiv.org/abs/1111.2736
967.P.-H. Gu and U. Sarkar, Baryogenesis and neutron-antineutron oscillation at TeV, Phys. Lett. B 705 (2011) 170–173.; DOI:10.1016/j.physletb.2011.10.017
968.D. P. George and K. L. McDonald, Gravity on a Little Warped Space, Phys. Rev. D 84 (2011) 064007.; DOI:10.1103/PhysRevD.84.064007
969.H. Zhang and S. Zhou, Radiative corrections and explicit perturbations to the tetra-maximal neutrino mixing with large \(\theta_{13}\), Phys. Lett. B 704 (2011) 296–302.; DOI:10.1016/j.physletb.2011.09.033
970.A. Adulpravitchai and R. Takahashi, A4 Flavor Models in Split Seesaw Mechanism, JHEP 09 (2011) 127.; DOI:10.1007/JHEP09(2011)127
971.W. Rodejohann, H. Zhang and S. Zhou, Systematic search for successful lepton mixing patterns with nonzero \(\theta_{13}\), Nucl. Phys. B 855 (2012) 592–607.; DOI:10.1016/j.nuclphysb.2011.10.017
972.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) Symmetry at the Electroweak Scale, Phys. Rev. D 84 (2011) 075007.; DOI:10.1103/PhysRevD.84.075007
973.W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys. E 20 (2011) 1833–1930.; DOI:10.1142/S0218301311020186
974.R. Abbasi et al., Neutrino analysis of the September 2010 Crab Nebula flare and time-integrated constraints on neutrino emission from the Crab using IceCube, Astrophys. J. 745 (2012) 45.; DOI:10.1088/0004-637X/745/1/45
975.N. Haba and R. Takahashi, Predictions via large \(\theta_{13}\) from cascades, Phys. Lett. B 702 (2011) 388–393.; DOI:10.1016/j.physletb.2011.07.029
976.T. Schwetz and J. Zupan, Dark Matter attempts for CoGeNT and DAMA, JCAP 08 (2011) 008.; DOI:10.1088/1475-7516/2011/08/008
977.M. Duerr, M. Lindner and A. Merle, On the Quantitative Impact of the Schechter-Valle Theorem, JHEP 06 (2011) 091.; DOI:10.1007/JHEP06(2011)091
978.M. Duerr, D. P. George and K. L. McDonald, Neutrino Mass and \(\mu \rightarrow e + \gamma\) from a Mini-Seesaw, JHEP 07 (2011) 103.; DOI:10.1007/JHEP07(2011)103
979.R. Abbasi et al., Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube, Astrophys. J. 740 (2011) 16.; DOI:10.1088/0004-637X/740/1/16
980.J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: Models and Phenomenology, JHEP 07 (2011) 091.; DOI:10.1007/JHEP07(2011)091
981.M. Lindner, D. Schmidt and T. Schwetz, Dark Matter and neutrino masses from global U(1)\(_{B−L}\) symmetry breaking, Phys. Lett. B 705 (2011) 324–330.; DOI:10.1016/j.physletb.2011.10.022
982.A. Merle and V. Niro, Deriving Models for keV sterile Neutrino Dark Matter with the Froggatt-Nielsen mechanism, JCAP 07 (2011) 023.; DOI:10.1088/1475-7516/2011/07/023
983.R. Leitner, M. Malinsky, B. Roskovec and H. Zhang, Non-standard antineutrino interactions at Daya Bay, JHEP 12 (2011) 001.; DOI:10.1007/JHEP12(2011)001
984.R. Abbasi et al., Time-Dependent Searches for Point Sources of Neutrinos with the 40-String and 22-String Configurations of IceCube, Astrophys. J. 744 (2012) 1.; DOI:10.1088/0004-637X/744/1/1
985.R.-Z. Yang and H. Zhang, Minimal seesaw model with \(S_4\) flavor symmetry, Phys. Lett. B 700 (2011) 316–321.; DOI:10.1016/j.physletb.2011.05.014
986.C. Bauer et al., Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment, JINST 6 (2011) P06008.; DOI:10.1088/1748-0221/6/06/P06008
987.G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302.; DOI:10.1103/PhysRevLett.107.141302
988.G. Bellini et al., Absence of day–night asymmetry of 862 keV \(^7\)Be solar neutrino rate in Borexino and MSW oscillation parameters, Phys. Lett. B 707 (2012) 22–26.; DOI:10.1016/j.physletb.2011.11.025
989.E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302.; DOI:10.1103/PhysRevLett.107.131302
990.E. Aprile et al., Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data, Phys. Rev. D 84 (2011) 061101.; DOI:10.1103/PhysRevD.84.061101
991.R. Abbasi et al., A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector, Phys. Rev. D 84 (2011) 082001.; DOI:10.1103/PhysRevD.84.082001
992.E. Aprile et al., Likelihood Approach to the First Dark Matter Results from XENON100, Phys. Rev. D 84 (2011) 052003.; DOI:10.1103/PhysRevD.84.052003
993.T. Schwetz, M. Tortola and J. W. F. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004.; DOI:10.1088/1367-2630/13/6/063004
994.R. Abbasi et al., Background studies for acoustic neutrino detection at the South Pole, Astropart. Phys. 35 (2012) 312–324.; DOI:10.1016/j.astropartphys.2011.09.004
995.A. Adulpravitchai, B. Batell and J. Pradler, Non-Abelian Discrete Dark Matter, Phys. Lett. B 700 (2011) 207–216.; DOI:10.1016/j.physletb.2011.04.015
996.R. Abbasi et al., Constraints on the Extremely-high Energy Cosmic Neutrino Flux with the IceCube 2008-2009 Data, Phys. Rev. D 83 (2011) 092003.; DOI:10.1103/PhysRevD.84.079902
997.A. Dueck, W. Rodejohann and K. Zuber, Neutrinoless Double Beta Decay, the Inverted Hierarchy and Precision Determination of theta(12), Phys. Rev. D 83 (2011) 113010.; DOI:10.1103/PhysRevD.83.113010
998.J. Kopp, M. Maltoni and T. Schwetz, Are There Sterile Neutrinos at the eV Scale?, Phys. Rev. Lett. 107 (2011) 091801.; DOI:10.1103/PhysRevLett.107.091801
999.M. Duerr, M. Lindner and K. Zuber, Consistency Test of Neutrinoless Double Beta Decay with one Isotope, Phys. Rev. D 84 (2011) 093004.; DOI:10.1103/PhysRevD.84.093004
1000.S. Choubey et al., International Design Study for the Neutrino Factory, Interim Design Report (2011).; Retrieved from https://arxiv.org/abs/1112.2853
1001.T. Schwetz, Reactor anomaly, Theta(13), and sterile neutrinos, 14th International Workshop on Neutrino Telescopes: Un altro modo di guardare il cielo (pp. 183–192).
