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1 Introduction

In this series of lectures I do not intend to provide a comprehensive overview of
the particle acceleration mechanisms of interest in astrophysical plasmas. There
are many of these, but, unfortunately, it is often very difficult to be specific
about which of them really lies at the root of a particular observed phenomenon.
Instead, I have chosen to concentrate on a few examples in which a theory has
been developed all the way from the basics up to a testable model. Although I
hope to provide a reasonably complete account of each example, it is nevertheless
necessary to choose a starting point which is somewhat more advanced than just
elementary electrodynamics. The kinetic theory of plasma astrophysics underlies
the mechanisms to be discussed, and in this introductory lecture I shall sketch
the physics of the two fundamental transport equations on which the rest of
the course is based — those describing scatter-free propagation and propagation
under the influence of pitch-angle scattering. (For a thorough treatment of these
equations and a discussion of their ranges of validity, the reader should refer to
the companion series of lectures by D.B. Melrose.) These two transport equations
recur as twin themes throughout the course, and the first lecture ends with a
short, but hopefully instructive discussion of how they conspire to accelerate
particles in perhaps the oldest mechanism of all — magnetic pumping.

1.1 Nonthermal Particles

Despite the second law of thermodynamics, it quite obvious that the universe is
not in a state of thermodynamic equilibrium, and there are few more dramatic
examples of this than the energetic particles which are the subject of this course.
The evidence for these reaches us in several ways, ranging from direct detection of
cosmic rays incident on the atmosphere to observation of synchrotron emission
from distant radio galaxies. Energetic particles are also detected directly by
satellite experiments close to the site of their origin e.g., at the Earth’s bow
shock. Somehow, Nature contrives a way of avoiding equipartition of energy for
these particles. This aspect we can understand at least in a qualitative sense.
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Energy is shared out effectively between particles if many channels of interaction
are open, or if collisions are frequent. Astrophysical plasmas are, however, so
thin, that collisions are extremely rare. A cosmic ray particle, for example, which
spends a million years or so wandering around in the disk of our galaxy, has only
about a one-in-eight chance of colliding with another nucleus during that time.
Such collisions are interesting and important for the synthesis of elements such
as Lithium or Boron, and they may even be a significant danger to living cells at
altitude in the Swiss Alps, but they are not effective in bringing cosmic rays into
thermodynamic equilibrium with the interstellar medium. Of course, energetic
charged particles interact with and are confined by the interstellar medium, but
this happens only via the average electromagnetic field they feel, and it is to this
force to which we first must turn our attention.

1.2 Lorentz Force

A particle of charge e and mass m in an electric field E and magnetic field B
feels the ‘Lorentz force’ and has an equation of motion

dp 1

— =e|E+-vAB] , 1

dt ( + c ) (1)
where v is the particle velocity and p = ymv is the momentum, with v =

1/4/1 —v2/c? the particle’s Lorentz factor. From this expression it is clear,
amongst other things, that I will be using Gaussian units. However, there is
another important reason for examining this well-known equation here. If the
electric field vanishes, E = 0, then the scalar product of (1) with p reveals
that the magnitude of the momentum p is constant. The particle energy E =
V/m2ct + p2c? (= ymc?) is thus a conserved quantity. In nonrelativistic lan-
guage, we can say that the force ev A B/c is normal to the velocity, so that
no work is done on the particle. One can also make an analogous covariant ar-
gument. This is the basic property which enables energetic particles to avoid
sharing out their energy: electric fields are rare in the type of highly conducting,
fully ionised plasma we encounter in astrophysics. However, although this makes
it easy for a particle to keep its energy, it makes it correspondingly difficult for
it to acquire it in the first place. In fact, any model of particle acceleration must
ultimately rely on an electric field to energise the particles. In many cases, how-
ever, the electric field does not appear explicitly in the theory, and it is a highly
instructive exercise to locate it.

1.3 Liouville Equation

The most useful quantity we can calculate from an acceleration theory is the sin-
gle particle distribution function f(p, x,t) giving the number density of particles
in the six-dimensional phase space (p,x) at time ¢. This is sufficient to enable us
to compute, for example, the synchrotron radiation from accelerated electrons or
the gamma-rays produced by cosmic rays passing through an interstellar cloud.
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One case is particularly simple — that in which the particles do not interact
amongst themselves. Then the distribution function obeys the Liouville equa-
tion, which is a simple consequence of the conservation of particle number com-
bined with Hamiltonian mechanics. Consider the rate of change of the number
of particles in an element of phase space (8f/8t)d®zd®p. This is given by the
difference between the rate at which particles enter and leave opposite sides of
the six-dimensional cube d3zd3p:

LR (LR ST LR (2
The symbols x and p denote the time derivatives of position and momentum
along a particle trajectory. The speed changes from place to place, and according
to the Lorentz force (1), the acceleration varies with particle momentum, so that
the derivatives of these quantities are important in (2). However, things simplify
if x and p are canonically conjugate variables i.e., if the equations of motion can
be written in Hamiltonian form:
. OH . OH 3
*= ap P= ox ' (3)
where H(p,x) is the Hamiltonian. Substituting these relations into (2) leads
immediately to the Liouville equation:

e fBx ) b ey =0 *)
The left-hand side of this equation is simply the derivative of f along a trajectory,
so that (4) implies Liouville’s theorem, one statement of which is: the distribution
function is constant along particle trajectories.

This theorem is very useful in the analysis of shock-drift acceleration, for
example. However, although the final statement is correct, the derivation of (4)
has ignored the fact that for particles moving under the Lorentz force, x and p
are not, in fact, canonically conjugate — the variable conjugate to x is p +eA/c,
where A is the vector potential of the magnetic field (B = V A A). This subtlety
need not concern us here, since direct calculation using the equation of motion
(1) and the conservation equation (2) verifies the correctness of (4). In this special
case, A is independent of p, and so f remains constant along the trajectories
in (p,x) space. [An elegant treatment of particle transport can be based on the
use of non-canonically conjugate variables and the associated Lie algebra — see,
for example the monograph by Balescu (1988).]

1.4 Scattering

The situation is, of course, much more difficult when the interaction between
particles must be taken into account. The interaction is mediated by the elec-
tromagnetic field, but because of the long-range character of the Coulomb inter-
action, the field at the position of a particular particle depends on the positions
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and velocities of all other particles within a Debye radius, of which there are
a very large number. It is then a hopeless task to solve the Liouville equation.
Fortunately, though, one can approach the problem using the Vlasov equation,
which looks just like (4), except that the equation of motion of the trajectories
refers not to the exact fields, but to ‘averaged’ or ‘self-consistent’ ones which
are to be calculated from the single particle distribution function. Even with
this simplification, the problem is not solved, because the equations of motion
are still highly complicated and nonlinear. To make analytic progress, we are
driven to attempt a linearisation by dividing the (averaged) fields into specified
external ones plus a small fluctuating part arising from the collective effects of
the particles. It is not my intention to go into this procedure in detail, since this
would take us too deeply into kinetic plasma physics. I will merely quote the
resulting transport equation and try to make the terms it contains physically
plausible.

The first point to note is that we are interested only in accelerated or non-
thermal particles and these have in general only a very small contribution to
the total number density of charged particles. The energy density of cosmic
rays in the interstellar medium (ISM), for example, is roughly 1eV ecm™3, and
their number is dominated by particles of 1 — 10 GeV. Thus, their number den-
sity is some nine to ten orders of magnitude lower than the average density
of thermal particles in the ISM (~ 1cm™3). The thermal plasma is responsi-
ble for the character of the normal modes of oscillation of the system and can
treated for our purposes simply as a background fluid. Nevertheless, energetic
particles interact with the background plasma through fluctuations in the fields,
i.e., through these same normal modes. Here, an important simplification can
be made. Because the gyroradius of an energetic particle is larger than the im-
portant microscopic length scales associated with the background plasma, it is
the low frequency, long wavelength oscillations which are most important. In
addition to magnetosonic disturbances of long wavelength, relativistic particles
can undergo a resonant interaction with Alfvén waves of wavelength comparable
to their gyroradius. In fact, the relativistic particles themselves can give rise to
the Alfvén wave turbulence with which they resonate (see Melrose, Lecture 4,
this volume). One can picture the interaction of a particle with a long wave-
length MHD wave as the scattering of an energetic particle off a large heavy
clump of background plasma, which is slowly distorting the local magnetic field
lines through its inertia. The clump of plasma is undisturbed by the scattering
particle, so that in its rest frame the particle changes direction but not energy.
Since the Alfvén speed is generally small compared to flow speeds typical of the
background, the distortion of the field lines moves with almost the same speed as
the background plasma, and we can treat the collision as approximately elastic
in the local rest frame of the fluid. This picture is the one used by Fermi (1949,
1954) in his seminal papers on particle acceleration in the interstellar medium.

The gyroradius of an energetic particle, whilst large compared to other mi-
croscopic lengths, is nevertheless usually small in macroscopic terms. To a first
approximation we shall neglect the effects of macroscopic gradients on the par-
ticle distribution function, which is tantamount to neglecting those drifts of a
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particle trajectory which arise from inhomogeneities in the fields. In a frame in
which the electric field vanishes, the distribution function is then a function of
only two variables in momentum space, instead of three — the missing one being
the phase of gyration about a field line. Essentially, our assumptions imply that
the particles are ‘gyrotropic’ and that the magnetic moment of a particle is, in
the absence of scattering, invariant. For the remaining momentum coordinates
one may choose, for example, spherical polars (p, ), where p is the magnitude
of the momentum and g the cosine of the pitch angle (the angle between the
velocity vector and the magnetic field). Then, because in quasi-linear theory the
scattering centres — the blobs of plasma or Alfvén waves — each cause only a
small deflection of the particle, we obtain a Fokker-Planck type collision term
representing pitch-angle scattering:

& = 2 (Duug) : (5)
dt du e
The derivative on the left-hand side of this equation must be taken along a
particle trajectory as in (4). However, since we consider only distributions which
are gyrotropic in the plasma rest frame, and assume there is no electric field
in this frame, the third term on the left-hand side of (4), which contains the

Lorentz force: e(E + v A B/¢)8f/8p, vanishes, provided the plasma rest frame
is an inertial reference frame. In this case we can write the derivative as

df _ 6f

dt 8t
It is important to remember that this simple form is valid only for distributions
which are independent of the gyrophase, which will turn out to be sufficient for
the acceleration mechanisms discussed here. Another generalisation is necessary
if the plasma rest frame (in which p is measured) is accelerating, but this is
postponed until Chapter 3.

Of course, the pitch-angle scattering term in (5) does not tell the whole
story. For example, if we were to leave the energetic particles for a long time in
a homogeneous background, (5) would ensure they became isotropic, but then
nothing further would happen. In such a case, we must include also the slower
processes which arise because the energy change in scattering, though small, is
non-zero. The quasi-linear theory then provides us with a Fokker-Planck type
equation for diffusion in p—space. For the case of an isotropic, homogeneous
distribution in the absence of an external electric field this equation reads:

S e (omd) . @
at  p? op dp
Here, D,, is the momentum diffusion coefficient. Like D,, it is given in the
quasi-linear theory in terms of the fluctuations in the electromagnetic fields —
i.e., the spectrum of the waves present in the plasma. This is why the equation
is only of Fokker Planck type: the wave intensity itself depends on the particle

distribution, so that (5) and (7) are strictly speaking not linear, but only ‘quasi-
linear’.

+v-Vf. (6)
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Expressions for these diffusion coefficients have been worked out by many
authors (Hall & Sturrock 1967, Melrose 1969, Luhmann 1976, Achatz et al.
1991). There are several situations where acceleration is thought to occur by
diffusion in momentum space according to (7) e.g., the ‘impulsive’ acceleration
of ions in solar flares (Miller et al 1990). However, I propose to concentrate on
situations in which momentum diffusion is unimportant. Whenever, the velocity
of the scattering centres through the background plasma is small compared to
the velocity differences within this plasma over the length scale given by the
particle’s mean free path, we can expect this approximation to hold. A supernova
explosion, for example, ejects matter at a speed of several thousands of kilometers
per second, much larger that the speed of scattering centres (Alfvén waves) in
the interstellar medium, which is typically less than 100 kms™'.

Having said this, it will be clear that the acceleration processes I will discuss
form only a relatively small part of a large subject. Most emphasis will be placed
on what happens in the neighbourhood of a shock front, because the energetic
astrophysical phenomena we wish to understand can almost invariably be iden-
tified with the propagation of a shock front. For energetic particles, there are
then two effects which are important, and they are of fundamentally different
character. The first of these is usually called shock-drift acceleration. It is a de-
terministic process in the sense that one considers the orbits of particles in a
prescribed electromagnetic field. Interactions between the particles are assumed
to be unimportant, and the only reason particles emerge with a range of ener-
gies, rather than being monochromatic, is that they are allowed to enter with
different initial conditions (phases). Although this introduces a kind of random-
ness into the situation, such mechanisms are essentially nonstochastic. On the
other hand, the second important process — often called ‘diffusive acceleration’
— hinges upon the pitch-angle scattering process. In this sense, it is a stochastic
mechanism. Whereas the Liouville equation is useful in the analysis of shock-
drift acceleration, it is the pitch-angle diffusion equation which is employed in
the stochastic case.

1.5 Magnetic Pumping

Before turning to shock fronts, however, I would like to start off with a short
example which does not involve them. One of the oldest mechanisms of parti-
cle acceleration, and one which appears under many guises is that of magnetic
pumping, or the betatron effect. Early discussions are given by Swann (1933),
Schliiter (1957) and Parker (1958). This mechanism is interesting because it
provides an instructive example of how the interplay of a reversible effect and
stochasticity can lead to acceleration.

