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The High Frequency Window 

•  Supernova Core Collapse  
–  The violent dynamics associated with a supernova core collapse 

is expected to lead to GW emission through a number of  channels 

•  Rotating Deformed Neutron Stars  
–  Asymmetries, generated either by strains in the star’s crust or by 

the magnetic field, are expected to slowly leak rotational energy 
away from spinning neutron stars. 

•  Oscillations and Instabilities of  NS 
–  Neutron stars have rich oscillation spectra which, if  detected, 

could allow us to probe the internal composition “GW 
Asteroseismology” 

•  Magnetars 
•  Magnetar flares emit huge amounts of  EM radiation, if  a small 

percentage is emitted in GW they can be a promising source. 
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Core Collapse 

Reviews: Ott 2009, Andersson etal 2010 

Leads to GW emission through a number of  channels related to: 
  The dynamics of  the PNS and its immediate environment 
  The convective zone behind the shock front 

  A major uncertainty connected with supernova models is the initial state, in 
particular the angular momentum distribution in the iron core.  

  Current expectations from stellar evolution calculations imply a slowly rotating 
core as a canonical case 

1.  Slowly rotating iron cores : 
bounce and initial ringdown 
(700-900Hz) 

2.  Faster rotation amplifies the 
bounce signal (400-800 Hz) 

3.  Very rapid rotation leads to 
bounce at subnuclear densities 
(100-200 Hz) 

4.  Prompt convection shortly after 
core bounce due to negative 
lepton gradients (50-1000Hz) 

5.  Neutrino-driven convection and 
SASI (Standing Accretion Shock 
Instability) (100-800 Hz) 

Convection -SASI 
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Neutron Stars in Microphysics 

  Neutron star EoS is known for the 
outer star, but not in the high-
density inner core.  

  Thus, EoS models depend upon 
assumptions about matter phase of  
inner core (hadronic matter, pion/
kaon condensates, quark matter...).  

  Each new phase increases 
compressibility, affecting M-R 
relation 

  The different Equations of  State 
(EoS) predict up to 7 times higher 
pressure for the same density 

GWs can provide a unique tool to study NS interior 
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Rotating deformed neutron stars 
  The radio pulsar and the accreting LMXB binary systems, are prime candidates 

for GW detection via targeted searches. 

  There may be a population of  neutron stars currently invisible to electromagnetic 
observations, spinning down by GW emission. 

Supercontacting Core 

Magnetic fields  

Ushomirsky et al ‘00, Cutler ‘02, Owen ‘05, Haskell et all ‘06,… 
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Complicated story:  
different physical assumptions lead to very 
different possible maximum mountain sizes 
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1.  S5 data for Grab : no more than 2% of  the spin-down energy was being emitted in 
the GW channel, corresponding to an ellipticity bound of  approximately  ε< 10－4 

2.  If  nature supplies millisecond pulsars deformed at the level of  one part in 107, ET 
may provide the key to detecting them 
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Gravitational Wave Asteroseismology 
Neutron Stars oscillate wildly during 
the very first seconds of  their life 

Rotation is responsible for a 
number of  instabilities which emit 
copious amounts of  GWs 

We can potentially estimate their 
masses, radii, equations of  state by 
analysing the seismic data via the 
emitted gravitational waves 
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Neutron Star “ringing” 

� 

σ ≈
M
R3

p-modes: main restoring force is the 
pressure (f-mode) (>1.5 kHz) 

Inertial modes: (r-modes) main 
restoring force is the Coriolis force  

Torsional modes (t-modes) (>20 Hz) shear 
deformations. Restoring force, the weak 
Coulomb force of  the crystal ions.  

w-modes: pure space-time modes (only in 
GR) (>5kHz) � 
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… and many more 
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Effect of  Rotation & Magnetic Fields 

ROTATION 
  Frame dragging 

  Quadrupole deformation 

  Rotational instabilities 

MAGNETIC FIELD 
  No significant effect in the 

fluid frequencies and 
damping/growth times 

  For magnetars we may 
observe Alfvén oscillations 

magnetic energy
gravitational energy

~ B2R3
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Stability of  Rotating Stars 
Non-Axisymmetric Perturbations 

Dynamical Instabilities 
  Driven by hydrodynamical 

forces (bar-mode instability) 

  Develop at a time scale of  about 
one rotation period  

Secular Instabilities  

  Driven by dissipative forces (viscosity, 
gravitational radiation) 

  Develop at a time scale of  several rotation 
periods. 

  Viscosity driven instability causes a 
Maclaurin spheroid to evolve into a non-
axisymmetric Jacobi ellipsoid. 