1002.N. Haba, K. Oda and R. Takahashi, Dirichlet Higgs as radion stabilizer in warped compactification, JHEP 05 (2011) 125.; DOI:10.1007/JHEP05(2011)125
1003.H. Hettmansperger, M. Lindner and W. Rodejohann, Phenomenological Consequences of sub-leading Terms in See-Saw Formulas, JHEP 04 (2011) 123.; DOI:10.1007/JHEP04(2011)123
1004.R. Abbasi et al., Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector, Phys. Rev. Lett. 106 (2011) 141101.; DOI:10.1103/PhysRevLett.106.141101
1005.T. Asaka, S. Eijima and H. Ishida, Mixing of Active and Sterile Neutrinos, JHEP 04 (2011) 011.; DOI:10.1007/JHEP04(2011)011
1006.R. Abbasi et al., First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector, Phys. Rev. D 84 (2011) 072001.; DOI:10.1103/PhysRevD.84.072001
1007.M. Blennow, H. Melbeus, T. Ohlsson and H. Zhang, Renormalization Group Running of the Neutrino Mass Operator in Extra Dimensions, JHEP 04 (2011) 052.; DOI:10.1007/JHEP04(2011)052
1008.G. Bellini et al., Muon and Cosmogenic Neutron Detection in Borexino, JINST 6 (2011) P05005.; DOI:10.1088/1748-0221/6/05/P05005
1009.R. Abbasi et al., Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope, Phys. Rev. D 84 (2011) 022004.; DOI:10.1103/PhysRevD.84.022004
1010.R. Abbasi et al., Search for neutrino-induced cascades with five years of AMANDA data, Astropart. Phys. 34 (2011) 420–430.; DOI:10.1016/j.astropartphys.2010.10.007
1011.R. Abbasi et al., Constraints on high-energy neutrino emission from SN 2008D, Astron. Astrophys. 527 (2011) A28.; DOI:10.1051/0004-6361/201015770
1012.E. Aprile et al., Study of the electromagnetic background in the XENON100 experiment, Phys. Rev. D 83 (2011) 082001.; DOI:10.1103/PhysRevD.83.082001
1013.P.-H. Gu, Significant neutrinoless double beta decay with quasi-Dirac neutrinos, Phys. Rev. D 85 (2012) 093016.; DOI:10.1103/PhysRevD.85.093016
1014.W. Rodejohann and H. Zhang, Extension of an empirical charged lepton mass relation to the neutrino sector, Phys. Lett. B 698 (2011) 152–156.; DOI:10.1016/j.physletb.2011.03.007
1015.Y. Sestayo, Search strategies for discovering extraterrestrial neutrinos with IceCube, (E. G. Anassontzis, P. A. Rapidis, & L. K. Resvanis, Eds.)Nucl. Instrum. Meth. A 626-627 (2011) S196–S199.; DOI:10.1016/j.nima.2010.06.264
1016.M. Weber, A study of radon background in the XENON100 experiment, (R. Ford, Ed.)AIP Conf. Proc. 1338 (2011) 208–213.; DOI:10.1063/1.3579583
1017.H. Simgen, Low background aspects of GERDA, (R. Ford, Ed.)AIP Conf. Proc. 1338 (2011) 149–155.; DOI:10.1063/1.3579573
1018.L. Perasso et al., Neutrino interactions at few MeV: Results from Borexino at Gran Sasso, (R. Caruso, A. Insolia, M. C. Maccarone, & V. Pirronello, Eds.)Nucl. Phys. B Proc. Suppl. 212-213 (2011) 121–127.; DOI:10.1016/j.nuclphysbps.2011.03.017
1019.M. Lindner and C. Weinheimer, Den Geisterteilchen auf der Spur, Physik J. 10N7 (2011) 31–37.
1020.E. Kh. Akhmedov and T. Schwetz, New MiniBooNE results and non-standard neutrino interactions, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 217 (2011) 217–219.; DOI:10.1016/j.nuclphysbps.2011.04.106
1021.W. Rodejohann and M. Shiozawa, Messengers of new physics, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 217 (2011) 383–387.; DOI:10.1016/j.nuclphysbps.2011.04.143
1022.C. Aberle, C. Buck, F. X. Hartmann, S. Schonert and S. Wagner, Light output of Double Chooz scintillators for low energy electrons, JINST 6 (2011) P11006.; DOI:10.1088/1748-0221/6/11/P11006
1023.S. Schonert, New techniques in 0nu beta beta germanium experiments, (G. Mills, S. Elliott, T. Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl. 221 (2011) 244–247.; DOI:10.1016/j.nuclphysbps.2011.09.011
1024.C. Buck, A. Di Vacri, G. Mention and D. Motta, Scintillator \& and construction of a prototype for the Double Chooz experiment, (G. Mills, S. Elliott, T. Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl. 221 (2011) 372.; DOI:10.1016/j.nuclphysbps.2011.10.020
1025.P. Huber, J. Kopp, M. Lindner, A. Merle, W. Rodejohann, M. Rolinec, T. Schwetz and W. Winter, Physics potential of future reactor neutrino experiments, (G. Mills, S. Elliott, T. Goldman, & T. Bowles, Eds.)Nucl. Phys. B Proc. Suppl. 221 (2011) 360.; DOI:10.1016/j.nuclphysbps.2011.10.010
1026.S. Odrowski, E. Resconi and Y. Sestayo, Search for Galactic Cosmic Ray Accelerators with the combined IceCube 40-strings and AMANDA detector, 32nd International Cosmic Ray Conference (Vol. 4, p. 157).; DOI:10.7529/ICRC2011/V04/0320
1027.E. Resconi, High Energy Neutrino Astronomy: IceCube 22 and 40 Strings, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 267–273.; DOI:10.1016/j.nuclphysbps.2012.09.042
1028.G. Aad et al., Measurement of underlying event characteristics using charged particles in pp collisions at \(\sqrt{s} = 900 GeV\) and 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 112001.; DOI:10.1103/PhysRevD.83.112001
1029.J. Barry, R. N. Mohapatra and W. Rodejohann, Testing the Bimodal/Schizophrenic Neutrino Hypothesis in Neutrino-less Double Beta Decay and Neutrino Telescopes, Phys. Rev. D 83 (2011) 113012.; DOI:10.1103/PhysRevD.83.113012
1030.A. Adulpravitchai, K. Kojima and R. Takahashi, Cascade Textures and SUSY SO(10) GUT, JHEP 02 (2011) 086.; DOI:10.1007/JHEP02(2011)086
1031.J. Heeck and W. Rodejohann, Neutrino Phenomenology of gauged \(L_\mu - L_\tau\): MINOS and beyond, (B. S. Acharya, M. Goodman, & N. K. Mondal, Eds.)AIP Conf. Proc. 1382 (2011) 144–146.; DOI:10.1063/1.3644295
1032.R. Abbasi et al., Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector, Astrophys. J. 732 (2011) 18.; DOI:10.1088/0004-637X/732/1/18
1033.M. Agostini, C. A. Ur, D. Budjas, E. Bellotti, R. Brugnera, C. M. Cattadori, A. di Vacri, A. Garfagnini, L. Pandola and S. Schonert, Signal modeling of high-purity Ge detectors with a small read-out electrode and application to neutrinoless double beta decay search in Ge-76, JINST 6 (2011) P03005.; DOI:10.1088/1748-0221/6/03/P03005
1034.J. Kopp, V. Niro, T. Schwetz and J. Zupan, Leptophilic Dark Matter in Direct Detection Experiments and in the Sun, PoS IDM2010 (2011) 118.; DOI:10.22323/1.110.0118
1035.P.-H. Gu, Double and Linear Seesaw from Left-Right and Peccei-Quinn Symmetry Breaking (2010).; Retrieved from https://arxiv.org/abs/1011.2380
1036.E. Kh. Akhmedov, Beta decay and other processes in strong electromagnetic fields, Phys. Atom. Nucl. 74 (2011) 1299–1315.; DOI:10.1134/S1063778811080035
1037.W. Rodejohann and H. Zhang, Higgs triplets at like-sign linear colliders and neutrino mixing, Phys. Rev. D 83 (2011) 073005.; DOI:10.1103/PhysRevD.83.073005
1038.F. Bezrukov, F. Kahlhoefer, M. Lindner, F. Kahlhoefer and M. Lindner, Interplay between scintillation and ionization in liquid xenon Dark Matter searches, Astropart. Phys. 35 (2011) 119–127.; DOI:10.1016/j.astropartphys.2011.06.008