Consider a particle in a homogeneous plasma containing a uniform magnetic
field B directed along the z-axis, and allow this field to vary slowly in magnitude
as a function of time. In concrete terms, we could imagine a particle in a very
long wavelength low frequency MHD wave (a magnetosonic wave rather than
an Alfvén wave, since the latter implies a change in magnetic field direction not
magnitude). From elementary electrodynamics, we know that the gyromotion of
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the particle about the field conserves the first adiabatic invariant or ‘magnetic
moment’ under such circumstances:

% — constant , (8)

where p, is the component of the momentum perpendicular to B. In addition,
since the system is translationally invariant the z component of momentum
remains constant:

pi = constant . (9)

The equation of motion of the trajectory is therefore

p._ B :
_— = — ., =0, 10
o 2B P (10)
or, in spherical polars
p_(-w)B  ip_ (1-4)B (11)
p 2 B uwo 2 B’

and the equation governing a homogeneous distribution of such particles is just
the Liouville equation:

v Ep =0 (12)

at Bp
Clearly, if B increases, the energy of each particle in the system increases too.
This is the first example of acceleration without the explicit mention of an electric
field. (It is present, of course, and arises from the time variation of B through
the Maxwell equation VAE = —B/c). As an acceleration mechanism, however,
this process is not so effective, since sooner or later (especially in an MHD wave)
B can be expected to return to its initial value. The process described so far
is reversible, so that no net energy gain would then result. But what happens
if we allow for a small level of fluctuations to produce pitch-angle scattering as
described above? The transport equation becomes (in spherical coordinates)

af af  8f\ _ of
E—F_(_ )<3p Bu)_a

; (13)
scatt
where the right-hand side describes the change of the distribution due to scat-
tering.

In the limit that the pitch-angle scattering is very strong, the distribution is
completely isotropic. The term 8f/8u then vanishes, and we can integrate over
pitch angles to remove the right-hand side (since 8[f dgf]/8%|scatt = 0), leaving
a reversible equation for the isotropic distribution: the system behaves just like
an ideal gas under adiabatic compression.

Taking the picture of an ideal gas further, let us assume the particles under
consideration are relativistic — synchrotron emitting electrons, perhaps. Then
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we can write down expressions for the pressure. Actually, since the problem at
hand is anisotropic, we must distinguish between the z direction on the one hand,
and the # and y directions on the other (These two are equivalent because of
gyrotropy). The zz and z2 components of the stress tensor (i.e., the components
of the anisotropic pressure) are defined as

/ d*ppu’ f

dpdup®u’f(p, 1)

Ppy = /dapp(l — p?)cos’ o f

% [2r/dpd#1’3(1 — 1) f(p, 1) (14)

and the energy density is just E = 2P,, + P,,. For an isotropic distribution,
we have P,, = P,, = E/3. We can now substantiate our claim about adiabatic
compression by multiplying (13) by p and integrating over d3p whilst assuming
isotropy (8f/8u = 0). We easily derive the relation

P,.B~%/3 = constant , (15)

which reflects the fact that the particles are relativistic (the ratio of specific
heats is 4/3) and that their number density is proportional to B (since they are
tied to the field lines).

To find the dependence of pressure on B in the absence of pitch-angle scat-
tering, on the other hand, we must revert to Liouville’s theorem. Suppose we
start off with an isotropic distribution f(p) and field strength B,. Sometime
later, the field strength is B, and we define the parameter b, proportional to the
specific volume, as b = B, /B. A particle which started at b = 1 with momentum
components p, , p, follows the trajectory given by (10) and has new components
pi' = pi/bY/? and p, = p,. The distribution f'(p.’,p.) is anisotropic. The
pressure (#z-component) is therefore

1 pL%f'(p,P))
zz — o dp,'dp, ==
P, 2[ / p1 dp,

VpL'? + p?

But using Liouville’s theorem we can write f'(p.’,p}) = f(p), because the dis-

(16)

tribution function is constant along trajectories in the absence of scattering.
Transforming the remaining terms in the integrand into the variables p; and p,
and then expressing these in spherical polar coordinates, we can rewrite (16) as

PZZ

> [27r / dppaf(P)] lb_a/ * [ du %ﬂ—zb)ml

=P, (17)

3 q 1— p?
wr | o
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where P4 is the (isotropic) pressure at b= 1.

Consider now the cycle depicted in Fig. (1). The particles begin at the point
A with an isotropic distribution, brought about by a small amount of pitch-
angle scattering present in the system. They then suffer a compression which,
although sufficiently slow to ensure the adiabatic invariant (8) is conserved, is,
nevertheless, too fast to enable pitch-angle scattering to be effective. To a good
approximation, the distribution evolves along the line A-B without suffering any
scattering, and the pressure P,, grows as b decreases according to (17). Having
reached its maximum, the magnetic field is assumed to stay there long enough
for pitch-angle scattering to return the plasma to isotropy, moving along the
line B-C. The energy density remains constant during this phase, since b does
not change, and pitch-angle scattering conserves the particle energy. To com-
plete the cycle, the plasma then slowly decompresses and returns the magnetic
field to its initial value at D. During this final phase, pitch-angle scattering is
sufficiently rapid to keep the distribution isotropic, so that the final pressure is
Pp = Pob*/3. A simple calculation leads to the relation connecting the initial
and final pressures:

P_D _ 1 arcsin (/1 — b) v
Py 2b1/6 J1—=b

>1 . (18)

This process is therefore a bona-fide acceleration mechanism. It is especially
noteworthy that acceleration results independent of the amplitude of the change
of field between A and B. Thus, if pitch-angle scattering were not negligible
during a compression, we could divide up the process into a sequence of very
small compressions, each of which would result in an energy increase which was
slightly greater than that achieved by adiabatic compression alone.

If we now perform the same cycle in the reverse direction i.e., scatter-free ex-
pansion, followed by isotropisation and slow compression, we find after complete
cycle:

P_D _ 1 arcsinh(y/b — 1) A
Py 2b1/6 vb—1
>1 . (19)

Thus, repeating the arguments presented above, scattering produces an irre-
versible energy gain compared to adiabatic change not just on compression, but
also on expansion. We therefore expect a long wavelength oscillation to pro-
duce a net increase in the energy density of nonthermal particles each period.
This is the mechanism of ‘magnetic pumping’, first presented consistently by
Schliiter (1957) for distributions which remain close to isotropy. Physically, one
expects this to be the case, at least for very low frequency waves, since any
anisotropy in the particles will generate waves which in turn are responsible for
pitch-angle scattering. Using this approach, one can derive a momentum diffu-
sion coefficient and reformulate the problem to obey (7) (see Melrose 1980 and
Sect. 5.4 of the lectures in this volume).
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Fig. 1. The pressure vs b = B4 /B diagram for magnetic pumping. (Note the abscissa is
proportional to the inverse of the particle density.) Starting at A, the gas of energetic
particles undergoes scatter-free compression to B whilst the particles conserve their
magnetic moments. At B, scattering takes effect and the zz component of the pressure
decreases as the gas isotropises at constant energy and particle density, moving to C.
There follows a slow adiabatic expansion phase from C to D during which pitch-angle
scattering keeps the distribution isotropic. After one cycle, the isotropic distribution
of particles at D has a higher pressure than the isotropic distribution at A.

Of course, we have treated a very simple spatially homogeneous system,
ignoring the spatial gradients which are inherent in waves. We have also chosen
not to discuss the spectrum of accelerated particles, or the maximum energy to
which they can be accelerated. In later lectures we will look at similar problems
in connection with acceleration at shocks, where it turns out that such questions
often have surprisingly clear-cut answers.

2 Shock-Drift Acceleration I

2.1 Shock Fronts as Discontinuities

Shock fronts in astrophysical plasmas can usually be assumed to be collisionless.
The mean free path for Coulomb interaction is generally larger than the macro-
scopic scales of interest, even for those particles which make up the bulk of the
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thermal plasma. Nevertheless, sudden transitions or shock fronts are observed
in situ around the Earth’s magnetosphere, in interplanetary space, and around
other solar system bodies. The structure and properties of these ‘collisionless
shocks’ is an active field of research, which is intimately connected with some
questions relevant to theories of particle acceleration. On the other hand, many
aspects of particle acceleration are only indirectly concerned with the detailed
structure of collisionless shocks. An energetic particle, whose gyroradius is large
compared to the shock thickness, cannot interact resonantly with the fluctua-
tions responsible for thermalising particles in the shock front. Even the steady
potential differences set up in some shocks (see, for example, Leroy and Man-
geney 1984) are of the order of the kinetic energy of a thermal particle, and so
unimportant for energetic particles. To a good approximation, such particles no-
tice merely a discontinuous change in the velocity and density of the background
flow and in the electromagnetic fields on encountering a shock. On each side of
the shock front the particle distribution function is then determined by one of
the transport equations discussed in the previous Chapter (4) or (5).

Of course, there is a major shortcoming with this approach: there can be no
attempt to describe the mechanism by which thermal particles are injected into
the acceleration process. If we choose to neglect the complicated interactions
inside collisionless shocks, we cannot hope to describe particles of energy less
than several times the thermal energy. Nevertheless, it is a long way from ‘sev-
eral times thermal energy’ to Lorentz factors of hundreds to millions observed
from synchrotron radiating electrons, or to energies of over 10'3eV achieved by
particles accelerated at a supernova remnant shock. Most of the energy input
into these nonthermal populations occurs within the domain accessible to our
simple picture. In other words, the injection mechanism provides the fuel, the
acceleration mechanism burns it.

2.2 The Kinematics of Shock Fronts

Before discussing the effect they have on energetic particles, we must first look
carefully at the properties of shock fronts in hydrodynamics and magnetohydro-
dynamics, assuming they can be considered as infinitely thin transition layers
between regions in which the usual fluid equations are valid. In Fig. 2 a plane
shock front is depicted. The first question which arises is the reference frame in
which the shock is to be considered. In the case of a supernova explosion, for ex-
ample, we usually prefer to think of the shock front as moving rapidly outwards
from the site of the explosion. The interstellar medium into which it propagates
can be taken to be at rest. For obvious reasons, we will call this frame of ref-
erence the ‘upstream rest frame’. Geometrically, the shock front is a surface, so
that its velocity usp is necessarily directed along the normal n. As we know from
MHD, the electric field must vanish in the upstream rest frame, simply because
the plasma is a very good electrical conductor. The magnetic field, however, is
not constrained. In Fig. 2 a uniform magnetic field B is shown, making an an-
gle &, with the normal: B - i = B cos®,;,. In this reference frame, the region
downstream of the shock front has a complicated appearance, with both electric
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and magnetic fields. This is not the only disadvantage of the reference frame
from a theoretical point of view. More serious is that the shock front is not at
rest. The acceleration processes to be considered take place at the shock front,
so that it is convenient to transform to a reference frame in which it is at rest.
The only problem is to decide which one; the ‘shock rest frame’ is not unique,
because any Lorentz boost along the shock surface leaves it at rest in the new
reference frame.

Upstream rest frame

Z uSh
-
CDup
™ Shock front
B
-

X

Fig. 2. The shock front as seen in the upstream rest frame

Fortunately, there exists a special frame for each shock in which it is not
only at rest, but also has a particularly simple appearance. To see this, we must
first review how electromagnetic fields transform under Lorentz boosts. We need
keep only three properties in mind:

1. The quantity E - B is a Lorentz scalar

2. So too is |E|?2 — |B|?

3. In any Lorentz boost the components of E and B parallel to the boost
direction remain unchanged.

Return now to the upstream rest frame. Any boost along the magnetic field leaves
it unchanged, according to 3. Therefore, according to 2, the electric field remains
zero. Clearly, then, a boost along the field with speed such that the shock appears
stationary is rather special. In geometrical terms, this is achieved by boosting
with the velocity (speed and direction) of the point of intersection between the
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shock front and a magnetic field line. Of course, this is not always possible,
since the point of intersection moves at superluminal speed if ush/ cos $yp > 1.
Shocks which do permit the transformation are called ‘subluminal’ and those
which do not are called ‘superluminal’. In the case of subluminal shocks, it was
first noticed by de Hoffmann and Teller (1950) that this transformation leads to
a very special reference frame. To see this, we need to add to the properties of
electromagnetic fields under Lorentz boosts the simple properties they have at
shock fronts. From the Maxwell equations V-B = 0 and VA E = —B/c we
know that in the steady state:

4. the normal component of B immediately upstream of a shock is the same as
it is immediately downstream and
5. the tangential components of E are also unchanged across a shock front.

In the upstream region, plasma flows along the magnetic field lines and the elec-
tric field vanishes. The components of E tangential to shock must, according to
5, vanish also on the downstream side of the shock. There remains the possibility
of a downstream electric field component along the shock normal. But plasma
must cross the shock front, so the component of B normal to the shock does
not vanish, and, therefore, the existence of a downstream electric field would
imply E - B # 0. This is impossible in a plasma of infinite conductivity, since
then 1 would imply a non-vanishing electric field even in the rest frame of the
downstream plasma. We conclude that in this special reference frame (called the
de Hoffmann/Teller frame, see Fig. 3) the shock front is stationary, the electric
field vanishes both upstream and downstream, and the plasma flows everywhere
along the magnetic field lines. The de Hoffmann/Teller frame is unique (ignoring
rotations).

In the superluminal case, it is not possible to transform away the electric field
simultaneously in both the upstream and downstream regions. Nevertheless, a
special reference frame can be reached by a Lorentz transformation along the
magnetic field, starting in the upstream rest frame. Denoting the speed of the
boost by v:, the velocity addition formula gives the speed vin; of the intersection
point in the new frame of reference as:

vy — Ush/ cos Pyp

(20)

int = 7 Vtsh / oS Pyp
(expressing all speeds in units of the speed of light). Thus, as us, — cos $yp /vt
(< 1) the speed of intersection vint — 0o and the field lines turn to be in the
plane of the shock front. The upstream electric field is, of course, still zero, but,
unfortunately, the shock front is not stationary, since we did not transform with
the speed of the point of intersection. In this frame, the upstream plasma flows
along the field lines, which themselves drift in towards the shock front, remaining
parallel to it, suggesting the name ‘upstream drift frame’ (Begelman and Kirk
1990). The upstream drift frame is unique.