  Gravitational radiation driven instability 
causes a Maclaurin spheroid to evolve into 
a stationary but non-axisymmetric 
Dedekind ellipsoid.  

 Chandrasekhar-Friedman-Schutz (CFS) 

A general criterion is:  

T  : rot. kinetic energy   
W : grav. binding energy 

βN ≥ 0.27
βGR ≥ 0.25

βN ≥ 0.14
βGR ≥ 0.07

GR and/or differential rotation suggest considerably 
lower β for the onset of  the instabilities 

~ (Gρ)−1/2

    
β =

T
W
≈

2
15

e2 + ...
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Bar-mode dynamical instability 
  For rapidly (differentially!) rotating stars 

with: β>0.27. 

  Typical Frequencies ~1.5-3.5kHz 

  The “bar-mode” grows on a dynamical 
timescale. 

  Once it is active the instability does not 
persist for long due to nonlinear mode-
mode coupling 

Baiotti etal 2007 

LOW T/|W| Instability (Shibata et al 2007) 

  These are “Shear instabilities” associated with 
the existence of  a corotation band.  

  They develop for any value of  the instability 
parameter β when sufficient amounts of  
differential rotation are present. 

(Watts etal 2002, Corvino etal 2010)  
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The CFS instability 

rotin

m m
ωω = − +Ω

Chandrasekhar 1970:   Gravitational waves lead to a secular instability   

Friedman & Schutz 1978: The instability is generic, modes with 
sufficiently large m are unstable. 

  Radiation drives a mode unstable 
if  the mode pattern moves 
backwards according to an 
observer on the star (Jrot<0), but 
forwards according to someone 
far away (Jrot>0). 

  They radiate positive angular 
momentum, thus in the rotating 
frame the angular momentum of  
the mode increases leading to an 
increase in mode’s amplitude. 

Gaertig+KK 2008 

A neutral mode of  oscillation signals the onset of  CFS instability. 
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Dura>on 20 sec ‐ 20 min 

SATURATION AMPLITUDE REACHED 
Mode is damped via shocks or 

mode coupling 

Rota>on 
Temperature 

EoS,… 

The Excitation of  Secular Instabilities 

UNKNOWNS(?) 
 Critical rotation 
 Maximum Amplitude 
 Duration 
 Differential Rotation 
 Instability Window 
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  Stergioulas+Friedman 1998 
  Gaertig+KK 2008 
  Krüger+Gaertig+KK 2009 
  Zink+Stergioulas+ … 2010 
  Gaertig+KK 2010 
  Gaertig+Glampedakis+KK

+Zink 2010 

INSTABILITY WINDOW 

Magnetic field 
Hyperon viscosity 
Crust 
Quark matter r‐mode 

f‐mode 

108 K  109 K 

Shear 
Viscosity 

Bulk 
Viscosity 

Kepler limit 

Mutual friction 
Lindblom&Mendel‘95 

  Lindblom, Owen, Morsink 1998 
Andersson+KK+Schutz 1999 

  KK+Stergioulas 1999 
  Bildsten+Ushomirsky 2000 
  Lindblom+Ipser 2002 
  … 
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f-mode Instability 

10Hz  100Hz  1000Hz 

Onset of 
instability 

Unknowns (?): 
  Duration (width of  the instability window) 
  Amplitude (saturation) 
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R-modes 

  The existence of  crust, hyperons 
in the core, magnetic fields, 
affects the efficiency of  the 
instability. 

  Mode coupling might not 
allow the growth of  instability 
to high amplitudes (Cornell 
group `04-`08) 

  R-mode instability for newly born 
neutron stars might be quite 
weak ; unless we have the 
creation of  a strange star 

  Old accreting neutron (or strange)  
stars, probably the best source!  

20

1 kHz
1 10Kp( 0 c)h t

d
α− ⎛ ⎞Ω
⎜ ⎟
⎝ ⎠
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3 410 10α − −−

GW amplitude depends on 
the saturation amplitude 

25th Texas 15 7/12/10 



R-modes 
A successful application (!) 