1039.P.-H. Gu and M. Lindner, Natural Inflation and Flavor Mixing from Peccei-Quinn Symmetry Breaking, Phys. Lett. B 697 (2011) 229–232.; DOI:10.1016/j.physletb.2011.02.005
1040.K. Kojima, H. Sawanaka and R. Takahashi, Cascade Hierarchy in SUSY SU(5) GUT (2010).; Retrieved from https://arxiv.org/abs/1011.5678
1041.T. Schwetz, Direct detection data and possible hints for low-mass WIMPs, PoS IDM2010 (2011) 070.; DOI:10.22323/1.110.0070
1042.M. Lindner, A. Merle and V. Niro, Soft \(L_e - L_\mu - L_\tau\) flavour symmetry breaking and sterile neutrino keV Dark Matter, JCAP 01 (2011) 034.; DOI:10.1088/1475-7516/2011/01/034
1043.W. Rodejohann, Neutrinoless Double Beta Decay in Particle Physics, (G. S. Tzanakos, Ed.)Nucl. Phys. B Proc. Suppl. 229-232 (2012) 113–117.; DOI:10.1016/j.nuclphysbps.2012.09.018
1044.G. Bellini et al., Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS, Phys. Lett. B 696 (2011) 191–196.; DOI:10.1016/j.physletb.2010.12.030
1045.S. Ray, W. Rodejohann and M. A. Schmidt, Lower bounds on the smallest lepton mixing angle, Phys. Rev. D 83 (2011) 033002.; DOI:10.1103/PhysRevD.83.033002
1046.K. L. McDonald, Light Neutrinos from a Mini-Seesaw Mechanism in Warped Space, Phys. Lett. B 696 (2011) 266–272.; DOI:10.1016/j.physletb.2010.12.059
1047.R. Abbasi et al., Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube, Phys. Rev. D 83 (2011) 012001.; DOI:10.1103/PhysRevD.83.012001
1048.R. Abbasi et al., Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube, Phys. Rev. D 82 (2010) 112003.; DOI:10.1103/PhysRevD.82.112003
1049.P.-H. Gu and M. Lindner, Universal Seesaw from Left-Right and Peccei-Quinn Symmetry Breaking, Phys. Lett. B 698 (2011) 40–43.; DOI:10.1016/j.physletb.2011.02.042
1050.P. Di Bari, S. F. King, C. Luhn, A. Merle and A. Schmidt-May, Radiative Inflation and Dark Energy, Phys. Rev. D 84 (2011) 083524.; DOI:10.1103/PhysRevD.84.083524
1051.K. L. McDonald and D. E. Morrissey, Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector, JHEP 02 (2011) 087.; DOI:10.1007/JHEP02(2011)087
1052.R. Alonso et al., Summary Report of MINSIS Workshop in Madrid, Madrid Neutrino NSI Workshop (MINSIS).; Retrieved from https://arxiv.org/abs/1009.0476
1053.P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev. D 83 (2011) 055008.; DOI:10.1103/PhysRevD.83.055008
1054.R. Abbasi et al., The first search for extremely-high energy cosmogenic neutrinos with the IceCube Neutrino Observatory, Phys. Rev. D 82 (2010) 072003.; DOI:10.1103/PhysRevD.82.072003
1055.Y. Shimizu and R. Takahashi, Deviations from Tri-Bimaximality and Quark-Lepton Complementarity, EPL 93 (2011) 61001.; DOI:10.1209/0295-5075/93/61001
1056.R. Abbasi et al., Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope, Eur. Phys. J. C 69 (2010) 361–378.; DOI:10.1140/epjc/s10052-010-1411-6
1057.E. Kh. Akhmedov and A. Yu. Smirnov, Neutrino oscillations: Entanglement, energy-momentum conservation and QFT, Found. Phys. 41 (2011) 1279–1306.; DOI:10.1007/s10701-011-9545-4
1058.S. S. C. Law and K. L. McDonald, Broken Symmetry as a Stabilizing Remnant, Phys. Rev. D 82 (2010) 104032.; DOI:10.1103/PhysRevD.82.104032
1059.F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016.; DOI:10.1007/JHEP01(2011)016
1060.A. Adulpravitchai, P.-H. Gu and M. Lindner, Connections between the Seesaw and Dark Matter Searches, Phys. Rev. D 82 (2010) 073013.; DOI:10.1103/PhysRevD.82.073013
1061.P.-H. Gu and U. Sarkar, Leptogenesis with Linear, Inverse or Double Seesaw, Phys. Lett. B 694 (2011) 226–232.; DOI:10.1016/j.physletb.2010.09.062
1062.J. Heeck and W. Rodejohann, Gauged \(L_\mu - L_\tau\) and different Muon Neutrino and Anti-Neutrino Oscillations: MINOS and beyond, J. Phys. G 38 (2011) 085005.; DOI:10.1088/0954-3899/38/8/085005
1063.E. Akhmedov and T. Schwetz, MiniBooNE and LSND data: Non-standard neutrino interactions in a (3+1) scheme versus (3+2) oscillations, JHEP 10 (2010) 115.; DOI:10.1007/JHEP10(2010)115
1064.J. Barry and W. Rodejohann, Neutrino Mass Sum-rules in Flavor Symmetry Models, Nucl. Phys. B 842 (2011) 33–50.; DOI:10.1016/j.nuclphysb.2010.08.015
1065.F. Bezrukov, Inflation in the standard model and \(\nu\)MSM with non-minimal coupling to gravity, (J.-M. Alimi & A. Fuzfa, Eds.)AIP Conf. Proc. 1241 (2010) 511–520.; DOI:10.1063/1.3462679
1066.R. Mehrem and A. Hohenegger, A Generalisation For The Infinite Integral Over Three Spherical Bessel Functions, J. Phys. A 43 (2010) 9.; DOI:10.1088/1751-8113/43/45/455204
1067.A. Dueck, S. Petcov and W. Rodejohann, On Leptonic Unitary Triangles and Boomerangs, Phys. Rev. D 82 (2010) 013005.; DOI:10.1103/PhysRevD.82.013005
1068.T. Kobayashi, Y. Nakai and R. Takahashi, Revisiting superparticle spectra in superconformal flavor models, JHEP 09 (2010) 093.; DOI:10.1007/JHEP09(2010)093
1069.P.-H. Gu, Relations between Neutrino and Charged Fermion Masses, Phys. Rev. Lett. 105 (2010) 131802.; DOI:10.1103/PhysRevLett.105.131802
1070.P.-H. Gu, Large Lepton Asymmetry for Small Baryon Asymmetry and Warm Dark Matter, Phys. Rev. D 82 (2010) 093009.; DOI:10.1103/PhysRevD.82.093009
1071.J. Bernabeu et al., EURONU WP6 2009 Yearly Report: Update of the Physics Potential of Nufact, Superbeams and Betabeams (2010).; Retrieved from https://arxiv.org/abs/1005.3146
1072.M. Lindner, A. Merle and V. Niro, Enhancing Dark Matter Annihilation into Neutrinos, Phys. Rev. D 82 (2010) 123529.; DOI:10.1103/PhysRevD.82.123529
1073.R. Abbasi et al., Measurement of the Anisotropy of Cosmic Ray Arrival Directions with IceCube, Astrophys. J. Lett. 718 (2010) L194.; DOI:10.1088/2041-8205/718/2/L194
1074.W. Rodejohann, Inverse Neutrino-less Double Beta Decay Revisited: Neutrinos, Higgs Triplets and a Muon Collider, Phys. Rev. D 81 (2010) 114001.; DOI:10.1103/PhysRevD.81.114001
1075.N. Haba, K. Oda and R. Takahashi, Phenomenological Aspects of Dirichlet Higgs Model from Extra-Dimension, JHEP 07 (2010) 079.; DOI:10.1007/JHEP07(2010)079
1076.M. Garny, A. Hohenegger and A. Kartavtsev, Quantum corrections to leptogenesis from the gradient expansion (2010).; Retrieved from https://arxiv.org/abs/1005.5385
1077.E. Akhmedov, Neutrino oscillations in quantum mechanics and quantum field theory, Gribov-80 Memorial Workshop on Quantum Chromodynamics and Beyond (pp. 377–391).; DOI:10.1142/9789814350198_0036
1078.P.-H. Gu, E. Ma and U. Sarkar, Pseudo-Majoron as Dark Matter, Phys. Lett. B 690 (2010) 145–148.; DOI:10.1016/j.physletb.2010.05.012
1079.R. Abbasi et al., Measurement of Acoustic Attenuation in South Pole Ice, Astropart. Phys. 34 (2011) 382–393.; DOI:10.1016/j.astropartphys.2010.10.003
1080.R. Abbasi et al., The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector, Astropart. Phys. 34 (2010) 48–58.; DOI:10.1016/j.astropartphys.2010.05.001
1081.A. Merle, The GSI oscillation mystery, (A. Faessler & V. Rodin, Eds.)Prog. Part. Nucl. Phys. 64 (2010) 445–447.; DOI:10.1016/j.ppnp.2009.12.071
1082.S. Choubey et al., International Design Study for the Neutrino Factory: First Progress Report (2010).
