

DARWIN/XLZD: a future xenon observatory for dark matter and other rare interactions

Nobel Symposium on Dark Matter

Laura Baudis, University of Zurich August 25, 2023

Dark matter mass parameter space

Direct detection landscape in 2023

A brief reminder that Nature does not relinquish her secrets easily... ...and that an experiment worth doing has rarely been done before - we are literally mapping out new territory

Liquid xenon detectors

- Leading sensitivity at intermediate/high DM masses since ~2007
- Liquid xenon detectors
 - \bullet scalable \Rightarrow large target masses
 - e readily purified ⇒ ultra-low backgrounds
 - high density \Rightarrow self-shielding
- SI and SD (¹²⁹Xe, ¹³¹Xe) interactions
- Many other science opportunities (second order weak decays of ¹²⁴Xe, ¹³⁶Xe; solar and SN neutrinos)

Limits for a 50 GeV WIMP

Cross section versus mass

Backgrounds versus mass

Background goals and sources

• Main goal: quasi "background-free" exposure of **200 t y** for dark matter search

- ER and NR backgrounds: to be limited by *neutrino-induced* events
 - NRs: cosmogenic, radiogenic neutrons & neutrinos
 - ERs: intrinsic (222Rn, 85Kr, 136Xe, 124Xe), materials & neutrinos

Towards the neutrino fog

In summary: detectors must become even larger, even quieter...

Figure by Tina Pollmann

Current liquid xenon detectors

- LZ at SURF, PandaX-4T at JinPing, XENONnT at LNGS
- Detector scales: 10 t (LZ), 6 t (PandaX-4T) and 8.6 t
 LXe (XENONnT) in total xenon mass
 - TPCs with 2 arrays of 3-inch PMTs
 - Kr and Rn removal techniques
 - Ultra-pure water shields, n & μ vetos
 - External and internal calibration sources
- Status: PandaX-4T first result in 2021 from commissioning run, LZ first results from 2022 run, XENONnT first results from SR0 in 2021/22

LUX-ZEPLIN XENONnT

PandaX-4T

Future liquid xenon detectors

OARWIN/XLZD

- DARWIN: 50 t LXe (40 t active target) at LNGS; Gd-doped water n- and μ- vetoes
- XLZD: 75 t LXe (60 t active target), several labs are considered

PandaX-xT at CJPL

 >30 t active volume at CJPL; 2 arrays of 2-inch × 2-inch flat panel PMTs; Cu inner vessel, active shield between inner and outer cryostat

DARWIN Collaboration

• 200 members from 35 institutions in Europe, USA, Asia, Australia

The XLZD Consortium

- Merger of DARWIN/XENON and LUX-ZEPLIN collaborations to build and operate nextgeneration liquid xenon detector
 - new, stronger international collaboration with demonstrated experience in xenon time projection chambers

Paving the way now

- First joint, successful DARWIN/XENON & LZ workshop, April 26-27 2021 https:// indico.cern.ch/event/1028794/
- MoU signed July 6, 2021 by 104 research group leaders from 16 countries
- Summer meeting at KIT June 2022; spring meeting at UCLA April 2023; several working groups in place to study science, detector, Xe procurement, R&D etc
- XLZD consortium (xlzd.org) to design and build a common multi-ton xenon experiment

UCLA, spring 2023

KIT, summer 2022

Science goals

LZ & XENONnT:

~ 1.5 m e⁻ drift, ~ 1.5 m Ø electrodes

Size matters

• New detector \Rightarrow new challenges

DARWIN/XLZD

1 m XENON1T

Size matters

• New detector \Rightarrow new challenges

- Design of electrodes: robustness (minimal sagging/deflection), maximal transparency, reduced e⁻ emission ("hot spots")
- Electric field: ensure spatial and temporal homogeneity, avoid charge-up of PTFE reflectors
- High-voltage supply to cathode design, avoid highfield regions
- Light sensors: reduce backgrounds and DRCs, improve PDE
- Cryogenic system and xenon purification
- Electron survival in LXe: > 10 ms lifetime
- Diffusion of the e⁻-cloud: size of S2-signals

DARWIN/XLZD

17

R&D: detector design

- Demonstrate e⁻-drift over >2.5 m, measure
 e⁻ cloud diffusion for different drift fields
- Design high-voltage feed-throughs: deliver 50 kV or more to the cathode
- Build/test electrodes with > 2.5 m
 diameter: wire, mesh/woven, micro-pattern
- Optimise light collection efficiency in the TPC
- Cryostat design: stability; reduce the amount of material and hence gamma and neutron emitters close to the TPC

