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LSC-VIRGO estimate a likely detection rate of 20 BH-BH binary coalescence events per 
year, with 95% confidence interval on the rates of (0.4,103) yr-1 [Class. Quantum Grav. 
27 (2010) 173001]. The interval reflects the paucity of observational evidence.
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LSC-VIRGO estimate a likely detection rate of 20 BH-BH binary coalescence events per 
year, with 95% confidence interval on the rates of (0.4,103) yr-1 [Class. Quantum Grav. 
27 (2010) 173001]. The interval reflects the paucity of observational evidence.

Similarly, the rate of BH-NS coalescences is 10 yr-1 within an interval (0.2,300) yr-1.
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With 20 BH-BH events per year out to 2 Gpc, and 10 NS-BH events out to 1 Gpc, what do 
we learn?

BH-BH statistics: BH masses, population of binaries

Tests of GR, but only at low significance 

final spin a/m < 1?

comparison with numerical simulations

Look for association of NS-BH events with gamma-ray bursts, other transients (afterglows).

If NS-BH events can be localized to galaxies, then with N events we can measure H0 to 
~10%/√ N. So if 50% of events can be localized, we will have H0 to ±2% in 3 years, on Gpc 
distance scales.

NS-NS events will similarly determine H0 on 300 Mpc scale.

See talk by Kokkotas about NS sources of GWs.
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Proposal for LIGO Australia, moving one of the Hanford detectors to Western Australia

Benefits:

additional baselines: much better position determination

redundancy: large detectors may have 80% duty cycles at first, down-time significant

better vetoing of non-GW disturbances, allowing detection of weaker signals: event rates up by factor of 4

With 150-200 NS-NS events per year, 80-100 BH-BH, 40 NS-BH events:

much more information about gamma-bursts, NS EOS, BH mass function, massive binary evolution endpoint

H0 likely determined to better than 1% in one year, test for inhomogeneities (local void), anisotropies
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BH-BH binaries will be visible in the entire universe. 

Since they are standard sirens, we will be able to accumulate statistics on BH 
formation, correlate with other indicators of early star formation, look for 
evidence of mass evolution. 

See talk by Cutler on cosmology with these systems.
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Pulsar timing
arrays (2006-)
SKA (2020?)

Cosmic
microwave
polarisation

The Earth is gravitationally too noisy 
to allow observations below ~ 1 Hz

DECIGO
(Japan)

>2020)



(LISA: see talk by McNamara)
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LISA’s three data streams provide enough information to determine:

Position on sky (10’ in best cases: unequal masses, spin, 
eccentricity)

Masses, spins of initial components and final hole

Inclination of orbit, relation to final spin

will allow estimate of kick

Luminosity distance

basically compares absolute magnitude (from chirp rate) with 
apparent magnitude (from wave amplitude)

these measurement uncertainties may be overwhelmed by weak 
lensing distortion



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010

Types of LISA BH binaries

10



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010

Types of LISA BH binaries

Detectable binaries must be in the LISA frequency band, from 10-5 Hz to 0.1 Hz.

10



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010

Types of LISA BH binaries

Detectable binaries must be in the LISA frequency band, from 10-5 Hz to 0.1 Hz.

Gravitational wave frequency determined by the more massive component, 
                         forb < 4(M6/M) mHz, fmerg ~ 3 forb .

10



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010

Types of LISA BH binaries

Detectable binaries must be in the LISA frequency band, from 10-5 Hz to 0.1 Hz.

Gravitational wave frequency determined by the more massive component, 
                         forb < 4(M6/M) mHz, fmerg ~ 3 forb .

Comparable-mass mergers are expected from galaxy mergers and hierarchical 
galaxy formation. They include major mergers or minor mergers.

10



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010
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Detectable binaries must be in the LISA frequency band, from 10-5 Hz to 0.1 Hz.

Gravitational wave frequency determined by the more massive component, 
                         forb < 4(M6/M) mHz, fmerg ~ 3 forb .