1083.G. Bellini et al., Observation of Geo-Neutrinos, Phys. Lett. B 687 (2010) 299–304.; DOI:10.1016/j.physletb.2010.03.051
1084.K.-I. Izawa, Y. Nakai and R. Takahashi, Nonlinearly Realized Extended Supergravity, Phys. Rev. D 82 (2010) 075008.; DOI:10.1103/PhysRevD.82.075008
1085.J. Barry and W. Rodejohann, Deviations from tribimaximal mixing due to the vacuum expectation value misalignment in \(A_4\) models, Phys. Rev. D 81 (2010) 093002.; DOI:10.1103/PhysRevD.81.119901
1086.M. Mezzetto and T. Schwetz, \(\theta_{13}\): Phenomenology, present status and prospect, J. Phys. G 37 (2010) 103001.; DOI:10.1088/0954-3899/37/10/103001
1087.W. Rodejohann, Non-Unitary PMNS Matrix, Leptogenesis and Low Energy CP Violation, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 93–97.; DOI:10.1063/1.3399406
1088.M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028.; DOI:10.1103/PhysRevD.81.085028
1089.R. Abbasi et al., Calibration and Characterization of the IceCube Photomultiplier Tube, Nucl. Instrum. Meth. A 618 (2010) 139–152.; DOI:10.1016/j.nima.2010.03.102
1090.P.-H. Gu, Resonant Leptogenesis and Verifiable Seesaw from Large Extra Dimensions, Phys. Rev. D 81 (2010) 073002.; DOI:10.1103/PhysRevD.81.073002
1091.P.-H. Gu, A Left-Right Symmetric Model for Neutrino Masses, Baryon Asymmetry and Dark Matter, Phys. Rev. D 81 (2010) 095002.; DOI:10.1103/PhysRevD.81.095002
1092.F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47–54.; DOI:10.1016/j.physletb.2010.01.030
1093.A. Adulpravitchai and M. A. Schmidt, Flavored Orbifold GUT - an SO(10) x S4 model, JHEP 01 (2011) 106.; DOI:10.1007/JHEP01(2011)106
1094.E. Kh. Akhmedov and J. Kopp, Neutrino Oscillations: Quantum Mechanics vs. Quantum Field Theory, JHEP 04 (2010) 008.; DOI:10.1007/JHEP04(2010)008
1095.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a storage ring, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio, Eds.)J. Phys. Conf. Ser. 203 (2010) 012098.; DOI:10.1088/1742-6596/203/1/012098
1096.A. Smolnikov, Development and installation of the GERDA experiment, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio, Eds.)J. Phys. Conf. Ser. 203 (2010) 012059.; DOI:10.1088/1742-6596/203/1/012059
1097.S. Schonert, Neutrinoless double beta decay, (E. Coccia, L. Pandola, N. Fornengo, & R. Aloisio, Eds.)J. Phys. Conf. Ser. 203 (2010) 012014.; DOI:10.1088/1742-6596/203/1/012014
1098.W. Rodejohann, Scaling in the neutrino mass matrix and the see-saw mechanism, (A. Faessler & V. Rodin, Eds.)Prog. Part. Nucl. Phys. 64 (2010) 321–323.; DOI:10.1016/j.ppnp.2009.12.041
1099.C. H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing, Eur. Phys. J. C 70 (2010) 1099–1110.; DOI:10.1140/epjc/s10052-010-1492-2
1100.M. Misiaszek et al., Results from the Borexino experiment, (A. Zalewska, Ed.)Acta Phys. Polon. B 41 (2010) 1603–1610.
1101.M. Barnabe-Heider, D. Budjas, K. Gusev and S. Schonert, Operation and performance of a bare broad-energy germanium detector in liquid argon, JINST 5 (2010) P10007.; DOI:10.1088/1748-0221/5/10/P10007
1102.A. Hohenegger, Finite density aspects of leptogenesis, (S. Cabrera, M. Hirsch, V. Mitsou, C. Munoz, S. Pastor, M. A. Tortola, J. W. F. Valle, et al., Eds.)J. Phys. Conf. Ser. 259 (2010) 012074.; DOI:10.1088/1742-6596/259/1/012074
1103.T. Schwetz, Neutrino physics: A theoretical review, (F. Bianchi, Ed.)PoS FPCP2010 (2010) 051.; DOI:10.22323/1.116.0051
1104.H. Simgen, Observation of neutrinos from sun and earth with the BOREXINO detector, (F. M. Rieger, C. van Eldik, & W. Hofmann, Eds.)PoS TEXAS2010 (2010) 215.; DOI:10.22323/1.123.0215
1105.S. Riboldi, C. Cattadori, A. D’Andragora, A. Pullia, F. Zocca, M. Barnabe-Heider and D. Budjas, A low-noise charge sensitive preamplifier for Ge spectroscopy operating at cryogenic temperature in the GERDA experiment, 2010 IEEE Nuclear Science Symposium, Medical Imaging Conference, and 17th Room Temperature Semiconductor Detectors Workshop (pp. 1386–1388).; DOI:10.1109/NSSMIC.2010.5873998
1106.D. Budjas, O. Chkvorets and S. Schonert, Background suppression using pulse shape analysis with a BEGe detector for neutrinoless double beta decay search with GERDA, (M. L. Marshak, Ed.)AIP Conf. Proc. 1182 (2009) 96–99.; DOI:10.1063/1.3293966
1107.F. Bezrukov and D. Gorbunov, Light inflaton Hunter’s Guide, JHEP 05 (2010) 010.; DOI:10.1007/JHEP05(2010)010
1108.M. Holthausen and R. Takahashi, GIMPs from Extra Dimensions, Phys. Lett. B 691 (2010) 56–59.; DOI:10.1016/j.physletb.2010.06.012
1109.W. Rodejohann, On Non-Unitary Lepton Mixing and Neutrino Mass Observables, Phys. Lett. B 684 (2010) 40–47.; DOI:10.1016/j.physletb.2009.12.031
1110.J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP 02 (2010) 014.; DOI:10.1088/1475-7516/2010/02/014
1111.F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino Dark Matter in gauge extensions of the Standard Model, Phys. Rev. D 81 (2010) 085032.; DOI:10.1103/PhysRevD.81.085032
1112.G. Bellini et al., New experimental limits on the Pauli forbidden transitions in C-12 nuclei obtained with 485 days Borexino data, Phys. Rev. C 81 (2010) 034317.; DOI:10.1103/PhysRevC.81.034317
1113.M. Holthausen, M. Lindner and M. A. Schmidt, Radiative Symmetry Breaking of the Minimal Left-Right Symmetric Model, Phys. Rev. D 82 (2010) 055002.; DOI:10.1103/PhysRevD.82.055002
1114.R. Abbasi et al., Extending the search for neutrino point sources with IceCube above the horizon, Phys. Rev. Lett. 103 (2009) 221102.; DOI:10.1103/PhysRevLett.103.221102
1115.J. Kopp and A. Merle, Ultra-low Q values for neutrino mass measurements, Phys. Rev. C 81 (2010) 045501.; DOI:10.1103/PhysRevC.81.045501
1116.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Self-energy contribution to the CP-violating parameter, Phys. Rev. D 81 (2010) 085027.; DOI:10.1103/PhysRevD.81.085027
1117.N. Haba, K. Oda and R. Takahashi, Dirichlet Higgs in extra-dimension, consistent with electroweak data, Acta Phys. Polon. B 42 (2011) 33–44.; DOI:10.5506/APhysPolB.42.33
1118.M. Pallavicini et al., Solar neutrino results from Borexino and main future perspectives, (A. Capone, M. De Vincenzi, F. Lucarelli, A. Morselli, & V. Vitale, Eds.)Nucl. Instrum. Meth. A 630 (2011) 210–213.; DOI:10.1016/j.nima.2010.06.067
1119.T. Kobayashi, Y. Nakai and R. Takahashi, Fine Tuning in General Gauge Mediation, JHEP 01 (2010) 003.; DOI:10.1007/JHEP01(2010)003
1120.R. Abbasi et al., Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector, Phys. Rev. D 81 (2010) 057101.; DOI:10.1103/PhysRevD.81.057101
1121.N. Haba, K. Oda and R. Takahashi, Diagonal Kaluza-Klein expansion under brane localized potential, Acta Phys. Polon. B 41 (2010) 1291–1316.; Retrieved from https://arxiv.org/abs/0910.4528
1122.T. Schwetz, Phenomenology of future neutrino oscillation experiments, European Strategy for Future Neutrino Physics (pp. 75–84).