Fast Rotating NS in GR: f, g, r-modes 

  In GR the m=2 mode becomes unstable for Ω>0.85ΩKepler 

  Differential rotation affects the onset of  the instability 

g & r-modes 
Passamonti et al 2008 
Gaertig+KK ‘09 

f-modes 
Gaertig+KK 2008 

LIGO/Virgo/GEO-HF band Gaertig+KK 2008,09,10, Krüger, Gaertig, KK 2009, Zink etal 2010 

We can evolve the linear & non-linear form of  Einstein’s equations and  
simulate the dynamics of  fast rotating and magnetized neutron stars 
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f-modes: Asteroseismology 
We can produce empirical relation relating the parameters of  the neutron 

stars to the observed frequencies. 
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f-mode: Instability window 
E =

1
2

ρδuaδua
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δ p
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Instability Window 

Gaertig, Glampedakis, KK, Zink (2010) 

  For the first time we have the window of  f-mode instability in GR 
  Newtonian: (l=m=4) Ipser-Lindblom (1991) 

Mutual friction 

…typical  
Growth Time 

~38 sec   l=2 
~56 sec  l=3 
~264 sec    l=4  

>>33 min 

N=0.66 
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Instability Window 
Gaertig, Glampedakis, KK, Zink (2010) 

Mutual friction 

…typical growth times 

~47 h     l=2 
~30 min  l=3 
~40 min    l=4  

N=0.73 

…typical cooling times 

~30 min  Tc~5x109K 
~10 h   Tc~3x109K 
~5 d   Tc~2x109K 
~1 y   Tc~1x109K 

l=4 

l=3 
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Saturation Amplitudes 

Kastaun, Willburger, KK (2010) 

Possible mode coupling 
with inertial modes 
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Animation of  the l=m=2 f-mode 
Kastaun, Willburger, KK (2010) 

  Quasi-Radial &Axisymmetric: damped due to shock formation 
  Non-axisymmetric: damped due to wave breaking on the surface 
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Detectability (10Mpc) 

h ≈ 10−23 −10−24 10Mpc
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Kastaun, Willburger, KK (2010) 

Efficiency depends on the value of  the f-mode frequency in the 
inertial frame, thus it depends strongly on the stiffness of  the EoS 
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Magnetars 
1015-1016 Gauss ! 

Giant flares 
•  Up to now, 3 giant flares have 

been detected. 
  SGR 0526-66 in 1979,  
  SGR 1900+14 in 1998,  
  SGR 1806-20 in 2004 

•  Peak luminosities :1044 – 1046 erg/s 
•  A decaying tail for several 

hundred seconds follows the flare. 

QPOs in decaying tail (Israel et al. 2005; 
Watts & Strohmayer 2005, 2006) 

•  SGR 1900+14 : 28, 54, 84, & 155 Hz 
•  SGR 1806-20  : 18, 26, 29, 92.5, 150, 

626.5, 720, 1837 & 2384 Hz 
•  A few more : 17, 21, 36, 59, 116 Hz 

(Habaryan, Neuhauser, KK 2010) 
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crust

55 6628 8322

discrete Alfvén modes

APR14 B = 4.25 × 1015 Gauss

For SGR 1806-20 (Colaiuda+KK ’09,’10) 

  We show that crust and Alfvén 
modes can explain all observed 
QPOs. 

  The magnetar has EoS APR, 
mass 1.4M and 11.6km radius.  25th Texas 25 7/12/10 
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Levin `07,`08,`10, Glampedakis etal ‘07 
Cerda-Duran etal ’09,’10, Samuelsson etal’07  



Magnetars & GWs 

10Hz  100Hz  1000Hz 

•  Many mode frequencies in the op>mal band of GW detectors 

•  Ideal Source for Mul>‐messenger Astronomy 

•  It will be hard to excite density perturba>ons 

•  Emode ≈ 10‐3 ‐10‐5  Eburst ? 

•  Amplitude of GWs UNKNOWN (Only Galac>c Sources) 

✪ ✪ ✪ ✪ ✪ ✪ ✪ ✪ ✪ 

x10-4 
✪

f-mode? 
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Magnetar Oscillations 

Full 3D GR-MHD code 

  Tayler Instability (~10ms 
growth time) 

  Toroidal component for 
the B-field 

  No GWs yet 

Simulation 

  Pure poloidal field 
  Initial data from Lorene 
  B~1016 G 
  Stable for a few hundred 

ms 

Lasky, KK, Zink 2011 25th Texas 27 7/12/10 



Conclusions 
•  Supernova Core Collapse  

  The event rate may still not be overwhelmingly impressive,  

  It appears that different suggested supernova explosion 
mechanisms may lead to rather different GW signals. 

  The different emission mechanisms have quite characteristic 
signatures, so GW measurements would provide an unusually direct 
(probably the only besides neutrinos) way of  probing the conditions 
inside core collapse supernovae 

  The investigation of  the core collapse supernova mechanism with 
GWs absolutely requires a 3G detector to obtain meaningful 
statistics 

•  Rotational Instabilities of  Neutron Stars  
  Are potential sources for GW beyond our galaxy 
  Many open issues (growth time, EoS, non-linear coupling,…) have 

already or soon will be resolved. 
•  Magnetars  

  Offers the possibility to understand their structure 
  Most probably a weak source for GW with the present generation 

detectors 
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