In order to bring the shock to rest, we can, for example, perform another
Lorentz boost, this time along the shock normal (i.e., perpendicular to the field
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De Hoffmann/Teller frame

™ Shock front

X

Fig. 3. A subluminal shock front as seen in the de Hoffmann/Teller frame of reference

lines). According to 3, the magnetic field remains in the plane of the shock, but
an electric field is generated, and the plasma no longer flows along the field lines.
This situation is depicted in Fig. 4. According to 4, the downstream magnetic
field is also perpendicular to the shock normal, so that an appropriate name for
this frame is the ‘perpendicular shock frame’. The perpendicular shock frame is
not uniquely defined by requiring the magnetic field to lie in the plane of the
shock. However, it is unique if one also requires that the three vectors: shock
normal n, magnetic field B and plasma velocity v be coplanar, implying that the
electric field is also perpendicular to the shock normal (and, of course, to both
v and B). It is then easy to see that the situation downstream is essentially the
same — a boost along the shock normal leads to the ‘downstream drift frame’ in
which E = 0, and the plasma flows along the magnetic field.

To summarise, subluminal shocks possess a frame (de Hoffmann/Teller) in
which E = 0, everywhere, whereas superluminal shocks have a frame (perpen-
dicular shock) in which both B and E lie normal to each other in the shock
plane. In each case the shock is stationary.

2.3 Particle Trajectories

Superluminal Shocks In circumstances in which plasma flows at highly rela-
tivistic speeds, such as in the MHD wind of the Crab Nebula (Kennel & Coro-
niti 1984), superluminal shock fronts are the rule rather than the exception. A
shock front which is stationary in a relativistic flow must, unless it falls almost
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Perpendicular shock frame
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Fig. 4. A superluminal shock front as seen in the perpendicular shock frame

along a streamline of the fluid, have a speed ug, in the upstream rest frame
which is relativistic Iy = 1/(1 — 4% )/2 >> 1. The speed of the point of inter-
section of a field line and the shock moves with %,/ cos $,p which exceeds that
of light unless B is almost along the shock normal, or &,, <1/In. Except for
those with very accurately aligned magnetic fields, all shock fronts will be super-
luminal. Of course, superluminal shocks occur also in plasmas of more modest
speed, provided the magnetic field is suitably aligned and the shock surface is
free of irregularities. However, in reality, only an exceedingly small part of a
shock front in, say, the solar wind, could at any given instant be superluminal,
since alignment to within about a tenth of a degree is required of both field and
shock front. Nevertheless, several early theoretical investigations looked at non-
relativistic, exactly perpendicular shocks, which are simply superluminal shocks
seen in the perpendicular shock frame (e.g., Schatzman 1963).

At such a shock front, it is particularly easy to visualise the process of shock-
drift acceleration. Consider the trajectory shown in Fig. 5, where the plasma is
assumed to flow perpendicular to the magnetic field, which is directed perpen-
dicular to the plane of the page. The electric field is therefore in the z direction,
and causes the upstream trajectory to have the typical cycloidal shape arising
from the superposition of gyration about the magnetic field and an E A B drift
across the field. The rate at which the ‘guiding centre’ of the orbit drifts because
of the electric field is u; = EAB/B?, which is, of course, equal to the speed with
which the plasma flows across the field lines in this frame. Let us assume that
this speed is small compared to the speed v of the particle, i.e., that the particle’s
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orbit moves only a fraction of a gyroradius closer to the shock on each loop. In
Fig. 5, this ratio was chosen to be 1:10. On hitting the shock front, there is no
change (within our approximations) of the magnitude or direction of the parti-
cle’s momentum. But, if the shock is compressive, the higher magnetic strength
in the downstream region causes a tightening of the loop performed by the par-
ticle. As shown in the figure, a positively charged particle is steadily pushed in
the direction of the electric field as its orbit slowly crosses over the shock front,
whereas a negative particle would be pushed against the field. Thus, in each case,
the electric field performs work on the particle, leading to a net gain in energy.
The motion of the guiding centre is very similar to the guiding centre motion in
an inhomogeneous magnetic field, which gives rise to a ‘gradient drift’. Because
of this, the acceleration process is termed shock-drift acceleration. According to
the classification used in Chapter 1, shock-drift acceleration is non-stochastic; it
depends solely on the particle motion in a specified electromagnetic field.

40 -

30 -

20 -

Fig. 5. The trajectory of a particle crossing a nonrelativistic shock front. The magnetic
field is in the y direction and the electric field in 2z direction. Plasma flows across the
shock front in the positive z direction. (Note that different scales are used for the z
and y directions.) The trajectory shown is that of a relativistic particle, at a shock
front of compression ratio 3, with upstream speed u; = ¢/10.

It is obvious from the orbit shown in Fig. 5 that even when cutting the
shock front, there is only a slight change in the shape of the orbit from one
loop to the next, leading one to suspect the presence of an adiabatic invariant.
However, the theory of adiabatic invariance and particle drifts as developed by
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Kruskal (1962) breaks down in the face of a discontinuous change in magnetic
field strength and the adiabatic invariance of the magnetic moment is then no
longer guaranteed. Thus, it was somewhat puzzling that calculations by Parker
(1958) and Schatzman (1963) showed explicitly that the value of the quantity
p12/B is the same on the upstream part of a trajectory as on the downstream
part, to lowest order in the small parameter u; /v (see also Toptyghin 1980). The
resolution of the puzzle was found by Whipple et al (1986), who formulated an
adiabatic invariant which is conserved during interaction with the shock front
provided u; /v < 1, and which is approximately equal to the magnetic moment
on those parts of the trajectory which are well away from the discontinuity.
Thus, in spite of the sudden jump in magnetic field, it turns out that, to a good
approximation, the magnetic moment is conserved, at least when the particle
speed is much faster than the flow speed. This assumption is the key to an
analytic treatment of shock-drift acceleration (Webb et al 1983). An immediate
consequence for superluminal shocks is that the maximum energy a particle
can gain is rather small. In Fig. 5 there are no forces acting on the particle in
the y direction, so that p, is unaffected. Denoting the upstream (downstream)
quantities by the suffix 1 (2) we have

pii _ PL3 (21)
B, B, '’
leading to a maximum energy gain for relativistic particles of

7 —p-1/2

Y2 ’ (22)

where, to conform with the notation of Chapter 1, we have defined b = B;/Bs.
If the background plasma can be treated as an ideal gas whose ratio of specific
heats is 5/3, and if the magnetic field is too weak to exert a significant pressure,
the maximum compression gives b = 1/4, leading to a mere doubling of the en-
ergy of a relativistic particle (increasing to a factor 4 for the kinetic energy of
a nonrelativistic particle). These results apply in the limit of low flow speeds,
but it is possible to push the adiabatic assumption further, provided some care
is taken in defining the magnetic moment. The problem is that in the perpen-
dicular shock frame, the quantity p, oscillates about its mean value, so that the
conserved magnetic moment is imprecisely defined by (21). The solution is to
define the magnetic moment in the upstream (or downstream) drift frame, where
the electric field vanishes. To first order in u;,2/v the definitions are equivalent.

Subluminal Shocks The situation for subluminal shocks is somewhat differ-
ent. In fact, because of the existence of the de Hoffmann/Teller (dHT) reference
frame, in which the energy of each particle is conserved, it is not readily appar-
ent that there is any particle acceleration mechanism at all! Nevertheless, the
particle trajectories are similar in that when the orbits intersect the discontinu-
ity, the guiding centre drifts along the shock front. The important difference is
that a particle incident from upstream can either emerge into the downstream



Particle Acceleration 21

plasma (as in the superluminal case) or be reflected. It is easy to understand this
process as similar to reflection by the compressed magnetic field at the ends of
a magnetic bottle. (Reflection of particles incident on the shock from the down-
stream side does not occur.) Physically, the conditions required for there to be an
adiabatic invariant are that the orbit intersects the shock front many times i.e.,
that the motion of its gyrocentre across the discontinuity is slow compared to its
gyration period. In the dHT frame (Fig. 3), simple geometry gives an estimate
of this condition:

tanatan® > 1 (23)

where a is the particle’s pitch angle. Clearly, no matter what the fluid speed, this
condition is violated for particles of low pitch angle, or for shocks which have a
small angle & between the magnetic field and the shock normal. Nevertheless,
extensive numerical work has shown that the assumption of conservation of
magnetic moment is not as bad as might be expected. A comprehensive review
of this topic is given by Decker (1988). Figure 6 is taken from this paper and
shows the fractional number of particles undergoing a given energy change on
interaction. It is assumed that particles start with a random distribution of pitch
angles and phases. For the kind of quantity shown in Fig. 6, which is averaged
over angles, the adiabatic test particle theory (i.e., conservation of magnetic
moment) is remarkably good.

Encouraged by these results, consider the case of a subluminal shock front
seen in a conventional frame of reference, which we can call the ‘laboratory’
frame (Fig. 7). This frame is one of those in which the shock front is stationary,
and it is distinguished by the fact that the upstream plasma approaches the
shock front along the direction of the normal n. Such a picture pertains, for
example, when from the Earth’s rest frame one looks at that region of the bow
shock where it meets the the Solar Wind ‘head-on’. Let us calculate the energy
gain of a particle which is reflected from the shock front. The first point to note is
that the particle kinetic energy is not constant in the lab. frame, but oscillates.
If the upstream flow is nonrelativistic (such as the solar wind) the amplitude
of the oscillation is small, corresponding to the potential difference across the
particle’s gyroradius. In terms of the particle Lorentz factor v/ = 1//1 — v'?,
(we adopt here the convention that primed quantities are measured in the lab.
frame) the amplitude of the oscillation is

Ay =4"v'u'sin @ (24)

where u' is the speed of the fluid in the lab. frame, which equals the speed of the
shock in the upstream rest frame ug,. In order to transform into the dHT frame
we must move with the intersection point of a magnetic field and the shock front.
In so doing, the magnetic field lines are considered to be frozen in to the plasma
i.e., they move with a velocity given by the component of the fluid speed normal
to B. (This is, in fact an extension of the transformation rule discussed in section
2.2 —it is relatively straightforward to prove that the dHT frame can be reached
from any other by boosting with the velocity of the intersection point.) Thus
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Fig. 6. Calculations by Decker (1980) showing the fraction of particles incident on a
shock front which are transmitted (lower panels) or reflected (upper panels) as a func-
tion of the change of energy undergone. The compression ratio of the shock is 4, and
the incoming particle speed is /10 times the upstream fluid speed. Three different
angles between the shock normal and the magnetic field are used. The numerically
calculated result is shown (solid line) together with the analytic result found assuming
conservation of the magnetic moment (dotted line). Note that some particles — espe-
cially transmitted ones — lose energy. Reflected ones tend to gain, particularly at high
obliquity. In general there is little deviation of the analytic approximation from the
numerical result.

the required transformation is one with speed 3’ = —u'tan &' in the z direction.
Once in the dHT frame (Fig. 3), we see that the reverse transformation is one
of speed B = —3' = usin® in the 2z direction. The Lorentz factor of a particle
in the lab. frame is related to that in the dHT frame by

v =TI(y—Byv.) , (25)

where I' = 1/4/1 — (32. After reflection, the component of the particle’s velocity
along the field is reversed in the dHT frame, whilst the perpendicular components
remain constant. In terms of v,, this is rather difficult to express. However, since
the phase change of the perpendicular velocity components is irrelevant for our
considerations, we can choose it to be w, which means a reflection reverses every
component of the particle’s velocity (including v,). It is then easy to write the
Lorentz factor in the lab. frame after reflection:

v = T'(y + Byv,) . (26)
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(Quantities after reflection are denoted by a bar: 4/ etc.) The ratio of kinetic
energy after reflection to kinetic energy before reflection is therefore (in the lab.
frame)

Y _ 140

v 1 — B, ’
We have already noted that the kinetic energy in the lab. frame is not constant
along the trajectory, but oscillates. Equation (27) also makes this clear: v, os-

cillates in the dHT frame, so that the ratio 4//y' must oscillate too. If we wish
to compute an average value of this ratio, we can do it by performing the aver-

(27)

age over the phase of v,. A particle which has speed v along the field and v,
perpendicular to it in the dHT frame has a z component of velocity given by:

v, = v sind — v cosPcos¢ , (28)

where ¢ is the phase associated with gyration about the magnetic field. The
cosine of the pitch angle g is then

_ vL
= 'usin¢+ » cotPcosg . (29)

Averaging over phase, we can write

leading to

<,)7:>_1—|—,3y;usin§lS (31)

? " 1—Buvsing
For Bsin $ — 1, this quantity is potentially very large. However, we have so far
not considered the conditions under which reflection (as opposed to transmission)
will occur. This is easily accomplished. Because the magnitude of the momentum
is conserved in the dHT frame, (21) can be written:

1—pf _ 1-p3
B, B,

(32)

There exists no real solution for sy (i.e., reflection occurs) for
lu] <vV1-b. (33)

Furthermore, in order to have the particle approach the shock initially, we require
p1 > 0. Thus the energy gain is limited to

<£> < 1+ v8sin®v/1—b
1—v8sindv/1—-b

,yl

(34)
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For relativistic particles (v = 1) the average energy gain reaches a maximum for
an orientation of the shock front such that Gsin® — 1:

= 9

.yl
The maximum field compression is equal to the compression ratio of the shock
front, which, for an ideal gas of specific ratio 5/3 is 4. This gives the result
<')7’/'y’>max = 13.93, which can be compared with the result of 7 obtained using
a nonrelativistic approximation scheme (Toptyghin 1980).! Nevertheless, shock-
drift acceleration by reflection results in only a modest increase in the particle
energy. In fact, the situation is even worse for transmitted particles — whose
maximum energy is only half that of reflected ones.