1123.T. Ohlsson, T. Schwetz and H. Zhang, Non-standard neutrino interactions in the Zee-Babu model, Phys. Lett. B 681 (2009) 269–275.; DOI:10.1016/j.physletb.2009.10.025
1124.S. Choubey and W. Rodejohann, Flavor Composition of UHE Neutrinos at Source and at Neutrino Telescopes, Phys. Rev. D 80 (2009) 113006.; DOI:10.1103/PhysRevD.80.113006
1125.M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: Vertex contribution to the CP-violating parameter, Phys. Rev. D 80 (2009) 125027.; DOI:10.1103/PhysRevD.80.125027
1126.V. Niro, A. Bottino, N. Fornengo and S. Scopel, Investigating light neutralinos at neutrino telescopes, Phys. Rev. D 80 (2009) 095019.; DOI:10.1103/PhysRevD.80.095019
1127.R. Abbasi et al., Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy, Astropart. Phys. 33 (2010) 277–286.; DOI:10.1016/j.astropartphys.2010.01.012
1128.J. Kopp, M. Lindner, V. Niro and T. E. J. Underwood, On the Consistency of Perturbativity and Gauge Coupling Unification, Phys. Rev. D 81 (2010) 025008.; DOI:10.1103/PhysRevD.81.025008
1129.D. Budjas, M. Barnabe Heider, O. Chkvorets, N. Khanbekov and S. Schonert, Pulse shape discrimination studies with a Broad-Energy Germanium detector for signal identification and background suppression in the GERDA double beta decay experiment, JINST 4 (2009) P10007.; DOI:10.1088/1748-0221/4/10/P10007
1130.A. Adulpravitchai, M. Lindner, A. Merle and R. N. Mohapatra, Radiative Transmission of Lepton Flavor Hierarchies, Phys. Lett. B 680 (2009) 476–479.; DOI:10.1016/j.physletb.2009.09.042
1131.P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044.; DOI:10.1088/1126-6708/2009/11/044
1132.A. Adulpravitchai, M. Lindner and A. Merle, Confronting Flavour Symmetries and extended Scalar Sectors with Lepton Flavour Violation Bounds, Phys. Rev. D 80 (2009) 055031.; DOI:10.1103/PhysRevD.80.055031
1133.R. Abbasi et al., Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope, Astrophys. J. 710 (2010) 346–359.; DOI:10.1088/0004-637X/710/1/346
1134.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Groups from the Breaking of Continuous Flavor Symmetries, JHEP 09 (2009) 018.; DOI:10.1088/1126-6708/2009/09/018
1135.S. Goswami, S. T. Petcov, S. Ray and W. Rodejohann, Large |U(e3)| and Tri-bimaximal Mixing, Phys. Rev. D 80 (2009) 053013.; DOI:10.1103/PhysRevD.80.053013
1136.J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502.; DOI:10.1103/PhysRevD.80.083502
1137.A. Merle, Why a splitting in the final state cannot explain the GSI-Oscillations, Phys. Rev. C 80 (2009) 054616.; DOI:10.1103/PhysRevC.80.054616
1138.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring Neutrino Mass with Radioactive Ions in a Storage Ring, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 165–168.; DOI:10.1063/1.3399282
1139.J. Kopp, T. Ota and W. Winter, Optimization study for non-standard interaction search in a neutrino factory, (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 135–139.; DOI:10.1063/1.3399275
1140.S. Choubey, T. Schwetz and C. Walter, Working Group 1 Report (Theory), (D. M. Kaplan, Z. Sullivan, & M. C. Goodman, Eds.)AIP Conf. Proc. 1222 (2010) 65–74.; DOI:10.1063/1.3399397
1141.A. Adulpravitchai, A. Blum and M. Lindner, Non-Abelian Discrete Flavor Symmetries from T**2/Z(N) Orbifolds, JHEP 07 (2009) 053.; DOI:10.1088/1126-6708/2009/07/053
1142.D. Franco et al., The First year of Borexino, Heavy Quarks and Leptons 2008 (HQ&L08).; Retrieved from https://arxiv.org/abs/0905.1044
1143.E. Kh. Akhmedov and A. Yu. Smirnov, Paradoxes of neutrino oscillations, Phys. Atom. Nucl. 72 (2009) 1363–1381.; DOI:10.1134/S1063778809080122
1144.A. S. Joshipura and W. Rodejohann, Scaling in the Neutrino Mass Matrix, mu-tau Symmetry and the See-Saw Mechanism, Phys. Lett. B 678 (2009) 276–282.; DOI:10.1016/j.physletb.2009.06.035
1145.R. Abbasi et al., First Neutrino Point-Source Results From the 22-String IceCube Detector, Astrophys. J. Lett. 701 (2009) L47–L51.; DOI:10.1088/0004-637X/701/1/L47
1146.S. Goswami, S. Khan and W. Rodejohann, Minimal Textures in Seesaw Mass Matrices and their low and high Energy Phenomenology, Phys. Lett. B 680 (2009) 255–262.; DOI:10.1016/j.physletb.2009.08.056
1147.F. Bezrukov and M. Shaposhnikov, Standard Model Higgs boson mass from inflation: Two loop analysis, JHEP 07 (2009) 089.; DOI:10.1088/1126-6708/2009/07/089
1148.M. Garny and M. M. Muller, Kadanoff-Baym Equations with Non-Gaussian Initial Conditions: The Equilibrium Limit, Phys. Rev. D 80 (2009) 085011.; DOI:10.1103/PhysRevD.80.085011
1149.J. Kopp, Mossbauer neutrinos in quantum mechanics and quantum field theory, JHEP 06 (2009) 049.; DOI:10.1088/1126-6708/2009/06/049
1150.A. Adulpravitchai, A. Blum and W. Rodejohann, Golden Ratio Prediction for Solar Neutrino Mixing, New J. Phys. 11 (2009) 063026.; DOI:10.1088/1367-2630/11/6/063026
1151.W. Rodejohann, Non-Unitary Lepton Mixing Matrix, Leptogenesis and Low Energy CP Violation, EPL 88 (2009) 51001.; DOI:10.1209/0295-5075/88/51001
1152.G. Bellini et al., Low energy solar neutrino signals in Borexino, 13th International Workshop on Neutrino Telescopes: Un altro modo di guardare il cielo: Tribute to Galileo (pp. 111–123).
1153.R. Abbasi et al., Search for high-energy muon neutrinos from the ’naked-eye’ GRB 080319B with the IceCube neutrino telescope, Astrophys. J. 701 (2009) 1721–1731.; DOI:10.1088/0004-637X/701/2/1721
1154.R. Abbasi et al., Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II, Phys. Rev. D 79 (2009) 102005.; DOI:10.1103/PhysRevD.79.102005
1155.R. Abbasi et al., Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector, Phys. Rev. Lett. 102 (2009) 201302.; DOI:10.1103/PhysRevLett.102.201302
1156.A. Blum and C. Hagedorn, The Cabibbo Angle in a Supersymmetric D(14) Model, Nucl. Phys. B 821 (2009) 327–353.; DOI:10.1016/j.nuclphysb.2009.06.028
1157.A. Gross and J. L. Bazo Alba, Search for sources of astrophysical neutrinos with IceCube, (F. A. Aharonian, W. Hofmann, & F. Rieger, Eds.)AIP Conf. Proc. 1085 (2009) 779–782.; DOI:10.1063/1.3076795
1158.O. Schulz, The IceCube DeepCore, (F. A. Aharonian, W. Hofmann, & F. Rieger, Eds.)AIP Conf. Proc. 1085 (2009) 783–786.; DOI:10.1063/1.3076796
1159.W. Rodejohann, Deviations from tri-bimaximal mixing, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 336–338.; DOI:10.1016/j.nuclphysbps.2009.02.078
1160.E. Akhmedov, Neutrino oscillograms of the Earth and CP violation in neutrino oscillations, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 204–206.; DOI:10.1016/j.nuclphysbps.2009.02.048
1161.M. Lindroos, B. McElrath, C. Orme and T. Schwetz, Measuring neutrino mass with radioactive ions in a storage ring, Eur. Phys. J. C 64 (2009) 549–560.; DOI:10.1140/epjc/s10052-009-1168-y
1162.S. Choubey et al., Working group report: Neutrino physics, (R. Basu, Ed.)Pramana 72 (2009) 269–275.; DOI:10.1007/s12043-009-0023-x
1163.L. Ludhova et al., 200 days of Borexino data, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 90–95.; DOI:10.1016/j.nuclphysbps.2009.02.021
1164.S. Pastor and S. Schonert, Session I: Probing low energy and mass scales, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 371–376.; DOI:10.1016/j.nuclphysbps.2009.02.087
1165.G. Alimonti et al., The liquid handling systems for the Borexino solar neutrino detector, Nucl. Instrum. Meth. A 609 (2009) 58–78.; DOI:10.1016/j.nima.2009.07.028
1166.J. Kisiel et al., The LAGUNA project: Towards the giant liquid based detectors for proton decay searches and for low energy neutrino astrophysics, PoS EPS-HEP2009 (2009) 283.; DOI:10.22323/1.084.0283
1167.E. Resconi and F. Aharonian (Eds.), High-energy gamma-rays and neutrinos from extra-galactic sources. Proceedings, International Workshop, Heidelberg, Germany, January 13-16, 2009 (Vol. 18, pp. pp.1483–1664).
