First results from Phase II of the neutrinoless double beta decay experiment GERDA

Werner Maneschg for the GERDA Collaboration

Max-Planck-Institut für Kernphysik

TeV Particle Astrophysics 2016

September 12-16, 2016, CERN, Geneva

Double beta decay: Theory and observation

Signature from $2\nu\beta\beta$ and $0\nu\beta\beta$:

Observable: half-life

•
$$(T_{1/2})^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

•
$$T_{1/2} \propto \begin{cases} a \cdot \epsilon \cdot M \cdot T \\ a \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}, & \text{w background} \end{cases}$$

The GERDA experiment

Location: Laboratori Nazionali del Gran Sasso, Assergi, Italy

Setup and background reduction:

1.4 km overburden

→ Reduction of cosmic muon flux by 6 orders of magnitude (PB)

Water tank and plastic scintillator

- \rightarrow neutron moderator/absorber (PB)
- \rightarrow muon Cherenkov veto (AB)

• Liquid argon (LAr) cryostat:

- \rightarrow cooling medium for diodes (80 K)
- \rightarrow attenuation of external radiation (PB)
- \rightarrow LAr scintillation light used for bg rejection (AB)

• GERmanium Detector Array:

- Operate bare diodes in LAr with low-mass, ultra-radiopure copper holders (PB)
- Detectors enriched in ⁷⁶Ge: $Q_{\beta\beta}$ of ⁷⁶Ge = 2039 keV Concept: DBD source = Detector
- Coincidence modus between Ge diodes and auxiliary systems (AB)
- Particle identification via pulse shape (AB)

Legend:

PB = passive background rejection

< /₽ > <

AB = active background rejection

GERDA Phase I (2011-2013)

Results from GERDA Phase I

- Physics goal fullfilled: 21.6 kg·yr with B≈0.01 cts/(kg·yr·keV) at Q_{ββ} incl. pulse shape discrimination (PSD) cuts (unprecedented !)
- Detector performance: excellent energy resolution at 0.2%, energy scale very stable
- Data analysis: fully blinded (unprecedented !)
- Physics results:
 - No evidence for peak, $ightarrow \mathsf{T}_{1/2}^{0
 u}$ >2.1imes10 25 yr (90% C.L.)
 - combined Ge experiments: $T_{1/2}^{0\nu}$ >3.0×10²⁵ yr (90% C.L.))
 - \rightarrow Combined Ge experiments (HdM + IGEX + GERDA): $\langle m_{\beta\beta} \rangle$ <(0.2-0.4) eV

イロト 人間ト イヨト イヨト

Strategy: improve $T_{1/2}$ sensitivity by applying modifications *inside* the LAr cryostat

Starting point: $T_{1/2} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}$, assuming non-zero background

Parameter	Phase I	Phase II
M(⁷⁶ Ge enr.)	6 coax: 14.6 kg	7 coax: 15.2 kg
(all operational channels)	4 BEGe: 3.0 kg	30 BEGe: 20.0 kg
Μ·Τ	Goal: 20 kg·yr	Goal: 100 kg·yr
	Achieved: 21.6 kg·yr	
ΔE at \mathcal{Q}_{etaeta}	coax: 4.2-5.7 keV	Goal: as good as in P I or
(full-width at half-maximum)	BEGe: 2.6-4.0 keV	improve via new filters
B at Q_{etaeta}	Goal: 10^{-2} cts/(kg·keV·yr)	Goal: 10^{-3} cts/(kg·keV·yr)
	Achieved (incl. PSD):	
	coax: $1.1-3.0\cdot 10^{-2}$ cts/(kg·keV·yr)	
	BEGe: $0.5 \cdot 10^{-2} \operatorname{cts}/(\operatorname{kg·keV·yr})$	
	* PSD: reduced for coax	* PSD: enhanced for BEGe
	* Signal contact: mech. spring	* Signal contact: bonding
	* FE electronics + preampl.	* New development
	* Copper mini-shroud	* Nylon mini-shroud
	-	* LAr scintillation light:
	-	- PMTs
	-	- Glass fibers with SiPMs