Shock-drift acceleration — meaning essentially reflection at a subluminal shock
front — is more frequently applied to electrons than ions. The reasons are twofold.
Firstly, thermal ions upstream of a shock front generally have their pitch angle
inside the loss-cone (|| > 4/1 — b) for orientations of the field sufficient to give
appreciable acceleration, whereas the faster moving electrons can in principle be
picked up directly from the thermal population. Secondly, the gyroradius of an
electron may in fact be much smaller than the shock thickness, in which case
its motion in the increasing magnetic field is adiabatic to a very good approxi-
mation. Thermal ions, on the other hand, have a gyroradius of the same order
as the shock thickness, and may resonate with the waves present there. Only if
an ion has a much larger gyro radius is it plausible that its kinematics can be
approximated using the adiabatic invariance of the magnetic moment.

The most important applications of the mechanism are to produce

1. the energetic electron beams observed upstream of the bow shock, where it
is called ‘fast Fermi acceleration’ (Wu 1984) and

! For the above argument one needs to prove @sin & — 1 is possible for at least some
u', and show b — 1/p. (with p. the compression ratio) for an overlapping range of
u'. From Kirk and Heavens (1989)

B =u'tan$,p/\/1 — u” (36)

=u'tand’' . (37)
Therefore,
Bsin® = B/4/1+ (1 —B?)/ tan? &', (38)
which clearly goes to unity for 8 — 1. The expression for b from KH is
2 —1/2
2 (Pc - 1) 2 1]
b= ot~ ) () °
2_q 1 —1/2
= [p% - (o :z) 2\32 /2 u” ) (40)
(1—u?)\1+4(1—u?)p%/u

and the term in parentheses goes to zero for all v’ as 8 — 1.
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Fig. 7. The shock front as seen in the laboratory frame of reference

2. the energetic electrons responsible for type II solar radio bursts (Holman &
Pesses 1983, Melrose & Dulk 1987, Benz & Thejappa 1988).

Because of the strict limitation of the maximum energy, variations have been
invented which rely on trapping the particle in the vicinity of the shock front
(in the case of ‘v A B’ acceleration), or on the enhanced magnetic field inside
the shock front due to magnetic overshoot (see Decker 1988 for a review). More
recently, the importance of geometrical effects which might provide multiple
encounters with the same shock front have been stressed (Decker 1990, Kirk &
Wassmann 1992).

3 Shock-Drift Acceleration IT

Shock-drift acceleration in its simplest form is capable of increasing the energy
of a particle by only a factor of the order of 10. This makes it quite inadequate
as a mechanism for accelerating, for example, cosmic rays. It is also unable to
explain the origin of the relativistic electrons which we observe in many parts of
the cosmos via their synchrotron radiation. Nevertheless, there are circumstances
in which we may be reasonably sure that shock-drift acceleration is at work. In
astrophysical settings, however, we can detect only very energetic particles, and
the only chance of identifying the shock-drift mechanism in action is if we have
a means of comparing rather sensitively the energy of these particles before
and after the acceleration event. For this purpose, the properties of synchrotron
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radiation are important. In this lecture, we first look at the effects of adiabatic
expansion and compression on synchrotron emission. This discussion provides
an introduction to the particle transport equation which will be used later on in
the course. It also sets the scene for the discussion of enhanced radio emission to
be expected downstream of both nonrelativistic and relativistic shocks, at which
the shock-drift mechanism is at work.

3.1 Adiabatic Expansion: the Synchrotron Bubble

Consider a volume containing thermal plasma, a (for simplicity homogeneous)
magnetic field and a population of relativistic electrons. Assume the latter are
maintained isotropic by pitch-angle scattering, and have a power-law spectrum
such that the number of particles of Lorentz factor v moving with pitch angle 8
and at phase ¢ per unit volume is

dN = Cy* *dyd(cos 6)dé . (41)

The distribution function is related to C by f(r,p) = Cy~*/(mc)®. The syn-
chrotron emissivity €(w,6), which is the energy radiated per second per unit
volume per unit solid angle in a direction making an angle § with the magnetic
field, and per unit frequency interval at frequency w, is

v/3e2 820 sin 6 2w (3-2)/2
é(w,0)=C :
4me 382 sin 6
35+ 1 35+ 1 35— 7
T p (2 p (2 : (42)
6 12 12
where I'(z) is the gamma-function, e is the electronic charge and 2o = eB/me,
with B the magnitude of the magnetic field and and m the particle (electron)
mass. Equation (42) assumes the frequency of emission is unaffected by depar-
tures from a pure power-law electron spectrum at low or high energies, and is
summed over the two polarisation states of emission (Ginzburg and Syrovatskii

1965). For our purposes, the important points to note are that the spectrum is
a power-law in frequency € & v~ with index

a=(s—3)/2 (43)

and the volume emissivity at a given frequency is proportional to B(*~1)/2 and
to C. The dependence of the synchrotron emission on the volume of the system
arises, therefore, from changes in both the magnetic field B and the distribution
function f.

Flux-freezing Consider first B. Assuming the magnetic field to be frozen into
the background plasma, we can write
6B

E—VA(uAB):O, (44)
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which can be rearranged into the form

8
(a—i—u-V)B:(B-V)u—B(V-u) (45)
(noting that V - B = 0). The left-hand side of this equation is convenient for
Lagrangian coordinates, since it is the derivative along the trajectory of a fluid

element. To be specific, define the coordinate R which labels a fluid element by
the position it had at the instant ¢ = 0:

r=R+ / “at'u(R, 1) (46)

We then have

dB _ (6B
at —

§>R:(B.V)u_3(v-u) : (47)

The equation of continuity of the plasma also takes on a simple form in these
‘comoving’ coordinates:

dp 8p

—_ = — - V = — V -1 . 48

=g T V=0 (48)
We can now specialise to two simple cases. For one-dimensional compression or
expansion with u a function only of the coordinate perpendicular to the direction
of B (and with this direction, B/|B|, constant), the first term on the right-hand
side of (47) vanishes, and we can compare with (48) to find

Bxp. (49)

The second case, that of homologous expansion or contraction (u o 7#) is most
easily treated by first assuming a purely radial field. This gives a term —2Bu/r
on the right-hand side of (47), from which it follows that B o« #~2, or B 23,
However, a homologous expansion or contraction is invariant to translation of
the coordinate origin, so that the scaling B p%/3 must also apply to nonradial
field components.

One-dimensional compression is similar to that experienced at a perpendicu-
lar shock front, except that the present treatment assumes all quantities undergo
only adiabatic variations. Homologous expansion is more appropriate for sources
such as supernova remnants.

The Particle Transport Equation Now consider the effect on the relativistic
electrons. In the presence of pitch-angle scattering, their distribution is described
by (5), where the time derivative must be interpreted as a comoving derivative
along a particle trajectory.

df _ 8f
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However, because we are now considering a background plasma which is in
motion, a subtlety arises. The pitch-angle scattering term attempts to impose
isotropy on the particles in the frame of the scattering centres. If we assume scat-
tering is predominantly by Alfvén waves, then the rest frame of the scattering
centres is essentially that of the plasma. It is here that the scattering term has
the simple form written in (5). In general, though, it is more convenient to use a
lab. frame, in which the plasma (and therefore the scattering centres) are in mo-
tion. There is only one way in which we can do this and keep the simple form of
the pitch-angle diffusion operator, and that is by using a mixed system of phase-
space coordinates to describe our system. This means that we take momentum
space variables p, as measured in the local rest frame of the background plasma,
together with position variables x measured in the lab. system, in which the
plasma flows with a (not necessarily constant) velocity u. Contenting ourselves
with a Galilean rather than a Lorentz transformation, we can write the relation
between the momentum p’ in the lab. frame and p in the plasma rest frame as

p=p —mu, (51)

where m is the electron mass. Now we can transform the right-hand side of (50)
to take account of the fact that p is measured in an accelerating frame:

()= (o), (Gi) () -

where the indices indicate cartesian components and we have used the summa-
tion rule for repeated indices. The quantity (B/Bzg)p, indicates the derivative

at constant p’. Using a similar transformation for the time derivative, we find
df of Bu; 8f i of Ou; Of
at ~ 8 "ot op () 8z, " 8a. Bp;
af of Ou; Of

~ ot M2l 02" bp;
Bu; Of ou; 8f p; Of
_ ke LB LI B 53
™54 Op; m Oz} 0p; m O (53)

This expression, combined with the pitch-angle scattering equation (5) gives the
full angular dependent transport equation in the nonrelativistic limit.2 For the
moment, we will assume pitch-angle scattering to be very strong, so that the
distribution function is isotropic in the local plasma rest frame. This leads to a
major simplification, since only the first three terms on the right-hand side of
(53) survive and one arrives at the transport equation

af of _

1
= Vf— (V- -u)p= =
+u-Vf 3( “)pap

0 54
o , (54)

2 This simplified derivation of the transport equation applies only to nonrelativistic
particles. In fact, (53) is valid for relativistic particles too, provided the fluid flow is
nonrelativistic. (It is accurate to order (u/c)?).
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where we have now dropped the primes on the spatial derivatives, since they are
invariably taken in the lab. frame.

The transport equation (54) states that the derivative of the function f is
zero along ‘trajectories’ defined by ¥ = u (i.e., comoving with the fluid) and p =
—pV -u/3. From the continuity equation (48) we see that along this trajectory,
we have p = V - u, so that

pp~ /3 = constant . (55)
For the power-law distribution of electrons assumed in (41), this relation implies

C x fp’
x pl? . (56)

We are now in a position to put the factors (49) and (56) together to find
the dependence of the differential luminosity dL(w)/dwdf2 emitted by our syn-
chrotron bubble at frequency w into the direction of the unit vector 2. Assuming
homologous expansion or contraction one finds:

dL(w)  (2s-a)/3
dwd?
o pi2 (57)

whereas a one-dimensional contraction/expansion leads to a stronger depen-
dence:

dwdf?

provided the plasma is compressed normal to the magnetic field direction. Most
synchrotron sources have power-law spectra I, « w~™%, with index a between
0.5 and 1, which, since @ = (s — 3)/2 corresponds to 4 < s < 5. Equation (57)
shows us that the differential luminosity decreases quite rapidly as the radius of
the bubble increases, typically as r;* or faster.

This model (for homologously expanding sources) is known as the ‘Syn-
chrotron Bubble’ and was first investigated by Shklovskii (1960) and van der Laan
(1966). Radio astronomers have applied the bubble model to supernova remnants
to predict a relationship between the surface-brightness X' and linear diameter
D of a remnant (the ‘XD’ relation). Dividing (57) by the projected surface area
of the source and using (43) one finds

dL(w) cxp(5.a—9)/6 , (58)

Y o« D~1+a) (59)

However, direct comparison of this prediction with observation is hampered by
selection effects (e.g., Green 1991).

The discussion given here assumes the source to be optically thin at the
wavelengths of interest. Finite optical depth effects have been included more
recently by Hjellming & Johnston (1988), and the model has been discussed in
connection with transient radio sources by Han & Hjellming (1992) and Ball et
al (1994).
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3.2 Nonrelativistic, Perpendicular Shocks

As we have seen, synchrotron radiation is very sensitive to compression or ex-
pansion of the source. Although this is important for sources where the total
compression or decompression may be several orders of magnitude, the mere
passage of plasma over a shock front which has a compression ratio p. of 4 (ap-
propriate for a strong shock in a nonrelativistic ideal gas with just translational
degrees of freedom) brings with it, according to (58) an increase in the differen-
tial luminosity of a plasma blob of only a factor of p};l/ﬁ ~ 13 (for & = 0.5). If,
however, we are lucky enough to have a line of sight which lies in the shock front
and can resolve the emitting regions up and downstream, then the observed sur-
face brightness increases by an extra factor of p., because each element of plasma
covers an area of the image which is smaller downstream than upstream. The
maximum attainable is an amplification of about 51 (again assuming o = 0.5),
and this is achieved only if the magnetic field lies exactly in the plane of the
shock.

Shock-drift acceleration changes this picture somewhat. Consider a super-
luminal shock front, into which the fluid drifts at a nonrelativistic velocity. As
discussed in Chapter 2, the magnetic moment of each nonthermal particle is
conserved in the absence of scattering. Far upstream we can assume a small
amount of pitch-angle scattering is present, which enables us to take the dis-
tribution to be isotropic. (There is a conceptual subtlety here, which we shall
return to in Sect. 4.1.) Denoting upstream quantities by the suffix 1 and down-
stream by 2, we can relate the upstream and downstream momenta of a particle
using the conservation of magnetic moment (32) and the constancy of the paral-
lel (to B) momentum. If the distribution function of particles on the upstream
side is f1(p1), Liouville’s theorem tells us that its value on the downstream side
fa(p2, 2) is unchanged, provided the arguments lie on the same trajectory:

pi(l—pl) = bpi(1 — p3)
P1 = pap2/m
=p2y/b+ (1 —b)u3 , (60)
so that
Fa(p2, p2) = fi(p)

=fi (Pz\/b +(1- b)u%) . (61)

Of course, the downstream distribution is anisotropic on leaving the vicinity
of the shock front. However, we can once again appeal to a small amount (in
the sense of being unimportant during interaction with the shock) of pitch-
angle scattering to return the distribution to isotropy in the downstream plasma.
Because pitch-angle scattering is elastic, the final form of the distribution is
obtained by simply averaging over ps.

=5 [ awa s (oay/or 0 0) (©2)

-1
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Adopting the power-law distribution (41), we have

fi = Ci(p1/me)~* /(me)®

ie.,

Cs

AT AR (63)

For s = 4 (a = 0.5) the integral in (63) is expressible in terms of elementary
functions. Putting b = 1/p., we arrive at the result given by van der Laan (1962):

G _ (1 + Pe — 1) (64)
- a.I‘CSIH .
ci T pe

Combining this expression with that for the increase of the magnetic field we
find for the amplification factor 7 of the surface brightness of a superluminal
shock observed edge-on (equivalent to the increase in volume emissivity)

%pg,-n/z
1
~ 55 (65)

1]:

only slightly greater than that of 51, obtained in the case of pure adiabatic
compression.?