1168.A. D’Andragora et al., Spectroscopic performances of the GERDA cryogenic Charge Sensitive Amplifier based on JFET-CMOS ASIC, coupled to germanium detectors, 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (pp. 396–400).; DOI:10.1109/NSSMIC.2009.5401678
1169.P. Grabmayr, L. Baudis, A. Caldwell, C. Cattadori, M. Hult, J. Jochum, V. Kornoukhov, S. Schönert and K. Zuber, Production chain of isotopically modified ge-diodes for the \(2\beta 0\nu\)-search with GERDA, 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (pp. 1758–1760).; DOI:10.1109/NSSMIC.2009.5402216
1170.C. H. Albright and W. Rodejohann, Comparing Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal Mixing, Eur. Phys. J. C 62 (2009) 599–608.; DOI:10.1140/epjc/s10052-009-1074-3
1171.W. Maneschg, A. Merle and W. Rodejohann, Statistical Analysis of future Neutrino Mass Experiments including Neutrino-less Double Beta Decay, EPL 85 (2009) 51002.; DOI:10.1209/0295-5075/85/51002
1172.T. Schwetz, Physics Potential of Future Atmospheric Neutrino Searches, (P. Bernardini, G. Fogli, & E. Lisi, Eds.)Nucl. Phys. B Proc. Suppl. 188 (2009) 158–163.; DOI:10.1016/j.nuclphysbps.2009.02.037
1173.M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero \(\theta_{13}\), PoS IDM2008 (2008) 072.; DOI:10.22323/1.064.0072
1174.F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the Hot Big Bang, JCAP 06 (2009) 029.; DOI:10.1088/1475-7516/2009/06/029
1175.A. Adulpravitchai, A. Blum and C. Hagedorn, A Supersymmetric D4 Model for mu-tau Symmetry, JHEP 03 (2009) 046.; DOI:10.1088/1126-6708/2009/03/046
1176.S. Schonert, T. K. Gaisser, E. Resconi and O. Schulz, Vetoing atmospheric neutrinos in a high energy neutrino telescope, Phys. Rev. D 79 (2009) 043009.; DOI:10.1103/PhysRevD.79.043009
1177.F. L. Bezrukov, A. Magnin and M. Shaposhnikov, Standard Model Higgs boson mass from inflation, Phys. Lett. B 675 (2009) 88–92.; DOI:10.1016/j.physletb.2009.03.035
1178.F. L. Bezrukov and Y. Burnier, Towards a solution of the strong CP problem by compact extra dimensions, Phys. Rev. D 80 (2009) 125004.; DOI:10.1103/PhysRevD.80.125004
1179.C. Hagedorn, M. A. Schmidt and A. Yu. Smirnov, Lepton Mixing and Cancellation of the Dirac Mass Hierarchy in SO(10) GUTs with Flavor Symmetries T(7) and Sigma(81), Phys. Rev. D 79 (2009) 036002.; DOI:10.1103/PhysRevD.79.036002
1180.O. Smirnov et al., The first year of Borexino, 18th International Conference on Particles and Nuclei (pp. 788–790).
1181.G. Ranucci et al., Results and perspectives of the solar neutrino experiment Borexino, 34th International Conference on High Energy Physics.; Retrieved from https://arxiv.org/abs/0810.0176
1182.R. Abbasi et al., Solar Energetic Particle Spectrum on 13 December 2006 Determined by IceTop, Astrophys. J. Lett. 689 (2008) L65–L68.; DOI:10.1086/595679
1183.E. Kh. Akhmedov and V. Niro, An Accurate analytic description of neutrino oscillations in matter, JHEP 12 (2008) 106.; DOI:10.1088/1126-6708/2008/12/106
1184.F. L. Bezrukov, Non-minimal coupling in inflation and inflating with the Higgs boson, 15th International Seminar on High Energy Physics.; Retrieved from https://arxiv.org/abs/0810.3165
1185.R. Abbasi et al., The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping, Nucl. Instrum. Meth. A 601 (2009) 294–316.; DOI:10.1016/j.nima.2009.01.001
1186.W. Rodejohann, Unified Parametrization for Quark and Lepton Mixing Angles, Phys. Lett. B 671 (2009) 267–271.; DOI:10.1016/j.physletb.2008.12.010
1187.D. Budjas et al., Highly sensitive gamma-spectrometers of GERDA for material screening. Part I., 14th International School on Particles and Cosmology.; Retrieved from https://arxiv.org/abs/0812.0723
1188.D. Budjas, M. Barnabe Heider, O. Chkvorets, S. Schonert and N. Khanbekov, Pulse Shape Analysis with a Broad-Energy Germanium Detector for the GERDA experiment, 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors (pp. 2513–2515).; DOI:10.1109/NSSMIC.2008.4774866
1189.M. Barnabe Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K. Gusev, S. Schönert and M. Shirchenko, Performance of bare high-purity germanium detectors in liquid argon for the GERDA experiment, 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors (pp. 3513–3516).; DOI:10.1109/NSSMIC.2008.4775094
1190.M. Garny, Particle Physics and Dark Energy: Beyond Classical Dynamics (Other thesis).
1191.A. Pullia, F. Zocca, S. Riboldi, D. Budjáš, A. D’Andragora and C. Cattadori, A cryogenic low-noise JFET-CMOS preamplifier for the HPGe detectors of GERDA, 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors (pp. 2056–2060).; DOI:10.1109/NSSMIC.2008.4774881
1192.A. Anisimov, Y. Bartocci and F. L. Bezrukov, Inflaton mass in the nuMSM inflation, Phys. Lett. B 671 (2009) 211–215.; DOI:10.1016/j.physletb.2008.12.028
1193.R. Abbasi et al., Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II, Phys. Rev. D 79 (2009) 062001.; DOI:10.1103/PhysRevD.79.062001
1194.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Theory of the Neutrino Mass, Melbourne Neutrino Theory Workshop (Neutrino 08).; Retrieved from https://arxiv.org/abs/0808.0812
1195.H. Kienert, J. Kopp, M. Lindner and A. Merle, The GSI anomaly, (J. Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser. 136 (2008) 022049.; DOI:10.1088/1742-6596/136/2/022049
1196.G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006.; DOI:10.1103/PhysRevD.82.033006
1197.F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A(4) Flavour Symmetry, Nucl. Phys. B 809 (2009) 218–243.; DOI:10.1016/j.nuclphysb.2008.10.002
1198.S. Choubey, W. Rodejohann and P. Roy, Phenomenological consequences of four zero neutrino Yukawa textures, Nucl. Phys. B 808 (2009) 272–291.; DOI:10.1016/j.nuclphysb.2009.04.021
1199.A. Hohenegger, A. Kartavtsev and M. Lindner, Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time, Phys. Rev. D 78 (2008) 085027.; DOI:10.1103/PhysRevD.78.085027
1200.G. Alimonti et al., The Borexino detector at the Laboratori Nazionali del Gran Sasso, Nucl. Instrum. Meth. A 600 (2009) 568–593.; DOI:10.1016/j.nima.2008.11.076
1201.C. Arpesella et al., Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302.; DOI:10.1103/PhysRevLett.101.091302
1202.E. Kh. Akhmedov, M. Maltoni and A. Yu. Smirnov, Neutrino oscillograms of the Earth: Effects of 1-2 mixing and CP-violation, JHEP 06 (2008) 072.; DOI:10.1088/1126-6708/2008/06/072
1203.J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007.; DOI:10.1103/PhysRevD.78.053007
1204.W. Rodejohann, The See-saw mechanism: Neutrino mixing, leptogenesis and lepton flavor violation, (R. Basu, Ed.)Pramana 72 (2009) 217–227.; DOI:10.1007/s12043-009-0018-7
1205.C. H. Albright and W. Rodejohann, Model-Independent Analysis of Tri-bimaximal Mixing: A Softly-Broken Hidden or an Accidental Symmetry?, Phys. Lett. B 665 (2008) 378–383.; DOI:10.1016/j.physletb.2008.06.044
1206.E. Meroni et al., Borexino and solar neutrinos, 4th International Workshop on Neutrino Oscillations in Venice: Ten Years after the Neutrino Oscillations (pp. 431–436).