Pancake & Xenoscope available as test platforms to the collaboration

Xenoscope, JINST 16, P08052, 2021, EPJ-C 83, 2023

Pancake, Test electrodes with 2.6 m Ø

18

R&D: light and charge

- Photomultipliers: established technology, low DCR (~0.02 Hz/mm²), high QE (mean around 34%, up to > 40% at 175 nm)
 - issues: lower radioactivity required, longterm stability in cryogenic liquids (AP rates due to vacuum leaks) & light emission
- SiPM arrays: lower radioactivity/area, lower voltage; main issue → dark count rate (too high by ~ factor 10-100 in LXe)
 - low-field SiPMs (reduce band-to-band tunnelling), digital SiPMs

3'' (R1311 low-rad PMT by XMASS), JINST 15, 2020

Baseline: R11410, 3''; R&D for lower radioactivity (refined metal) stems in progress

SiPM array, Xenoscope

R&D: light and charge

• Hybrid sensors

- SiPM + Quartz + photocathode: reduced radioactivity compared to PMTs
- lower DCR compared to SiPM arrays (photosensitive area difference)
- Cryogenic low-noise, low-radioactivity, low heat dissipation readout
- Bubble-assisted Liquid Hole Multipliers: local vapour bubble underneath GEM-like perforated electrode in LXe

Hybrid photosensor with SiPM: ABALONE; NIM A 954 (2020)

Hybrid photosensor with SiPM: Hamamatsu with Nagoya group

R&D: liquid target

- Fast purification in liquid phase for large e-lifetime; radon-free filters
- Gravity-assisted recuperation and largescale storage systems

Gravity assisted Xe recuperation and storage system (Ball of Xenon, BoX) for Xenoscope

LXe purification system (5 L/min LXe, faster cleaning; 2500 slpm) for XENONnT

G. Plante et al., EPJ-C 82 (2022), Xeclipse

R&D: background control

- ²²²Rn distillation column (goal is 0.1 μBq/kg, background below ER from pp solar neutrinos; DEAP-3600 reached 0.15 μBq/kg in LAr)
- "Radon-free" circulation pumps
- Coating techniques to avoid radon emanation (electrochemical deposition of Cu best results)
- ⁸⁵Kr distillation (^{nat}Kr goal: 0.1 ppt, achieved < 0.026 ppt)
- Radio-pure materials with low Rn-emanation

Rn distillation column for XENONnT (reduce ²²²Rn hence also ²¹⁴Bi - from pipes, cables, cryogenic system)

Kr distillation column for XENONnT, EPJ-C 77, 2017

DM cross section versus time

Snowmass, Topical Group on Particle Dark Matter Report, arXiv: 2209.07426

WIMP spectroscopy

• Different DM targets are sensitive to different directions in the m_{χ} - σ_{SI} plane

Xe: 2.0 t x yr, $E_{th} = 10 \text{ keV}_{nr}$ Ge: 2.2 t x yr, $E_{th} = 10 \text{ keV}_{nr}$ Ar: 6.4 t x yr, $E_{th} = 30 \text{ keV}_{nr}$

fixed galactic model

including galactic uncertainties

Pato, Baudis, Bertone, Ruiz de Austri, Strigari, Trotta: Phys. Rev. D 83, 2011

WIMP spectroscopy

 Capability in LXe alone to reconstruct the WIMP mass and cross section for various masses - here 20, 100, 500 GeV/c²⁻ and cross sections

1 and 2 sigma credible regions after marginalising the posterior probability distribution over: $v_{esc} = 544 \pm 40 \,\mathrm{km/s}$

$$v_0 = 220 \pm 20 \,\mathrm{km/s}$$

 $ho_{\chi} = 0.3 \pm 0.1 \,\mathrm{GeV/cm}^3$

25

Definitive search for medium to high-mass WIMPs

• Larger LXe mass with XLZD

- reaches sooner the systematic limit of the neutrino fog (~ 1000 tonnes × years exposure)
- allows for 3-σ discovery at SI cross section of 3 × 10⁻⁴⁹ cm² at 40 GeV mass
- Detector design: combine best of LZ and XENONnT

Figure by Ciaran O'Hare

Systematic limit imposed by CEvES from atmospheric neutrinos

At contour n: obtaining a 10 times lower cross section sensitivity requires an increase in exposure of at least 10ⁿ

Summary and Outlook

• The nature of dark matter in our universe remains an enigma

- In the worldwide race to directly detect dark matter particles, liquid xenon detectors are at the forefront
- Current generation of detectors presented first results, and they continue to take data to reach design exposures
- DARWIN has been leading the efforts towards a next-generation LXe detector
- XLZD: merger of expert teams and international planning is underway
- Design book in progress (risks defined and tractable); potential for DM discovery
- Eventually, will limited by neutrino interactions (but also many new physics opportunities & be prepared for surprises!)