From an observational point of view, shock-drift acceleration at nonrelativis-
tic superluminal shocks is essentially indistinguishable from simple adiabatic
compression. This conclusion holds also for subluminal shocks, provided one can
neglect the reflected particles. Either of these mechanisms is adequate to ex-
plain the enhanced synchrotron radiation seen from the shock fronts associated
with old supernova remnants, such as IC443 (Duin & van der Laan 1975) or
the Cygnus loop (Green 1984), provided the upstream population of relativistic
electrons is assumed to consist of ambient cosmic rays (van der Laan 1962).

If the magnetic field is not perpendicular to the shock normal, the value of b
rises, making the increase in volume emissivity smaller. An orientation effect also
enters, since the angle between B and the line of sight changes (Laing 1981). A

% An expression for the amplification factor 5 of surface brightness, or, more precisely,
of the synchrotron volume emissivity for general s is given by Begelman and Kirk
(1990):

s () g

where @ = (pc — 1)/p. and B; is the incomplete Beta function (Abramowitz &
Stegun 1972, page 944). A useful approximation to this formula is

- 1 L(3/2)I(s/2 +1/2)
e P EE (67)
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more fundamental effect is introduced by particles reflected by the shock front.
These are probably unimportant if they remain in the relatively weak magnetic
field upstream of the shock front. However, they can affect things significantly
if they are able to return to the shock front — a topic which forms the subject of
Chapter 4.

3.3 Relativistic, Perpendicular Shocks

If the upstream plasma drifts into the shock front in the perpendicular shock
frame at a relativistic speed, the situation changes dramatically. Because the
velocity of the energetic electrons is now not much larger than the drift velocity,
individual loops of the trajectory are stretched out in the direction of the drift
(normal to the shock in our case). As a result, a particle crosses the shock
front only a few times before drifting off downstream. The individual loops at
the shock bear little resemblance to each other, and the adiabatic invariance is
clearly lost. The energy gained by a given particle is now a sensitive function of
the phase at which it first encounters the shock front. In fact, a few particles
actually lose energy.* Some examples are shown in Fig. 8. In some ways, the
situation is analogous to that of shock-drift acceleration at subluminal shocks.
There adiabatic invariance is gradually lost as the magnetic field direction turns
towards the shock normal and some particles can pass across the shock front in
a few gyrations.

The only recourse in such a situation is to numerical tracing of the orbits,
which, however, is almost trivially simple in the absence of scattering. The basic
approach is to look at trajectories in the upstream and downstream drift frames.
There the electric field vanishes, and the particle follows a helical path. If we
start in the upstream drift frame with values v, u, and ¢ for the Lorentz factor,
cosine of the pitch angle and phase respectively, the first thing to calculate is the
point of intersection with the shock front, which is a plane advancing at uniform
speed normal to the field lines. On hitting the shock, a Lorentz transformation
of the instantaneous momentum into the downstream drift frame is made. There
the situation is similar, except that the shock front is now a plane normal to
the field lines which recedes from the particle’s helical orbit at uniform speed.
If another intersection occurs, another section of orbit in the upstream drift
frame is needed. If not, one obtains values of ¥/, & and ¢ for the transmitted
particle. Liouville’s theorem then provides a simple way of relating the upstream
distribution to the downstream distribution.

To find the increase in synchrotron volume emissivity, one assumes an isotropic
incoming distribution, and averages over the angular dependence of the outgo-
ing one. Numerically, this amounts to a two-dimensional integral (over & and @).
The integrand (i.e., the downstream distribution at a particular 7) is found by

* However, although the existence of decelerated particles at superluminal shocks is
a direct consequence of the loss of adiabatic invariance, this is not the case for
subluminal shocks. At these shocks, Webb et al (1983) show that the curvature drift
associated with the change of magnetic field direction can lead to a reduction in
particle energy in the shock frame.
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Fig. 8. Particle trajectories crossing a relativistic shock

tracing a trajectory backwards from the chosen fi, ¢ to the corresponding initial
(upstream) values. For a power-law distribution of incoming particles one can
define a compression ratio for the electron distribution:

R. = f(p)/f(p) ) (68)

where each distribution is measured in the respective plasma rest frame. (In the
nonrelativistic limit, this quantity is equivalent to (C2AV;)/(C1AV3) of (64).)
The integrand appropriate for a calculation of R, is simply (v/¥)*.

It is instructive to compare the results obtained by numerical trajectory trac-
ing with those found using the adiabatic approximation. This is done in Fig. 9
for a superluminal shock front in which the upstream plasma flows perpendicular
to the magnetic field in the perpendicular shock frame (see Begelman & Kirk
1990). The compression ratio of the shock, defined as the ratio of downstream
to upstream density measured in the shock frame, is chosen to be 4. The value
of R. obtained assuming conservation of the magnetic moment is shown as a
solid line, plotted against the spatial component of the plasma 4-velocity 1 u1
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(measured in the ‘perpendicular shock frame’). Although the compression ratio
is constant, the ratio of the proper densities downstream and upstream increases
with increasing fluid speed. For this reason, the value of p, obtained using the
adiabatic invariance of the magnetic moment also increases. The dotted line
shows the result of a numerical evaluation. At low speed, invariance of the mag-
netic moment is a good approximation, as expected. At higher speeds the ‘exact’
result starts to develop a series of oscillations of increasing amplitude. The lower
plot in Fig. 9 shows the reason. Here the average number of crossings experi-
enced by an incoming particle before transmission is plotted. This is of course,
a large number at low speeds. But at high speeds the number decreases, and it
is possible to identify each peak in the oscillations with an odd average number
of crossings. The last maximum, at around v;%; = .34 corresponds roughly to
3 crossings. The average number of crossings must obviously remain larger than
unity, so no further maximum is attained.
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Fig. 9. The amplification factor R. at a semi-relativistic perpendicular shock (compres-
sion ratio p. = 4) of a power-law electron distribution with s = 4.5, plotted against
the spatial component of the upstream four-velocity yiu1. The solid line shows the
adiabatic approximation, the dots are a numerical evaluation. The lower plot shows
the average number of shock crossings N,,.
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Although interesting, the numerical treatment of semirelativistic shocks shown
in Fig. 9 is not dramatic. Figure 10, on the other hand shows that for relativistic
shocks, the quantity R, can be substantially larger than for the case of simple
adiabatic compression. The compression ratio in this figure is 3 in the shock
frame, which is more appropriate to a relativistic flow. The ratio of the proper
densities is therefore roughly 3v; (because the downstream flow is always sub-
relativistic). According to (56) adiabatic compression yields R, ~ (3vp)*/3, so
that for v; = 10 and s = 4.5, R. ~ 160. In fact, it can be seen from Fig. 10 that
shock-drift acceleration gives about R. = 600. Clearly, relativistic shocks can be
effective particle accelerators. For synchrotron sources which contain relativistic
shocks, this result is very important, but also rather difficult to interpret directly.
The volume emissivity, as can easily be verified by adding in the compression
of the magnetic field, rises in the case considered by roughly 2 x 10%, a factor
which greatly exceeds the dynamic range of most radio maps. The difficulty
arises, however, in evaluating the effects of Doppler boosting on the observed
flux. Of course, this depends on the obliquity of the shock front, and whether or
not the deflection of the flow happens to bring it into or move it out of motion
along the line of sight. Nevertheless, it appears that this mechanism is capable
of explaining the bright compact hot spots observed in extragalactic radio jets
(Begelman & Kirk 1990).

4 The First-Order Fermi Process at Shocks I

A potential problem with the shock-drift mechanism is that motion in an elec-
tromagnetic field is time-reversible. We might expect, therefore, that shock-drift
deceleration is just as frequent as shock-drift acceleration, i.e., that the reduc-
tion of magnetic field strength in a slow-mode shock or rarefaction wave would
offset the acceleration by the magnetic compression associated with a fast-mode
shock. This problem does not arise in our approach, because we have been care-
ful to permit pitch-angle scattering to occur far upstream or downstream of the
shock front. The incoming distribution is specified to be isotropic, and it is as-
sumed that the outgoing one will also ultimately be isotropised. This, of course,
introduces irreversibility into the system. If we were to allow the downstream
distribution to reexpand slowly to the upstream density, we would recover the
magnetic pumping mechanism — at least insofar as shock-drift acceleration can
be assumed to conserve a particle’s magnetic moment.

The treatment of shock-drift acceleration in the presence of scattering far
up and downstream in Chapter 3 is, however, rather restricted, since reflected
particles are ignored. This means that every particle is assumed to drift through
the shock front once and only once. The analogy with the mechanism of magnetic
pumping is then apposite. For superluminal shocks, there are indeed no reflected
particles, but in most practical applications, (e.g., the acceleration of solar wind
particles at the Earth’s bow shock) an encounter with a superluminal section of
a shock front is very rare. Only when highly relativistic low speeds are present
do superluminal shocks become the rule rather than the exception.
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Fig. 10. The amplification factor R. at a relativistic perpendicular shock (compres-
sion ratio p. = 3) of a power-law electron distribution with s = 4.5, plotted against
the spatial component of the upstream four-velocity 4i141. The dashed line shows the
adiabatic approximation, the solid line a numerical evaluation

The question naturally arises as to what happens when the shock front is
subluminal. This case was discussed in Chapter 2 assuming pitch-angle scattering
in the far upstream and downstream regions to be unimportant. We now turn
to the implications of scattering for acceleration at such shocks.

4.1 Isotropy and Pitch-Angle Scattering

Let us look in a little more detail at the assumption that the incoming distrib-
ution function is isotropic. Figure 11 depicts a shock front which is bordered on
its upstream and downstream sides by a zone in which pitch-angle scattering is
absent. Further upstream and further downstream are zones in which scattering
may be important. Of course, we do not really expect pitch-angle scattering to
be any weaker in the vicinity of a shock front than elsewhere — quite the reverse.
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Nevertheless, the mean free path for scattering should be much longer than the
length scale over which the background plasma randomizes its kinetic energy i.e.,
much longer than the thickness of the shock front. Figure 11 is just a convenient
way of representing this ordering of length scales: the length scale of the figure
is the thickness of the scatter-free zone, which is much larger than the shock
thickness.
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Fig. 11. The scatter-free zone around a shock front

Imagine that we are able to manipulate the scattering in the upstream zone so
as to prepare any chosen particle distribution for injection across the border into
the scatter-free zone. We can, for example, ensure that the particles incident on
this boundary from upstream form part (slightly more than a hemisphere because
of the plasma motion) of an isotropic distribution. However, we are not at liberty
to specify the distribution of those particles which return to the boundary from
the scatter-free zone, since these may be influenced by interactions with the
shock front (which we do not manipulate). Consequently, we cannot specify
the entire distribution function on the boundary a priori. A similar argument
applies to the border on the downstream side. Here we are at liberty to decide
how particles should return to the scatter-free zone from further downstream,
but cannot specify how they arrive there from the direction of the shock front.
There is one exception to this rule, and it is this which enabled us to assume
a fully isotropic incoming distribution in treating superluminal shocks: if the
magnetic field is perpendicular to the normal to the shock and if the boundaries
of the scatterfree zone are located more than two gyroradii away from the shock
front, then all particle trajectories incident on boundary A from the right have
experienced only the upstream magnetic and electric fields since entering the
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scatter-free zone. None of them has had an opportunity to encounter the shock
front. However, we know that in the rest frame of the upstream plasma there
is a uniform magnetic field, so that in this frame each particle returns to the
boundary after performing a partial gyration about a field line and so has the
component of its velocity along the shock normal reversed. Thus, a distribution
which is isotropic for particles in the hemisphere of velocities pointing to the
right is returned as isotropic within the hemisphere of velocities pointing to the
left (i.e., of particles arriving from the scatter-free zone).

Clearly, this is a special case. If the magnetic field is not strictly perpendicular
then the particles returning to A may have been reflected at the shock front, or
even have travelled along the magnetic field all the way from the boundary B.
Alternatively, if the scattering is so strong that the borders 4 and B must lie
within a gyroradius of the shock, the trajectory will intersect the shock before
return. In each of these cases, the particle distribution at A and B will not be
strictly isotropic. We must then face the problem of computing the distribution
function using the fully angle-dependent transport equation, which, for pitch-
angle scattering, is given by (5).

