Exercises for Experimental methods in Astroparticle Physics

Universität Heidelberg

6. November 2019

Hand in: 13. November 2019

Sheet 3

1. Luminosity of Sco X-1

In 1962, Riccardo Giacconi and his team designed and launched an experiment with the goal of detecting the X-ray fluorescence emission from the Moon surface due to solar X-rays. The scientific payload consisted of a couple of Geiger counters as detectors. The experiment scanned the sky for 5 minutes and 50 seconds, corresponding to the time the rocket was more than 80 km above the Earth's surface. Surprisingly, the main X-ray source was not the Moon, but instead originated from the constellation of Scorpius. This source is labeled Sco X-1. Today, we known it is a stellar binary system in our galaxy.

Scorpius X-1 delivers roughly $10^{6} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ x-ray photons with an average energy of 5 keV to the Earth. Given the distance of the binary system to the Earth to be $D=2800 \mathrm{pc}$, calculate the luminosity (emitted power) in terms of the sun luminosity.

2. Synchrotron Emission I

The power radiated by a single electron through synchrotron emission is given by:

$$
\begin{equation*}
\frac{d E}{d t}=\frac{4}{3} \sigma_{\mathrm{T}} c \gamma^{2} U_{\mathrm{B}} \tag{1}
\end{equation*}
$$

An electron is losing energy via synchrotron radiation in a constant magnetic field B. Write a differential equation for γ as a function of time for an initial $\gamma(t=0)=\gamma_{0}$. Solve the equation and find an expression for how long it takes for the electron to lose half its energy.

3. Synchrotron Emission II

The Crab Nebula has an average magnetic field of $B=5 \times 10^{-4} \mathrm{G}$. Estimate the gyroradii of electrons in the Crab Nebula that emit synchrotron radiation in the radio frequency $\left(10^{8} \mathrm{~Hz}\right)$ and in the gamma-ray range $\left(10^{22} \mathrm{~Hz}\right)$. Are these gyroradii smaller than the radius of the nebula ($5 \times 10^{18} \mathrm{~cm}$) ?

4. Black Body Emission

Consider a plasma sphere of radius R with mass M composed of ionized hydrogen (electrons and protons). The plasma is optically thick and has a uniform temperature of $T=$ $10^{7} \mathrm{~K}$. In the following, solar parameters are denoted by \odot.
(a) Find an expression for the energy of this system. Make use of the fact that \#electrons $=$ \#protons $=\frac{M}{m_{\mathrm{p}}}$.
(b) Define the surface luminosity (power emitted by the total surface) due to black body radiation. Demonstrate that this can be written as

$$
\begin{equation*}
L=3.5 \times 10^{39} \mathrm{~W} \mathrm{~s}^{-1} \times\left(\frac{R}{R_{\odot}}\right)^{2} \times\left(\frac{T}{10^{7} \mathrm{~K}}\right)^{3} \tag{2}
\end{equation*}
$$

(c) Determine the cooling time and demonstrate that this can be written as

$$
\begin{equation*}
\tau=140 \mathrm{~s} \times \frac{M}{M_{\odot}} \times\left(\frac{R}{R_{\odot}}\right)^{-2} \times\left(\frac{T}{10^{7} \mathrm{~K}}\right)^{-3} \tag{3}
\end{equation*}
$$

(d) Let us consider a system with a mass equal to the solar mass and a temperature of $10^{7} \mathrm{~K}$. Calculate the luminosity and the cooling time for systems with:
i. $R=R_{\odot}$
ii. $R=3 \times 10^{-3} \mathrm{R}_{\odot}$
iii. $R=10^{-5} \mathrm{R}_{\odot}$