"There's always something to look at if you open your eyes." – The Doctor

The end

Backup slides

Low-energy solar neutrinos

Elastic neutrinoelectron scattering

\bullet v_e interactions: CC & NC

 \bullet v_µ and v_T interactions: only via NC

($\sigma_{tot}\approx 10^{-43}~cm^2$, solar v have low energies and the CC reactions involving v_{\mu} and v_{\tau} are kinematically not allowed)

Low-energy solar neutrinos

• What is the ν_e survival probability (P_{ee}) below 200 keV?

• What is the value of the weak mixing angle ($\sin^2 \theta_w$) at low energies?

Low-energy solar neutrinos

- Rates: 365 events/(t y) from pp v and 140 events/(t y) from ⁷Be v; ¹³N: 6.5/(t y), ¹⁵O: 7.1/(t y)
- op-flux: 0.15% statistical precision with 300 t y exposure (sub-percent after 10 t y)
- v_e survival probability & weak mixing angle < 300 keV</p>
 - P_{ee} : ~4% relative uncertainty; sin² θ_W : ~5% relative uncertainty

Where are we now?

- In XENONnT, SR0 ER background below 30 keV
 - (15.8±1.3) events/(t y keV) (0.2 x the one of XENON1T)
 - Solar ν : ~1/2 of the dominant (²²²Rn) background in SR0

CEvNS in DARWIN/XLZD

 $\nu + A \rightarrow \nu + A$

Nucleon wavefunctions in the target nucleus in phase with each other at low momentum transfer

- A neutrino hits a nucleus via Zexchange
- The nucleus recoils as a whole
- The process is coherent up to neutrino energies of ~50 MeV

CEvNS in DARWIN/XLZD

• Sources: solar ⁸B and hep v's; core-collapse SN; DSNB and atmospheric v's

CEvNS with 8B neutrinos

• ~99% of CEvENS-induced events expected < 3 keVnr</p>

• ~ 10⁴ events/(200t y) for 2-fold S1 and 5 n_e S2 (see X. Xiang et al., 2304.06142)

Signal for 200 t x y exposure

Existing 8B v constraints

⁸B flux prediction and constraints from

Non-standard v interactions

 \odot New physics specific to ν -nucleon interactions poorly constrained

 In general: model-independent parametrisation of non-standard contributions to vq interaction cross sections (with vector and axial-vector couplings)

• Presence of NSI results in enhancement or suppression of CEvNS rate

Ratio wrt SM

If we see additional or fewer CEvNS than expected in DARWIN/XLZD: could be BSM physics!

CEvNS with SN neutrinos

 Collapse of a star: ~99% of gravitational binding energy of proto-neutron star goes into v's of all flavours, ~ 10s of MeV v energies

• DARWIN/XLZD: sensitivity to all neutrino flavours

• few events/tonne expected for SN at 10 kpc

 ${\scriptstyle \odot}$ 700 events (in 40 t) from SN with 27 M_{\odot} at 10 kpc

Plots by Ricardo Peres

Some challenges

- Light and charge yields at lowest energies & their uncertainties: dominate systematics (especially in constraining NSI); in situ and special calibrations needed
- Accidental coincidence rate (due to isolated S1 and isolated S2 signals; R&D programme and modelling (semi-empirical code) in place for DARWIN/XLZD

Mock data for 15.3 t y exposure

X. Xiang et al., 2304.06142

Accidental coincidences

Contribution from ACs to the background at low energies could be significant

S2 [#electrons]

- Main sources for isolated S1 and isolated S2 signals
 - Primary scintillation (S1s)
 - > Dark counts (pile-up), \propto nr. channels
 - Charge-insensitive regions
 - Delayed photons
 - Electroluminiscence (S2s)
 - Bulk xenon S2-only events
 - Delayed electrons
 - Electrode events

Study for DARWIN/XLZD by Tina Pollmann