4.2 The Diffusion Approximation

The first attempt at a solution of this problem involves assuming that the depar-
ture from isotropy is small. This leads to a description of the particle distribution
which corresponds to spatial diffusion. The transport equation we start from is
(5), in which the derivative along a trajectory is written using the mixed coor-
dinate system (53):
8f of Ou; Of
ot " "Maa]  8ai oy,
t z; z; D;

du; Of du; 8f p; Of 8 D af
— mauy Y R B 27
8t Op; Oz} 8p; m Bz, O T

-m (69)
It is important to recall that the distribution function f in this equation is
assumed to be independent of gyrophase, i.e., f is ‘gyrotropic’. Let us examine a
particularly simple case, in which the fluid speed is constant and directed along
the magnetic field. Then, in a coordinate system with z along the magnetic field,
we have
8 8 8 8
f f_o o

(et pv) = =

— = . 70
ot bz Bu "ou (70)

Now consider solutions which are stationary in the lab. frame and are almost
isotropic in the fluid frame (recalling the mixed coordinate system in use):

fx . p) = FOx,p) + FV(x, ) , (71)

where

+1
/ dufP(x, pn,p) =0 . (72)

-1



Particle Acceleration 39

Substituting into (70) gives

af®)  a51) p] 8f(M)
we ) (22 + 2 2) = 2, 2L (73)
This equation can be integrated from g = —1 to y to give
2 _ (0) u (1) b (1)
[M 1v+(u+1)u]af +v/ du',u,'i—i—u/ d#’i
2 ——— | Oz J Oz 4 Oz )
2 TV v
(1) @) ®) (4)
8f(M)

Because pitch-angle diffusion should not give rise to a flux of particles over
the boundaries g = +1, we require D,, to vanish there. In (74), the constant of
integration has been chosen so that the left-hand side of this equation vanishes at
4 = —1. However, for it to vanish at 4 = 1, terms (2) and (3) must cancel exactly
at that point. Provided u/v <« 1, this suggests the ordering FO <~ f(o)'u,/'u, in
which case terms (1), (2), (3) and (4) are of the order 1, u/v, u/v, and (u/v)?
respectively. To lowest order, only (1) is retained, in which case (74) may be
integrated once more to obtain an explicit expression for the anisotropy:

8f(© /" a LoH”

W _?
f ¢ 2 Oz

; (75)
1 Dy
where C is a constant, determined by the condition (72). The flux F(p, 2)dp of

particles in the momentum interval dp through unit area perpendicular to the
magnetic field is

+1 8§ £(0) +1 12 1 — /2
F(p,2) = 27rp2v/ dppft) = —mp’s® £—z/ duu/ du' — £
-1 -1 -1 w'p!
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where the density A (p, z)dp of particles in the momentum interval dp is defined
as

N = 4xp? fO) | (77)

A relation of the type (76), in which a flux is linearly proportional to the gradient
of a density is fundamental to diffusion processes. It is known as Fick’s Law. In
order to arrive at it, we had to assume the particle velocity to be large compared
to the fluid velocity, a condition which is certainly fulfilled for cosmic rays at
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supernova blast waves, for example, but violated if the fluid speed becomes
relativistic. From Fick’s Law we can identify the spatial diffusion coefficient:

2 ptl 1— 42)?
K= ”_/ P ol (78)
8 J_1 Dy

We can now proceed to the transport equation for the isotropic part of the
distribution f(°) by integrating (73) from p = —1 to g = +1

P,] a5 a5 B
a(h‘, 52 U =0 . (79)

This equation describes stationary transport in the diffusion approzimation for
constant fluid speed u. It expresses a balance between diffusion (the first term)
and advection (second term) which must hold for stationary distributions. ®

4.3 Test-Particle Acceleration at a Parallel Shock Front

Consider a shock front in which not only the magnetic field lies along the shock
normal (a parallel shock) but also the plasma velocity. The frame in which the
shock front is stationary is then automatically the de Hoffmann/Teller frame. We
look for a stationary solution to the distribution function of energetic particles,
which is described by (79) both upstream and downstream, provided » and &
are replaced in each region by the appropriate quantities: upstream u; , £; and
downstream wus,, k3. The general solution of the transport equation is

() = A1,2(p) + C12(p)exp (/ dz'”l,z/"‘vl,2> . (81)
0

Since 115 and k1 are positive, this solution decays exponentially upstream
(towards negative #) and increases exponentially downstream (towards positive
). This is simply because diffusion can only balance advection when it is directed
against the fluid flow. Therefore, in the absence of any natural boundaries, a
physically acceptable solution can only be found for C3 = 0.

In the special case of a parallel shock, an unscattered particle undergoes no
acceleration on encountering the front — it also cannot be reflected. Returning to
the picture in Fig. 11 of a shock surrounded by a scatter-free zone, we see that

® The generalisation of (79) to include space and time dependence of u, and time
dependent f(o), as well as the inclusion of cross-field diffusion (i.e., including a scat-
tering in phase in (5)) is straightforward, providing the assumptions f(l) < f(o) and
Hf(l)/at < af(")/at can be made. The result is the well-known cosmic ray trans-
port equation (Parker 1965, Dolginov & Toptyghin 1966, Gleeson & Axford 1967,
Skilling 1975):

af® 9 18u; 85 a( af(")):O

(80)

ot "8z, 3020 8p  0m: \" 8z,

where &;; is the diffusion tensor.
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in this special case the size of the zone is irrelevant and the particle enters the
downstream boundary B with the same pitch angle and momentum with which
it departed the upstream boundary A. However, in applying this condition to
match our solution across the shock front, we must remember that a mixed
coordinate system is in use in which p and p are measured in the rest frame of
the local plasma. Because the plasma speed changes across the shock front, p and
1 change too, despite the fact that the particle itself is unaffected. We can express
the relationship between momentum space coordinates up and downstream for
a nonrelativistic particle as follows:

DPz1 = Pza Dy, = Pyy DPz1 = P2y — m(u1 - '":2) ) (82)
leading to

Au
p2rRp |1+ ol (83)
1

where Au = u; — uy. It is easily checked that this formula applies also to rela-
tivistic particles to first order in u/v. Across the scatter-free zone (which can be
arbitrarily thin for a parallel shock) Liouville’s theorem applies, so that

fi(p1, 1) = fa(p2, p2) - (84)

In the diffusion approximation, we already know the form of the distributions
upstream and downstream from (75). In particular, the downstream distribution
is isotropic, since it must be independent of . For Au/v; < 1, we can write

fi(pr, ) = éo)(pz)

(0)
(0) Au sz
R — 85
3 (p) +m - y 41 ap ) (85)
P1

so that integrating over p;, we find

Ml(p,EZO):Mz(p,EZO) (86)
and hence

A1 +CL = A4, . (87)

Thus, the relative velocity of the downstream plasma with respect to upstream
does not affect the density, but gives rise to an apparent anisotropy in the dis-
tribution, which, for speeds slow compared to the particle velocity, is simply
proportional to p;. Of course, we cannot expect the anisotropy to match f(1)
exactly, since this quantity depends on the form of the pitch-angle diffusion co-
efficient. Nevertheless, we can find an approximate match by demanding that,
in addition to the density, the other quantity of importance in the diffusion ap-
proximation — the flux — be given exactly. At the shock front, Fick’s Law gives:

3f1(0) _n +1
833 - 2 -1
so that, according to (85) and (81)

—K1 dpyps fr
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Au 8 (0)
—uC1 & S P Z;; . (88)

P1,2=0

Downstream, the flux vanishes. Thus, whereas the density is unaffected to lowest
order by the relative motion of the two frames, the flux gains a term proportional
to the momentum derivative of the density. This is a simple consequence of the
mixed coordinate system we are using and could also be derived by a formal
integration of (80). Using the matching conditions (87) and (88), the problem
reduces to the ordinary differential equation

Ay dfz(o) (0)
—p—=+ =A 89
3'u,1p dp £ 1o (89)

the solution of which is

O =apr+s [ () 4 . (90)

o P p
where a is a constant and the power-law index is given by

311.1
s=— - (91)
Clearly, if we exclude the possibility of particles entering our system from far
upstream, then A; = 0. To obtain a nontrivial solution, we must set an inho-
mogeneous boundary condition at some value of the momentum, say f(po,2 =
0) = fo. If we choose po to be as low as possible consistent with our approxima-
tions about the transport process (diffusive and not interacting with the shock
front), then we can imagine that some unknown process (to be called ‘injection’)
succeeds in boosting a small number of thermal particles to a momentum pg. At
higher momenta, our acceleration mechanism takes over. In fact, this procedure
is equivalent to modifying the matching conditions at the shock front by adding
an extra flux of particles —Aupofo/3 to the right-hand side of the matching
condition (88).

The index s is characteristic of the shock front, and depends only on the
compression ratio p. = u1/uz. If particles are present far upstream with a power
law spectrum A; = Agp~?, then the final result at high momentum is a power
law of index given by the smaller of s and gq. Thus, if a flatter spectrum is
advected into the shock, it remains unchanged in shape, but is amplified:

(O = 2 gopa 92
2 s—q op " - (92)

There are several interesting points concerning this mechanism:

— The spectrum of accelerated particles is a power law of index s which is
determined solely by the compression ratio of the shock and is independent
of the diffusion coefficient «. This arises, of course, from our neglect of any
boundaries to the system. In general, we might expect the mean free path
of an energetic particle to increase with energy, so that a stationary solution
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would feel the boundaries at some momentum (Eichler 1984, a more detailed
treatment of this topic can be found in the review article by Blandford &
Eichler 1987).

— The increase in energy on crossing the shock front is of first order in the small
quantity Au/v (see (83)), implying that particles which have undergone an
amplification p/po must have crossed the shock front roughly pv/(Awupo)
times. In the simple picture there is no treatment of the upper limit to the
particle energy.

— Although our derivation has been based on a parallel shock, we could just
as well have started from the more general equation (80), which (for con-
stant up and downstream speeds) differs only in that the diffusion coefficient
contains a combination of diffusion along and across the magnetic field. The
matching conditions applied at the boundary of the scatter-free zones can
equally well be applied at the shock front itself, provided the scattering is
effective enough to ensure the distribution is nearly isotropic everywhere.
With this proviso, the spectrum is independent of the orientation of the
magnetic field. However, the question of the requirements this places on the
scattering process and, more generally, on the nature of cross-field diffusion
itself, is a topic which is still undergoing development (e.g., Jokipii, 1987,
Achterberg & Ball 1994)

— The assumption of isotropy cannot hold for particles just above thermal
energy, or for any particles at a relativistic shock. We shall look at the
generalisation of the mechanism to this case in the next chapter.

5 The First-Order Fermi Process at Shocks IT

In addition to the treatment based on solving the particle transport equation,
diffusive shock acceleration can also be considered in an equivalent microscopic
picture, given originally by Bell (1978). In fact, the physical concepts lying at
the root of the process emerge more clearly in this treatment. This is the subject
of the first part of the present lecture. In the remainder, two embellishments of
the theory are discussed — the application to relativistic flows and to oblique
shocks. In both cases it is necessary to abandon the assumption of isotropy
of the distribution function. Nevertheless, the microscopic picture of particles
being repeatedly scattered across the shock front still holds, it is just the tech-
nicalities involved with a computation of the escape probability and the average
amplification which become complex.

5.1 Microscopic Treatment

First of all, consider the energy gained by a particle which crosses and then
recrosses a parallel shock front. Going from upstream to downstream we have
1> p1 > —u1/v; and, from (83)

p2 = pi(1 + p1du/vi) , (93)
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to first order in Aw/v;. Scattering in the downstream medium results only in
changes in the pitch angle, so that if the same particle returns to the upstream
medium it has momentum $; given by:

71 = pa(l — padu/vy) , (94)

with —1 < ps < —uz/vy. The average momentum gain on performing the cycle
is found by assuming the particle distribution to be isotropic, in which case the
probability of a particle crossing the shock front is proportional to the relative
velocity between it and the front, i.e., |uv + u|:

1 —u3/va
J dpalpave +ur| [ dpa|pavs 4+ ue|(Pr — p1)/m1
Ap —uy /vy -1
= . (95)
1 1 —u3z/v2
S odmlpvi+ui| [ dpalpave + uel
1

_ul/'ul

To first order in Au/v;, we find

1 0
Au [dpy [ dps|pipa|(p — p2)
0

Ap . -1
/) 1 0
v [dpy [ dps|prps]
0 21

41Au
= 96
3y ( )

where to this order we can neglect the difference between v; and w;. The gain
in momentum is thus a stochastic quantity, whose average value is of first order
in Au/v. This is the reason for the name ‘first-order Fermi process’. In contrast,
randomly moving scattering centres lead to an average energy gain per inter-
action which is second order in the ratio of the speed of the scatters to that
of the particle. Nevertheless, to gain energy appreciably, a particle must per-
form many cycles of crossing and recrossing. On each cycle it wanders through
the downstream medium. However, the further away from the front it goes, the
less likely it is to return. In fact, we know from the macroscopic solution that
the downstream distribution is constant, so that even at very large distances
from the shock there are still particles being advected further away by the back-
ground fluid. This is not the case upstream, where the particle density falls off
exponentially with distance from the shock.

To calculate the fraction of particles crossing the shock which subsequently
escape without returning, we can compare the number crossing from upstream
to downstream per second, with the number crossing an imaginary border far
downstream per second. The flux of particles across the imaginary boundary is

+1

Tesc = 273 dpa(p2va + u2) f2(p2)
-1

= Nzuz ; (97)
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whereas the number crossing the shock front from upstream to downstream per
second is

+1
hcross = 27"1’%/ dl"’Zlﬂ’Z'”Z + u2|f2 (pz)

uz/va

~ zMz . (98)

Consequently, the escape probability per cycle is

P _ nesc
esc — .
nCl‘OSS

=4uy/v . (99)

We can now easily determine the steady state spectrum, since the total number of
particles crossing into the downstream region per second with momentum larger
than p+ (Ap) is equal to the total number crossing with momentum larger than
p, minus those which have escaped during a single cycle:

] )
'"'2/ dp’ hcross(pl) = (1 - Pesc) '"42/ dp’ h’cross(pl) ) (100)
p+{4Ap) P

so that, using (98),

P (5) = P [~ a5 (101)

which has the solution

N3 (p) o p~ 1~ Pesc/ ({AP)/P)
:p—l—(Sug/Au) , (102)

in agreement with (91).

5.2 Relativistic Shocks

We can see from the microscopic approach, that the faster a shock becomes,
the harder it will be for a particle wandering about in the downstream medium
to catch up with the front and return to the upstream medium. This will be
reflected in the formalism by the violation of the assumption of isotropy of the
distribution. Even if pitch-angle scattering succeeds in making the distribution
function isotropic in the local fluid frame, it will appear highly distorted to a
shock front approaching with a speed comparable to the particle speed. In fact,
one might naively expect that the first order Fermi process should become less
‘efficient’ when u ~ v. Less efficient in the case of a stationary solution means
that particles should escape more frequently, i.e., that the spectrum should be
steeper. The situation is complicated, however. It is not only the escape prob-
ability which enters into the calculation of the spectrum in (101) but also the
average amplification per cycle (Ap/p). The escape probability rises for faster
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shocks, but the amplification rises too, because of the larger relative velocity
between the upstream and downstream fluids.