1207.S. Choubey, V. Niro and W. Rodejohann, On Probing \(\theta_{23}\) in Neutrino Telescopes, Phys. Rev. D 77 (2008) 113006.; DOI:10.1103/PhysRevD.77.113006
1208.E. Kh. Akhmedov, J. Kopp and M. Lindner, On application of the time-energy uncertainty relation to Mossbauer neutrino experiments, J. Phys. G 36 (2009) 078001.; DOI:10.1088/0954-3899/36/7/078001
1209.E. Kh. Akhmedov and W. Rodejohann, A Yukawa coupling parameterization for type I + II seesaw formula and applications to lepton flavor violation and leptogenesis, JHEP 06 (2008) 106.; DOI:10.1088/1126-6708/2008/06/106
1210.A. Kartavtsev and D. Besak, Baryogenesis via Leptogenesis in an inhomogeneous Universe, Phys. Rev. D 78 (2008) 083001.; DOI:10.1103/PhysRevD.78.083001
1211.T. Ota, Non-standard neutrino interactions in reactor and superbeam experiments, (O. Yasuda, N. Mondal, & Chihiro. Ohmori, Eds.)AIP Conf. Proc. 981 (2008) 231–233.; DOI:10.1063/1.2898943
1212.G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A\(_4\), JHEP 03 (2008) 052.; DOI:10.1088/1126-6708/2008/03/052
1213.E. Kh. Akhmedov, J. Kopp and M. Lindner, Oscillations of Mossbauer neutrinos, JHEP 05 (2008) 005.; DOI:10.1088/1126-6708/2008/05/005
1214.H. O. Back et al., Study of phenylxylylethane (PXE) as scintillator for low energy neutrino experiments, Nucl. Instrum. Meth. A 585 (2008) 48–60.; DOI:10.1016/j.nima.2007.10.045
1215.G. Bellini et al., Search for solar axions emitted in the M1-transition of Li-7* with Borexino CTF, Eur. Phys. J. C 54 (2008) 61–72.; DOI:10.1140/epjc/s10052-008-0530-9
1216.W. Maneschg, M. Laubenstein, D. Budjas, W. Hampel, G. Heusser, K. T. Knopfle, B. Schwingenheuer and H. Simgen, Measurements of extremely low radioactivity levels in stainless steel for GERDA, Nucl. Instrum. Meth. A 593 (2008) 448–453.; DOI:10.1016/j.nima.2008.05.036
1217.P. Peiffer, T. Pollmann, S. Schonert, A. Smolnikov and S. Vasiliev, Pulse shape analysis of scintillation signals from pure and xenon-doped liquid argon for radioactive background identification, JINST 3 (2008) P08007.; DOI:10.1088/1748-0221/3/08/P08007
1218.G. Bellini et al., First results on Be-7 solar neutrinos from the Borexino real time detector, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052006.; DOI:10.1088/1742-6596/120/5/052006
1219.T. Kirsten, Retrospect of GALLEX/GNO, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052013.; DOI:10.1088/1742-6596/120/5/052013
1220.G. Zuzel, Low-level techniques applied in experiments looking for rare events, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052015.; DOI:10.1088/1742-6596/120/5/052015
1221.H. Simgen, Status of the GERDA experiment, (K. Inoue, A. Suzuki, & T. Mitsui, Eds.)J. Phys. Conf. Ser. 120 (2008) 052052.; DOI:10.1088/1742-6596/120/5/052052
1222.C. Galbiati et al., New results on solar neutrino fluxes from 192 days of Borexino data, (J. Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser. 136 (2008) 022001.; DOI:10.1088/1742-6596/136/2/022001
1223.P. Huber, J. Kopp, M. Lindner and W. Winter, GLoBES: General long baseline experiment simulator, (A. Breskin, M. Henneaux, V. Mukhanov, & H. Rubinstein, Eds.)PoS NUFACT08 (2008) 145.; DOI:10.22323/1.074.0145
1224.J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, (A. Breskin, M. Henneaux, V. Mukhanov, & H. Rubinstein, Eds.)PoS NUFACT08 (2008) 134.; DOI:10.22323/1.074.0134
1225.M. Barnabe-Heider, C. Cattadori, O. Chkvorets, A. Di Vacri, K. Gusev, S. Schonert and M. Shirchenko, Operation of bare HPGe detectors in LAr/LN(2) for the GERDA experiment, (J. Adams, F. Halzen, & S. Parke, Eds.)J. Phys. Conf. Ser. 136 (2008) 042046.; DOI:10.1088/1742-6596/136/4/042046
1226.W. Rodejohann and K. A. Hochmuth, Lepton flavor violation, leptogenesis and neutrino mixing in quark-lepton complementarity scenarios, (S. Khalil, Ed.)Int. J. Mod. Phys. A 22 (2007) 5875–5888.; DOI:10.1142/S0217751X07039092
1227.S. Pakvasa, W. Rodejohann and T. J. Weiler, Unitary parametrization of perturbations to tribimaximal neutrino mixing, Phys. Rev. Lett. 100 (2008) 111801.; DOI:10.1103/PhysRevLett.100.111801
1228.M. Ackermann et al., Search for Ultra High-Energy Neutrinos with AMANDA-II, Astrophys. J. 675 (2008) 1014–1024.; DOI:10.1086/527046
1229.S. Pakvasa, W. Rodejohann and T. J. Weiler, Flavor Ratios of Astrophysical Neutrinos: Implications for Precision Measurements, JHEP 02 (2008) 005.; DOI:10.1088/1126-6708/2008/02/005
1230.J. Kopp, M. Lindner, T. Ota and J. Sato, Impact of non-standard neutrino interactions on future oscillation experiments, 15th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY07) (pp. 756–759).; Retrieved from https://arxiv.org/abs/0710.1867
1231.M. Lindner and M. M. Muller, Comparison of Boltzmann kinetics with quantum dynamics for a chiral Yukawa model far from equilibrium, Phys. Rev. D 77 (2008) 025027.; DOI:10.1103/PhysRevD.77.025027
1232.A. Bandyopadhyay, Physics at a future Neutrino Factory and super-beam facility, (S. Choubey et al., Eds.)Rept. Prog. Phys. 72 (2009) 106201.; DOI:10.1088/0034-4885/72/10/106201
1233.A. Blum, C. Hagedorn and A. Hohenegger, theta(C) from the Dihedral flavor symmetries D(7) and D(14), JHEP 03 (2008) 070.; DOI:10.1088/1126-6708/2008/03/070
1234.A. Blum and A. Merle, General Conditions for Lepton Flavour Violation at Tree- and 1-Loop Level, Phys. Rev. D 77 (2008) 076005.; DOI:10.1103/PhysRevD.77.076005
1235.A. Blum, C. Hagedorn and M. Lindner, Fermion Masses and Mixings from Dihedral Flavor Symmetries with Preserved Subgroups, Phys. Rev. D 77 (2008) 076004.; DOI:10.1103/PhysRevD.77.076004
1236.D. Budjas et al., Highly Sensitive Gamma-Spectrometers of GERDA for Material Screening: Part 2 (2007).; Retrieved from https://arxiv.org/abs/0812.0768
1237.J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007.; DOI:10.1103/PhysRevD.77.013007
1238.C. Arpesella et al., First real time detection of Be-7 solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101–108.; DOI:10.1016/j.physletb.2007.09.054
1239.A. Gross, C. H. Ha, C. Rott, M. Tluczykont, E. Resconi, T. DeYoung and G. Wikstrom, The combined AMANDA and IceCube Neutrino Telescope, 30th International Cosmic Ray Conference (Vol. 3, pp. 1253–1256).
1240.J. K. Becker, W. Rhode, P. L. Biermann, A. Gross, K. Münich and J. Dreyer, On the interpretation of high-energy neutrino limits, 30th International Cosmic Ray Conference (Vol. 3, pp. 1209–1212).