Comparable-mass mergers are expected from galaxy mergers and hierarchical 
galaxy formation. They include major mergers or minor mergers.

Extreme mass-ratio inspiral (EMRI) mergers are captures of a stellar-mass black 
hole by a massive or supermassive hole. They happen regularly in the centers of 
isolated galaxies.
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At the Black Hole Edge: EMRIs
Capture of Stellar-Mass Black Holes by 

Massive Black Holes

– “Plunge” orbits take 10,000 or more 
cycles before capture.

– This long wave-train encodes the 
geometry of spacetime near the large BH. 
LISA can map this with superb precision.

– Allows tests of many predictions of 
General Relativity including the 
remarkable “no hair” theorem.



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010 11

At the Black Hole Edge: EMRIs
Capture of Stellar-Mass Black Holes by 

Massive Black Holes

– “Plunge” orbits take 10,000 or more 
cycles before capture.

– This long wave-train encodes the 
geometry of spacetime near the large BH. 
LISA can map this with superb precision.

– Allows tests of many predictions of 
General Relativity including the 
remarkable “no hair” theorem.

– Very numerous: 100s per year possible, 
typically z ~ 0.1, leads to source 
confusion.



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010 11

At the Black Hole Edge: EMRIs
Capture of Stellar-Mass Black Holes by 

Massive Black Holes

– “Plunge” orbits take 10,000 or more 
cycles before capture.

– This long wave-train encodes the 
geometry of spacetime near the large BH. 
LISA can map this with superb precision.

– Allows tests of many predictions of 
General Relativity including the 
remarkable “no hair” theorem.

– Very numerous: 100s per year possible, 
typically z ~ 0.1, leads to source 
confusion.

– Measure the mass function of central 
black holes (Gair, et al, 2010).



B F Schutz
Albert Einstein Institute

Black Hole Physics with Gravitational Waves    Texas Symposium 2010 11
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Capture of Stellar-Mass Black Holes by 

Massive Black Holes

– “Plunge” orbits take 10,000 or more 
cycles before capture.

– This long wave-train encodes the 
geometry of spacetime near the large BH. 
LISA can map this with superb precision.

– Allows tests of many predictions of 
General Relativity including the 
remarkable “no hair” theorem.

– Very numerous: 100s per year possible, 
typically z ~ 0.1, leads to source 
confusion.

– Measure the mass function of central 
black holes (Gair, et al, 2010).

EMRI signal: Mock LISA 
Data Challenge
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Rate estimates: will LISA detect any?

Nearby events: tests of strong-field GR by comparing with numerical relativity 
simulations of mergers. Test Hawking Area Theorem, Penrose Cosmic Censorship 
Conjecture.

All events: study MBH mass function, mass evolution.

Distant events: look for turn-on of MBH formation, try to distinguish among 
different models for formation and growth.

All of this is without any identifications of host galaxies or clusters.
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Identifications open up rich physics: morphology of galaxies in which mergers occur, 
direct study of hierarchical galaxy formation.

Identifications of host clusters are sufficient to do cosmography: measure Hubble 
constant, dark energy (next slide).

Is it reasonable to expect identifications? More and more ideas about EM emission 
associated with mergers. 

Dotti et al (2006), Milosavljevic & Phinney (2006), Lippai et al (2008), Loeb (2009), O’Neal et al (2009), Rossi et al 
(2010), many others.

At z=1, 10’ corresponds to a distance of ~ 20 Mpc. Maybe only one or a few clusters in error box. Then must 
look for the disturbed galaxy.

Can weak lensing distortions be corrected?

At z=1 error in distance can be ~5%, at z=2 it is getting to its maximum of ~10%.

Weak lensing maps may be able to cut errors in half (Jössen et al 2006, Linder 2008, Shapiro et al 2009). 
Problem being examined by a LISA International Science Team Study Group.
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LISA can constrain a with each event. With a number of events, especially if distance 
uncertainty can be reduced, LISA can constrain b =w’(0).
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Stavridis & Will 2009

(Neglects lensing!)