There are two physical situations in which the particle velocity may not be
large compared to the shock speed, so that the anisotropy of the distribution is
important:

1. Relativistic shocks, which are thought to be present in astrophysical ob-
Jjects such as extragalactic radio jets or pulsar driven supernova remnants,
are possible sites for the acceleration of the highly relativistic electrons
(y = 10%...10°) responsible for the synchrotron radiation from these ob-
jects. Extremely relativistic shocks are, however, almost certainly superlu-
minal, so that the first order Fermi process does not work at all unless there
is very effective transport across the magnetic field.

2. Mildly suprathermal particles are observed directly at the Earth’s bow shock.
They are presumably present at all shocks which accelerate particles and
have speeds slightly larger than that of the shock front. Their acceleration
is essentially part of the injection mechanism.

In each case, there is some doubt as to whether the simple picture of pitch-
angle diffusion around a discontinuous background fluid flow can apply. One
necessary condition for this is that the energetic particles evade interaction with
the collective processes which mediate the shock front. Ultrarelativistic particles
may achieve this by virtue of their large gyroradius, which controls the range of
turbulent fluctuations with which they can interact resonantly. The same may
be true for heavy ions of speed somewhat greater than the shock speed. However,
it is difficult to determine whether there is a range of speeds for protons such
that the transport can be described by pitch-angle scattering, even though the
distribution is anisotropic. If more complicated transport is suspected, the only
recourse is to computer simulation. This is a sizable field of research, an overview
of which can be found in recent conference proceedings, such as IAU Colloquium
#142 (1994). In this lecture we will restrict ourselves to relativistic shocks and
investigate the consequences of the assumption that pitch-angle scattering is
indeed the dominant process for energetic particle transport.

To deal with relativistic shocks, we must abandon the diffusion approximation
and go back to the full transport equation complete with angular dependence.
The nonrelativistic version of this equation is (53); it is a straightforward but
lengthy calculation to repeat the derivation using Lorentz transformations where
necessary (Kirk et al 1988). In the case of a plane parallel shock, when the
distribution is a function of only the distance from the shock front, one finds
that instead of (70), the transport equation reads:

8 8 8 o]
F(1+uvu)6—{+l’(u+'uy)£ = @D’”‘é , (103)

where I' = (1 — 11,2) ~12 Ty look for a stationary solution we can now no longer
make the Ansatz of small anisotropy (71) but must consider a more general
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approach. Separating the variables y and # leads directly to a form of the general
solution in terms of an eigenfunction expansion:

e o]

f= Z 9:(p)Q; (n)exp(Aiz/T'v), , (104)

i=—o00

where the g;(p) are arbitrary functions of momentum. The eigenvalues A; and
eigenfunctions Q¥ () are solutions of the equation

7} 8

o Din g, O () = Ai(u+ w)QE (k) - (105)

The faster the shock front, the more eigenfunctions are needed in order to
represent the solution accurately, and for each eigenfunction we must use the
boundary and matching conditions to determine the associated function g;(p).
This is, of course, significantly more difficult than the analogous step in the
diffusion approximation, where we had only two unknown functions in (81).
The general method is, however, the same (Kirk & Schneider 1987a, Heavens &
Drury 1988): first of all the eigenfunctions which lead to a divergent downstream
solution (i.e., those with 4; > 0) are rejected, then a relativistic version of the
matching conditions across the shock front (82) is used to write an approximate
form of the upstream distribution (analogous to (85)). Finally, this approximate
solution is required to show physical behaviour upstream — i.e., to vanish when
projected onto those upstream eigenfunctions which diverge at # — —oo. This
step is analogous to the nonrelativistic requirement that the particle flux be given
exactly (88) and leads not to a single first-order differential equation, but to a
system of these, one for each eigenfunction. If we are interested only in a power
law distribution, such as will establish itself well above the injection energy —
provided, that is, that no other process such as losses or escape introduces a
momentum scale — the solution of the problem reduces to solving a set of linear
homogeneous algebraic equations whose coefficients are functions of the unknown
power law index s. The solution of these equations determines both the spectral
index and the angular dependence of the distribution function.

The details of the method are well documented in the papers quoted, and
would be out of place here. However, the results are of some interest. In particu-
lar, one would like to know whether or not relativistic shocks are more effective
or less effective particle accelerators than nonrelativistic shocks. Even given the
validity of the assumptions about particle transport discussed above, this ques-
tion must be made more precise before a meaningful answer can be given. To
illustrate this, Fig. 12 shows the power law index produced at four different kinds
of parallel shock front as a function of speed of the incoming fluid. Two of these
fronts are intrinsically relativistic. A relativistic gas, in which the pressure is
one third of the energy density (i.e., the plasma consists of essentially massless
particles both up and downstream) has particularly simple jump conditions at
a shock front, namely ujus = 1/3. The compression ratio thus increases as the
upstream speed u; increases, tending to 3 as u; — 1. The lowest speed at which
this shock can exist is for an upstream speed just above the speed of sound 1/\/5
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In this case the shock front is weak, in the sense that the upstream pressure is
not negligible (the other shocks in Fig. 12 are assumed strong). A relativistic gas
equation of state is appropriate in extragalactic jets if the plasma of which they
are composed consists exclusively of electron/positron pairs. The resulting power
law index is indicated by the dashed-dotted line, and is significantly steeper (i.e.,
the index s is larger) than those stemming from other types of shock. The other
intrinsically relativistic shock is depicted by the dashed line. Here it is assumed
that the plasma becomes so hot on the downstream side that electron pairs are
produced spontaneously. In the figure, the effect of creating 100 pairs per inci-
dent proton is shown. This makes the equation of state of the plasma very soft.
As a result, the compression ratio is high, and the spectrum of accelerated par-
ticles extremely hard. The remaining two curves in Fig. 12 show a shock front
in a gas with (almost) cosmic abundances i.e., Hydrogen plus 25% Helium by
mass, both fully ionised. The only difference is in the way the kinetic energy is
shared amongst the electrons and ions after thermalisation at the shock front.
(Unfortunately, the physics of collisionless, parallel shock fronts does not allow
us to answer this question a priori.) The solid line shows the effect of putting all
this energy into the electrons, which consequently become relativistic for quite
low u;. This implies a softening of the equation of state and an increase in the
compression ratio, which is mirrored by a harder spectral index. If, on the other
hand, the energy goes entirely into the ions, the dotted line results. This is the
case which departs least from the nonrelativistic result. The compression ratio
remains close to 4 until u; is well over 0.5. Although the equation of state soft-
ens, relativistic kinematics force the compression ratio to tend to the limiting
value of 3 as u; — 1 (where all shocks have a relativistic gas downstream), so
that the spectrum steepens.

According to the theory of diffusive acceleration, a nonrelativistic shock pro-
duces a power law of index (see (91))

_ 311,1

= — 106
8=~ (106)
or, in terms of the compression ratio p.:
3
s= P (107)
Pc — 1

If, to compare the effectiveness of relativistic and nonrelativistic shocks, we want
to extend one of these formulae into the relativistic regime, we have the freedom
to choose either (106) and interpret Awu as a relative velocity, or to choose (107),
keeping the definition of p. as the ratio of the fluid density in the downstream to
that in the upstream region, measured in the rest frame of the shock front. The
former choice results in a substantial over-estimate of s. The latter choice is a
reasonably good approximation for the particular form of pitch-angle diffusion
used in calculating Fig. 12, but still overestimates s as u; — 1. According to
Fig. 12, relativistic shocks produce harder spectra than would be expected from
the nonrelativistic formula. This conclusion, however, is by no means general,
but depends on the type of pitch-angle scattering used.
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Fig. 12. The power law index s of particles accelerated at relativistic shocks. The
jump conditions are calculated according to how the energy is distributed amongst
the constituents of the downstream plasma: (i) hot electrons, cold ions (solid line),
(ii) hot ions, cold electrons (dotted line), (iii) hot pairs (100 per proton), cold ions
(dashed line). In addition the spectrum from a shock in a relativistic gas is shown
(dashed-dotted line). Isotropic pitch-angle diffusion is used.

The angular distribution of accelerated particles, as seen from the rest frame
of the downstream plasma is shown in Fig. 13. This figure was computed using
an isotropic pitch-angle diffusion coefficient,

Dyy x1—pu? (108)

as too was Fig. 12. (This kind of diffusion coefficient is called ‘isotropic’ because
the resulting scattering operator is proportional to the y—dependent part of the
Laplacian V2. However, the operator is not strictly invariant to rotation, because
it does not contain any reference to scattering in phase.) An interesting property
apparent in Fig. 13 is the lack of particles travelling in the direction g =1 i.e.,
along the shock normal in the downstream direction. The reason for this is that
a particle which crosses into the upstream plasma, undergoes relatively little
deflection before it is advected back over the shock front by the relativistically
flowing fluid. This property makes it clear that the solution found depends on
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the form of the pitch-angle scattering operator. Various possibilities have been
investigated in the literature, such as pitch-angle diffusion in Kolmogorov turbu-
lence (Heavens & Drury 1988) or even diffusion with the addition of a large-angle
scattering term, in order to mimic the action of strong turbulence on particle
orbits (Kirk & Schneider 1988). The conclusion to be drawn is that not only
the angular distribution, but also the spectral index of the accelerated particles
depends on the details of the scattering. Thus, one of the robust features of
diffusive acceleration at shock fronts — that the predicted spectrum is indepen-
dent of the details of the particle transport — is lost in the relativistic case. The
probable range of spectral indices is not large, but it is big enough to vitiate a
simple comparison with the nonrelativistic formula.

Fig. 13. The angular distribution of accelerated particles at a parallel relativistic shock
front with #; = 0.9, and u2 = 0.37, as seen in the rest frame of the downstream plasma.
Isotropic pitch-angle diffusion is employed.
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5.3 Oblique Shocks

The standard treatment of diffusive shock acceleration is based on the picture of
a parallel shock front. However, although it is certainly easier to justify the treat-
ment for a parallel shock, the theory applies also to an oblique shock, provided
the transport in its vicinity can be described as diffusive. This means not only
that the particle speed must be large compared to the fluid speed, but also that
the anisotropy f(1) must be small compared to the isotropic part f(%). The first
condition is easily satisfied at a nonrelativistic shock front, and, for a parallel
shock, the anisotropy is dictated solely by the transformation of frames between
the upstream and downstream media, and so is necessarily of the order of u/v.
At an oblique shock, the shock-drift mechanism tends to make the distribution
anisotropic. In the absence of scattering, the parameter b controls the degree of
anisotropy, making the downstream distribution oblate in shape: the ratio of the
distribution at g = 0 to that at & — 1 for a power law dependence on momentum
can be found from (61) to be b*/2 a quantity much larger than unity under a
wide range of conditions. Consequently, if diffusive acceleration is to apply at an
oblique shock front, pitch-angle scattering must be sufficiently rapid to prevent
shock-drift acceleration — the particle trajectory must be appreciably disturbed
before the orbit has a chance to drift across the shock front. As noted in Chap-
ter 4, the precise requirement on the scattering is a subject of current research
interest. The question we turn to here, however, is of what happens when the
scattering is insufficient to disturb the process of shock-drift acceleration.

As we have seen, the method of Section 5.2 is appropriate for dealing with
anisotropic distribution functions. Suitably generalised, it can also be applied
to oblique shocks (Kirk & Heavens 1989). The key assumption which makes the
problem tractable is the neglect of cross-field diffusion. An additional but related
assumption is that the distribution function is gyrotropic, and the magnetic
moment conserved on crossing the shock. The treatment is based on computing
the distribution in the de Hoffmann/Teller frame, and makes use of the concept
of a scatter-free zone around the shock front, as depicted in Fig. 11. The basic
steps are essentially the same as described in Section 5.2:

1. The downstream distribution is represented as a sum of those eigenfunctions
which do not lead to divergent behaviour far downstream.

2. An approximation to the upstream distribution is then found using the
matching conditions at the shock, which are given not by a Lorentz trans-
formation, but by the conservation of the magnetic moment, combined with
Liouville’s theorem. However, only those parts of the upstream distribution
lying in the ‘loss cone’ are found by this method.

3. Those parts of the upstream distribution lying outside the loss cone (i.e.,
pitch angles for which particles are reflected) cannot be found from the
downstream distribution. Conservation of magnetic moment means this part
of the distribution is an even function of the cosine y of the pitch angle, when
measured in the de Hoffmann/Teller frame, so that it can be represented as
a sum of even Chebychev polynomials in p.
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4. Finally, the approximate upstream distribution is constrained to show phys-
ical behaviour far upstream by requiring the projection on a number of
divergent eigenfunctions to vanish. As in the case of a parallel shock, this
leads to a value of the power law index (assuming the accelerated particles to
be essentially massless, so that there is no momentum scale in the problem)
and also gives the angular dependence of the distribution function.

Figure 14 gives the results of applying this method to three shock fronts each
of compression ratio 4, but with speeds 0.1, 0.3, and 0.5 times that of light, as
seen in the upstream rest frame (Fig. 2). As the angle &, is varied from zero to
arccos(usp ), the speed of the upstream plasma in the de Hoffmann/Teller frame
varies from wugy to unity. This quantity is plotted as the abscissa in Fig. 14. The
most remakable property of this figure is that an oblique shock produces a flatter
spectrum than the corresponding parallel shock. In fact, as the magnetic field
orientation takes the shock close to being superluminal, the spectral index tends
to 3. Equation (102) shows that this corresponds either to zero escape proba-
bility, or to infinite amplification, in the language of the microscopic approach
of Bell. A careful consideration shows the latter to be the case. As the speed in
the de Hoffmann/Teller frame tends to that of light, the amplification increases
without limit.®

The angular distribution of particles is shown in Fig. 15. Both the parti-
cles immediately upstream of the shock and those immediately downstream
are shown. Although the speed of the shock in this example is rather modest
(usn = 0.1), the distribution is highly anisotropic. An interesting property of the
upstream distribution is that it shows discontinuities (within the limits of the
numerical method) at those pitch angles exactly on the loss cone (s = +0.85
in this example). This is due to the assumption of adiabatic invariance of the
magnetic moment, and would be smoothed out in a realistic treatment. However,
a more basic property is that there are very few particles which return from the
downstream fluid into the upstream region, because of the rapid speed of reces-
sion of the downstream fluid in the de Hoffmann/Teller frame. The acceleration
mechanism in this example is thus based almost exclusively on the alternation
of reflections at the shock front and scatterings in the upstream medium.