GERDA Phase II upgrade: New detector components

String with 8 BEGe detectors

Background mitigation:

pulse shape discrimination and Ge detector anti-coincidence:

low mass holder of low activity + new contacting / electronics

< 一型

GERDA Phase II upgrade: LAr scintillation light instrumentation

Ge detectors in anti-coincidence with LAr scintillation light read-out:

Background mitigation:

• Hybrid design:

0

 16 x 3" low background PMTs Ham RG11065-10/20 MOD
 810 x scintillating fibers coupled to 90 KETEK SiPMs
 100 μm Cu shrouds with wavelength shift TETRATEX foil

< 47 ▶

GERDA Phase II upgrade: A special barrier against ⁴²Ar

⁴²Ar background mitigation:

- Mechanical barrier against ⁴²Ar ions attracted by high E field (GERDA Phase I: copper shroud)
- Requirements to GERDA Phase II shroud:
 - transparent for LAr scintillation light λ =128 nm \rightarrow use nylon
 - 2 match PMT and SiPM sensitivity
 - ightarrow use nylon coated with wavelength shifter
 - mech. robustness, no ageing, low intrinsic contamination

Proof of principle in LArGe test stand

W. Maneschg (MPI-K)

September 13, 2016 8 / 18

GERDA Phase II commissioning: Active background suppression

Calibration with external sources:

Strength of PSD:

Results:

Isotope	LAr Veto	LAr Veto + det. anti-coincidence + pulse shape discrimination
²²⁸ Th	85±3	390±28
²²⁶ Ra	5.1±0.2	25±2.2

- Suppression factors depend on isotopes, source location & detector configuration
- For external γ's: LAr veto more efficient than pulse shape discrimination (PSD)

GERDA Phase II: Data collection

Data collection start: December 15, 2015

All 7 strings mounted & all Ge detectors + LAr veto working !

Data set of GERDA Phase II used for 1. data release:

- From Run 53: First event: UTC Fri Dec 25 00:45:09 2015
- To Run 64: Last event: UTC Wed Jun 1 07:43:10 2016
- Live time: 130.67 d = 0.358 yr (→ Duty cycle: 82.0%)

< □ > < A > >

 LAr veto cut: → For ⁴⁰K: fully accepted; ⁴²K: SF~5 → Below 2 MeV: basically only 2νββ spectrum → In 1839-2239 keV: survival fraction = ~1/3
 Pulse shape: → Events in ROI: signal accep. 87.3±0.9 %, Bg reject. 80% → α events: very efficient rejection

W. Maneschg (MPI-K)

GERDA Phase II first results

September 13, 2016

GERDA Phase II: Background suppression of coaxial detectors

• LAr veto cut: \rightarrow In 1839-2239 keV: survival fraction $\sim 1/2$

- Pulse shape:
 - → Multi-site events: rejected via artificial neural network (ANN) + projective Likelihood: ϵ_{mse} =(80±9)% $0\nu\beta\beta$ acceptance
 - $\rightarrow \alpha$ events: rejected via ANN: $\epsilon_{\alpha} = (96 \pm 1)\% \ 0\nu\beta\beta$ acceptance
 - \rightarrow Total eff.: $\epsilon_{psd} = \epsilon_{mse} \cdot \epsilon_{\alpha} = (77 \pm 9)\%$, while bg. rejected at 65%

12 / 18

Global fit prior application of LAr veto and PSD cut

data

-mode

- Fit [570,5300] keV with 30 keV binning
- Well understood bg composition
- Expect flat bg in ROI at $Q_{\beta\beta}$
- Bg model still preliminary!