1241.E. Kh. Akhmedov, Do charged leptons oscillate?, JHEP 09 (2007) 116.; DOI:10.1088/1126-6708/2007/09/116
1242.S. Goswami and W. Rodejohann, MiniBooNE results and neutrino schemes with 2 sterile neutrinos: Possible mass orderings and observables related to neutrino masses, JHEP 10 (2007) 073.; DOI:10.1088/1126-6708/2007/10/073
1243.K. A. Hochmuth, S. T. Petcov and W. Rodejohann, U(PMNS) = U**dagger (l) U(nu), Phys. Lett. B 654 (2007) 177–188.; DOI:10.1016/j.physletb.2007.08.072
1244.A. Blum, R. N. Mohapatra and W. Rodejohann, Inverted mass hierarchy from scaling in the neutrino mass matrix: Low and high energy phenomenology, Phys. Rev. D 76 (2007) 053003.; DOI:10.1103/PhysRevD.76.053003
1245.D. Autiero et al., Large underground, liquid based detectors for astro-particle physics in Europe: Scientific case and prospects, JCAP 11 (2007) 011.; DOI:10.1088/1475-7516/2007/11/011
1246.A. Achterberg et al., The Search for Muon Neutrinos from Northern Hemisphere Gamma-Ray Bursts with AMANDA, Astrophys. J. 674 (2008) 357–370.; DOI:10.1086/524920
1247.A. Achterberg et al., Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector, Phys. Rev. D 76 (2007) 027101.; DOI:10.1103/PhysRevD.76.027101
1248.J. Kopp and M. Lindner, Detecting atmospheric neutrino oscillations in the ATLAS detector at CERN, Phys. Rev. D 76 (2007) 093003.; DOI:10.1103/PhysRevD.76.093003
1249.M. A. Schmidt, Renormalization group evolution in the type I+ II seesaw model, Phys. Rev. D 76 (2007) 073010.; DOI:10.1103/PhysRevD.76.073010
1250.M. Wojcik and G. Zuzel, Behavior of the Rn-222 daughters on copper surfaces during cleaning, (P. Loaiza, Ed.)AIP Conf. Proc. 897 (2007) 53–58.; DOI:10.1063/1.2722068
1251.H. Simgen and G. Zuzel, Ultrapure gases: From the production plant to the laboratory, (P. Loaiza, Ed.)AIP Conf. Proc. 897 (2007) 45–50.; DOI:10.1063/1.2722067
1252.M. Wojcik and G. Zuzel, A novel low background cryogenic detector for radon in gas, (P. Loaiza, Ed.)AIP Conf. Proc. 897 (2007) 39–44.; DOI:10.1063/1.2722066
1253.S. Kanemura, K. Matsuda, T. Ota, S. Petcov, T. Shindou, E. Takasugi and K. Tsumura, CP violation due to multi Froggatt-Nielsen fields, Eur. Phys. J. C 51 (2007) 927–931.; DOI:10.1140/epjc/s10052-007-0343-2
1254.K. A. Hochmuth, M. Lindner and G. G. Raffelt, Exploiting the directional sensitivity of the Double Chooz near detector, Phys. Rev. D 76 (2007) 073001.; DOI:10.1103/PhysRevD.76.073001
1255.M. Barnabe Heider et al., Operation of a GERDA Phase I prototype detector in liquid argon and nitrogen, 14th International School on Particles and Cosmology.; Retrieved from https://arxiv.org/abs/0812.3976
1256.J. Kopp, M. Lindner and A. Merle, Self-Calibration of Neutrino Detectors using characteristic Backgrounds, Nucl. Instrum. Meth. A 582 (2007) 456–461.; DOI:10.1016/j.nima.2007.08.239
1257.A. Merle and W. Rodejohann, Getting Information on |U(e3)|**2 from Neutrino-less Double Beta Decay, Adv. High Energy Phys. 2007 (2007) 82674.; DOI:10.1155/2007/82674
1258.M. Lindner and W. Rodejohann, Large and almost maximal neutrino mixing within the type II see-saw mechanism, JHEP 05 (2007) 089.; DOI:10.1088/1126-6708/2007/05/089
1259.W. Rodejohann, Broken mu - tau symmetry and leptonic CP violation, 12th International Workshop on Neutrinos Telescopes: Twenty Years after the Supernova 1987A Neutrino Bursts Discovery (pp. 313–328).
1260.M. I. Adamovich et al., Observation of a resonance in the K(s)p decay channel at a mass of 1765 MeV/c**2, Eur. Phys. J. C 50 (2007) 535–538.; DOI:10.1140/epjc/s10052-007-0284-9
1261.J. Kopp, M. Lindner and T. Ota, Discovery reach for non-standard interactions in a neutrino factory, Phys. Rev. D 76 (2007) 013001.; DOI:10.1103/PhysRevD.76.013001
1262.M. Di Marco, P. Peiffer and S. Schonert, LArGe: Background suppression using liquid argon (LAr) scintillation for 0 nu beta beta decay search with enriched germanium (Ge) detectors, (P. S. Marrocchesi, F. L. Navarria, M. Paganoni, & P. G. Pelfer, Eds.)Nucl. Phys. B Proc. Suppl. 172 (2007) 45–48.; DOI:10.1016/j.nuclphysbps.2007.07.019
1263.S. Funk et al., XMM-Newton observations reveal the X-ray counterpart of the very-high-energy gamma-ray source HESSJ1640-465, Astrophys. J. 662 (2007) 517–524.; DOI:10.1086/516567
1264.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432–438.; DOI:10.1016/j.cpc.2007.05.004
1265.E. Resconi, IceCube: Multiwavelength search for neutrinos from transient point sources, (F. Halzen, A. Karle, & T. Montaruli, Eds.)J. Phys. Conf. Ser. 60 (2007) 223–226.; DOI:10.1088/1742-6596/60/1/047
1266.A. Kappes, J. Hinton, C. Stegmann and F. A. Aharonian, Potential neutrino signals from galactic gamma-ray sources, (F. Halzen, A. Karle, & T. Montaruli, Eds.)J. Phys. Conf. Ser. 60 (2007) 243–246.; DOI:10.1088/1742-6596/60/1/052
1267.C. Cattadori, O. Chkvorets, C. Tomei, M. Junker, L. Pandola, K. Kroninger, A. Pullia, F. Zocca, V. Re and C. Ur, The GERmanium Detector Array read-out: Status and developments, (F. Cervelli, F. Forti, R. Paoletti, & A. Scribano, Eds.)Nucl. Instrum. Meth. A 572 (2007) 479–480.; DOI:10.1016/j.nima.2006.10.226
1268.M. I. Adamovich et al., Production of V0 pairs in the hyperon experiment WA89, Eur. Phys. J. C 52 (2007) 857–874.; DOI:10.1140/epjc/s10052-007-0436-y
1269.P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, GLoBES: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 439–440.; DOI:10.1016/j.cpc.2007.05.007
1270.W. Rodejohann, Neutrino Mixing and Neutrino Telescopes, JCAP 01 (2007) 029.; DOI:10.1088/1475-7516/2007/01/029
1271.M. Garny, B-L-symmetric Baryogenesis with Leptonic Quintessence, (J. Sola, Ed.)J. Phys. A 40 (2007) 7005–7010.; DOI:10.1088/1751-8113/40/25/S53
1272.A. Dighe, S. Goswami and W. Rodejohann, Corrections to Tri-bimaximal Neutrino Mixing: Renormalization and Planck Scale Effects, Phys. Rev. D 75 (2007) 073023.; DOI:10.1103/PhysRevD.75.073023
1273.A. Achterberg et al., Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope, Phys. Rev. D 75 (2007) 102001.; DOI:10.1103/PhysRevD.75.102001
1274.K. A. Hochmuth and W. Rodejohann, On Symmetric Lepton Mixing Matrices, Phys. Lett. B 644 (2007) 147–152.; DOI:10.1016/j.physletb.2006.11.042
1275.J. Kopp, Efficient numerical diagonalization of hermitian 3 x 3 matrices, Int. J. Mod. Phys. C 19 (2008) 523–548.; DOI:10.1142/S0129183108012303
1276.P. Huber, M. Lindner, M. Rolinec and W. Winter, Optimization of a neutrino factory oscillation experiment, Phys. Rev. D 74 (2006) 073003.; DOI:10.1103/PhysRevD.74.073003
1277.J. Kopp, M. Lindner, A. Merle and M. Rolinec, Reactor Neutrino Experiments with a Large Liquid Scintillator Detector, JHEP 01 (2007) 053.; DOI:10.1088/1126-6708/2007/01/053
1278.A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26 (2006) 155–173.; DOI:10.1016/j.astropartphys.2006.06.007
1279.C. Hagedorn, M. Lindner and F. Plentinger, The Discrete flavor symmetry D(5), Phys. Rev. D 74 (2006) 025007.; DOI:10.1103/PhysRevD.74.025007
 
 


Last modified: Tue 28. November 2023 at 14:14:42 , Impressum , Datenschutzhinweis