- Fit predicts again flat bg in ROI ٠
- 0 Main components before LAr veto and PSD cut similar to Phase 1:
 - α from ²¹⁰Po and ²²⁶Ra
 - β from ⁴²K
 - γ from ²¹⁴Bi and ²⁰⁸TI

GERDA Phase II: Unblinding of first data set

GERDA Collaboration Meeting on Ringberg castle (GER), June 15-18, 2016

Final steps prior unblinding the $Q_{\beta\beta} \pm 25$ keV window:

- Freeze analysis cuts (energy reconstruction, quality cuts, flags...)
- Freeze data periods from Phase 1 and 2
- Freeze background model
- Freeze LAr veto and PSD cuts for BEGe and Coax
- Fix and agree on statistical methods ... \rightarrow

Counts	Region	BEGe	Coax
expected, w PSD	$Q_{etaeta}\pm$ 25 keV	0.3	0.8
	1930-2190 keV	1.2	3.6
observed, w PSD	$Q_{etaeta}\pm 25$ keV	0	1
	1930-2190 keV	1	4

 \rightarrow Like in Phase I, no hint for γ -line at $Q_{\beta\beta}$! Background is flat.

W. Maneschg (MPI-K)

List of used data sets and of relevant quantities				
posure Si ⟨g∙yr]	gnal eff. [Background cts/(keV·kg·yr)]	Resolution FWHM [keV]	
17.9 (0.57(3)	$11{\pm}2.10^{-3}$	4.3(1)	
1.3 0	0.57(3)	$30{\pm}10$ ${\cdot}10^{-3}$	4.3(1)	
2.4 (0.66(2)	5^{+4}_{-3} $\cdot 10^{-3}$	2.7(2)	
1.9 (0.58(4)	5^{+4}_{-3} $\cdot 10^{-3}$	4.2(2)	
5.0 (0.51(7)	$3.5^{+2.1}_{-1.5}$ $\cdot 10^{-3}$	4.0(2)	
5.8 (0.60(2)	$0.7^{+1.1}_{-0.5}$ ·10 ⁻³	3.0(2)	
	posure Si (g·yr] (17.9 (1.3 (2.4 (1.9 (5.0 (5.8 (posure Signal eff. (g:yr] [v] 17.9 0.57(3) 1.3 0.57(3) 2.4 0.66(2) 1.9 0.58(4) 5.0 0.51(7) 5.8 0.60(2)	$\begin{array}{c} \mbox{posure quantities} \\ \hline \mbox{posure Signal eff. Background} \\ \hline \mbox{gcyr} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

Analyses based on two methods:

	unbinned profile likelihood 2-side test-stat	Bayesian flat prior on cts
$0\nu\beta\beta$ cts best fit value $T^{0\nu}$ lower limit	0 cts >5.2 ⋅10 ²⁵ vr (90% CL)	0 cts >3 5⋅10 ²⁵ vr (90% CI)
$T_{1/2}^{0\nu}$ median sensitivity	$4.0 \cdot 10^{25} \text{ yr } (90\% \text{ CL})$	3.0·10 ²⁵ yr (90% CI)

• Result from Phase I + first Phase II period:

- Sensitivity: $T_{1/2}^{0\nu} > 4.0 \cdot 10^{25} \text{ yr} (90\% \text{ CL})$
- No $0\nu\beta\beta$ signal found $\rightarrow T_{1/2}^{0\nu} > 5.2 \cdot 10^{25} \text{ yr (90\% CL)}$
 - $\rightarrow m_{eff} < (0.15-0.33) \, eV$

• Goal for Phase II (next 3-4 yr):

- Exposure of 100 kg·yr
- Only a fraction of bg event in ROI expected \rightarrow first bg free experiment

Discovery potential:

- Find γ -line at $Q_{\beta\beta}$
 - \leftarrow very good energy res. and low bg
- Identify origin of γ-line at Q_{ββ}
 ← capability to distinguish ββ from other bg events on event-by-event basis

Based on current BI and duty cycle:

W. Maneschg (MPI-K)

September 13, 2016 17 / 18

THANK YOU FOR YOUR ATTENTION !

3

イロト イヨト イヨト