6 Cosmic Ray Acceleration in Supernova Remnants I

One of the most successful applications of the theory of diffusive acceleration at
shock fronts concerns the origin of cosmic rays of energy below about 10° GeV /nucleon.
Although supernova remnants have long been suspected as the source of these

6 Note that arbitrarily large amplification does not conflict with the maximum am-
plification for the shock-drift mechanism given in (35). In the mechanism discussed
here, amplification occurs in the de Hoffmann/Teller frame, in which the shock-drift
mechanism (reflection) does not produce an energy change. It is instead the process
of scattering in the fast moving upstream fluid which produces the large energy gain.
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Fig. 14. The power law index produced by three subluminal oblique shocks as a func-
tion of the speed u; in the de Hoffmann/Teller frame. In each case the compression
ratio is 4, the angle $,, between the magnetic field and the shock in the upstream rest
frame is varied from zero to the maximum value consistent with subluminality. The
shock speed u,y is held constant at the values 0.1 (dashed line), 0.3 (dotted line) and
0.5 (solid line).

particles, it is the diffusive acceleration mechanism which provides the most con-
vincing explanation of the way in which energy is extracted from the explosion
and channelled into cosmic rays.

6.1 The Spectrum of Cosmic Rays

The cosmic rays incident on the Earth’s upper atmosphere have a spectrum
which is remarkably close to a power-law over an energy range of over five orders
of magnitude, from about 10 to about 108 GeV per nucleon. Just as we are
protected from the full flux of cosmic rays by the atmosphere, so too is the
atmosphere protected from cosmic rays in the interstellar medium by the solar
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Fig. 15. The angular distribution of accelerated particles at a subluminal oblique shock
of compression ratio 4, speed u.n = 0.1 and angle of magnetic field to shock normal
$,p = 60°. The upper plot shows the distribution on the upstream side of the shock
as a function of p measured in the rest frame (solid line) and the de Hoffmann/Teller
frame (dotted line). The lower plot shows the distribution immediately downstream of

the shock.

wind. The outward flow of this highly ionised plasma and the magnetic field
frozen into it tends to evacuate cosmic rays from a region around the Sun (the
heliosphere); a charged particle from the interstellar medium can enter only by
diffusing against the flow. Consequently, a model of particle transport in the
heliosphere is needed to find the energy density of cosmic rays in the interstellar
medium from measurements at Earth. The spectrum of cosmic rays calculated
in this way is thought to reach a maximum at a few GeV. Particles of about this
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energy form the dominant contribution to the energy density, which is estimated
to be about 1eV em ™2 - comparable with the energy density of the interstellar
magnetic field. Cosmic rays arrive at Earth from all directions in space — they are
isotropically distributed to an accuracy of about 1 part in 10%. The index of the
spectrum between 100 and 108 GeV /nucleon is such that in the local interstellar
medium, the differential density, as defined in (77) is

N(p) x p*~* (109)
with
s = 4.71+ 0.05 (110)

(see, for example, Gaisser 1990). Above about 107 GeV (the ‘knee’) the spec-
trum steepens to about s = 5, only to flatten again at 10'°GeV (the ‘ankle’)
before disappearing in a forest of rapidly growing error bars, which extend up
to about 1012 GeV. The part of this spectrum of relevance here is that between
100 and 108 GeV. These particles probably originate in supernova explosions in
our galaxy.

The form of the spectrum given in (110) applies only to the major con-
stituents of cosmic rays, such as protons, alpha particles and the nuclei of heavier
elements such as carbon and oxygen. Other nuclei, such as Boron, are present
in cosmic rays, but are not manufactured by stars and have very low cosmic
abundances. They are thought to be ‘secondaries’ produced by the ‘primaries’
on their passage through the interstellar medium. From the composition of cos-
mic rays, one infers that the average column density (the ‘grammage’) traversed
before reaching the Earth by a primary in the GeV range is about 5 — 10 gecm™2.
Comparing this figure with the interaction length for a proton (55 gcm™2) shows
that, on average, cosmic rays escape from the galaxy, before being absorbed in
the interstellar medium (except for low energy heavy nuclei). Comparing it, on
the other hand, with the column density through the galactic disk (10~2 gcm™2)
shows that trajectories cannot be ballistic, but that the particle motion must be
diffusive in character.

Secondary cosmic rays have a significantly steeper spectrum (s = 5). Since
the energy of a secondary reflects the energy of the responsible primary, this
means that the higher the energy of a cosmic ray, the less matter it has passed
through before reaching us. In other words, higher energy cosmic rays escape
from the galaxy more quickly than lower energy ones; the escape time being
roughly fesc ox p~%-® between about 10 GeV and 1 TeV (= 10'2eV). The simplest
‘leaky-box’ model for cosmic ray confinement in the galaxy can be written as a
differential equation for the density:

N N

ot 1.

where Q(p) is the rate at which the accelerators inject cosmic rays into the
interstellar medium. In order to have a demsity A/ o« p~*7, the momentum
dependence of t.s. requires of the accelerators that they inject cosmic rays with
a somewhat flatter spectrum i.e., a putative cosmic ray accelerator must produce

s~ 4l . (112)

Q(p) , (111)
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From the energy density and the (energy dependent) grammage, one can find
the rate at which the galaxy loses energy via cosmic rays:

Lor = 5 x 10%%ergs™ . (113)

The corresponding average residence time in the galactic disk is about 6 x
108 years. To maintain the status quo, then, we need an acceleration mecha-
nism which replenishes this energy and is more or less steady on the time scale
of a few million years.

6.2 Supernova Remnants

As soon as they were recognised as exploding stars, it was suggested that super-
novae might be the sources of cosmic rays (Baade & Zwicky 1934). This opinion
has hardened into a consensus amongst astronomers and cosmic ray physicists,
at least partly because there seems to be no competing source which can satisfy
the energy requirements. Estimating the average supernova rate in our galaxy
from observations of similar galaxies, (and assuming a low value of the Hubble
constant) one arrives at 2 per century (van den Berg & Tammann 1991), rather
lower than the rate implied by historical observations of galactic supernovae.
Assuming the energy of an average supernova is 105! erg, a rate of 2 per century
corresponds to a power input into the interstellar medium of

Lsny =6 x 10* ergs™' . (114)

Comparing this with (113) shows that if supernovae are the source of cosmic
rays, the efficiency of the acceleration mechanism must be of the order of 10%.
This is very high, but perhaps not impossibly so.

In order to understand how the theory of diffusive acceleration can be ap-
plied to a supernova, we must first have a rough idea of how such an explosion
develops (see Fig. 16). The starting point is conveniently chosen avoiding the
rather uncertain details of the explosion mechanism itself. Assume, then, that a
supernova sets a few solar masses of matter into radial motion away from the site
of the progenitor at several thousand kilometers per second into the previously
undisturbed interstellar medium. The leading edge of this matter pushes out
the surrounding material and forces it into supersonic motion. A shock wave is
set up which moves outwards heating and accelerating the plasma. Meanwhile,
the ejecta cool rapidly by adiabatic expansion so that, to maintain the pressure
driving the outward shock, a ‘reverse shock’ develops, which eats its way into the
outer edge of the ejecta, heating and decelerating it. At first, the reverse shock
makes slow headway into the ejecta, which, since these are expected to have a
very steep density profile at their outer edge, act as a piston driving the forward
shock. One can understand this stage of evolution by considering momentum
balance across the region between the two shocks (Chevalier 1982). Until the
outer shock has passed over a mass which is comparable with that of the ejecta,
it continues to expand at essentially constant velocity. This phase of develop-
ment is called the ‘free-expansion’ or ‘sweep-up’ phase. During it, the energy of
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explosion remains untapped in the kinetic energy of the ejecta, so that even if
particle acceleration were to occur, there could not be a significant contribution
to the cosmic ray population.

Once the mass overtaken by the outer shock (the ‘swept-up’ mass) becomes
comparable to the mass of the ejecta, the initial outward momentum, being
shared between these two components, corresponds to a substantially lower ve-
locity. The reverse shock propagates rapidly through the greatly expanded, and
therefore somewhat under-dense interior, so that the entire region inside the
outer shock front is transformed into a hot expanding bubble. The pressure in
this bubble is still much greater than that of the surroundings, so that it ex-
pands rapidly. This stage of the evolution is the start of the ‘adiabatic’ or ‘Sedov’
phase, so-called because, on the one hand, the supernova energy is conserved and
remains inside the shock front, and, on the other, because the dynamics can be
described by a self-similar flow pattern found by Taylor (1950) and Sedov (1959).
The shock radius 75 as a function of time is given in this solution by

E tz 1/5
Ts = To ( SN ) ’ (115)

P1

where 7 is a dimensionless constant (equal to 1.17 for a gas of adiabatic index
5/3), Esn is the energy of the explosion, and p; is the density of the surroundings.
The energy in the self-similar solution is always divided between thermal energy
and kinetic energy in the same ratio, which, for a gas of adiabatic index 5/3 is
4:1. The beginning of this phase of evolution of the supernova remnant (£ = #;)
occurs very roughly when the shock has reached a radius such that the swept
up mass equals the ejected mass:

75(t1) = 2+ (Mej/Mg)'/3(n/1ecm™3)~1/3 parsec (116)

where M, is the mass of the ejecta and n is the number density of the sur-
rounding medium. A typical value for the supernova age at this point is sev-
eral hundred years. The end of the adiabatic phase occurs when the dynamical
timescale, which increases as r;/vs o ¢ becomes comparable to the time taken
for the plasma behind the shock front to cool, or, alternatively, when the internal
pressure has decreased to roughly the pressure of the surroundings (this is rel-
evant only for explosions in hot thin surroundings). In the former case, cooling
then causes a dense shell of matter to form immediately behind the shock front
(e.g., Cox & Reynolds 1987), and the remnant enters the so-called ‘snow-plough’
phase, in which the shock decelerates more rapidly (rs o t2/7). The remnant ends
its life when the expansion speed decreases to the sound speed in the ambient
medium. This occurs at a time

tsnr ~ 1.3 x 106(E'5N/1051 erg)11/35(n/1 cm_?’)_l?"'l35 years (117)
and radius
rs X 64 (ESN/1051 erg)11/35(n/1 cm_?’)_l?’/?’5 parsec (118)

(Dorfi 1993).
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Fig. 16. The three phases of evolution of a supernova remnant. In the sweep-up
phase, the shock expands at approximately constant velocity vs, the radius is typi-
cally r, $2pc. In the Sedov phase, v, o t~*/® and 10pc <. <20 pc, whereas in the
snow-plough phase »; t%/7 and 20 pc S, S60pc.
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The important points of this sequence of events for particle acceleration are
that it is during the adiabatic and snow-plough phases that the energy available
at the shock front is greatest. In these phases the energy of the explosion is mostly
contained in the internal energy of the shocked gas (80%), which performs work
on the surrounding medium at the shock front. In principle, diffusive acceleration
could channel some of this energy into cosmic rays. In the sweep-up phase, little
energy is available to the shock, and even if energetic particles were present, the
increase in radius of the remnant by a factor of 30 during the adiabatic and snow-
plough phases would cause prohibitive energy losses (i.e., the energetic particles
themselves would be forced to heat and accelerate the surroundings). At the end
of the snow-plough phase, the expansion has essentially come to a standstill,
so that adiabatic losses cease. However, it is clear that it is the competition
between adiabatic losses and acceleration at a shock front which is continuously
expanding and decelerating which finally determines the spectrum produced and
the total energy put into cosmic rays. The problem is, therefore, intrinsically one
with a strong time dependence.

6.3 Time Dependent Diffusive Acceleration

The time dependence of the diffusive acceleration process is easily understood
in the microscopic picture (see Section 5.1). At a parallel shock front, the steady
state distribution function decays exponentially upstream from the front (81),
so that the differential number of particles in the upstream region is

i

0 0 z
n(p) = / dzN; = A/g/ dz exp (—/ da' ulm’/ml)

K1) N
= (k1) N2 , (119)
U1
where the last relation defines a spatially averaged diffusion coefficient (k1).
However, according to (98) the number of particles crossing from upstream to
downstream per second is ficross = ¥A32/4. Therefore, the mean time spent by a
particle between entering and leaving the upstream medium is

4 (k1)

At =
(atyp) = 1

(120)

(see, for example, Drury 1983). Such a trajectory is depicted in Fig. 17a. The
average in (120) is taken over all possible trajectories which start at a point on
the shock front (labelled A) . Since the density far upstream goes to zero, all of
these trajectories also end on the shock front (e.g., at B). In order to find the
time taken for a full crossing/recrossing cycle, one must also find the average
time spent in the downstream region. Intuitively, a particle ought to spend longer
downstream, since the scattering centres tend to drag it away from the shock
front rather than push it back. But this argument is incorrect, because we are
interested in the average time spent in the downstream region by a particle which
returns to the shock front. Reversing the direction of time in Fig. 17a, we obtain,
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in Fig. 17b, a trajectory in a medium moving away from the shock front with
speed u;. The time taken for the particle to move from B to A is the same as the
time taken in (a) to go from A4 to B. Consequently, if we average over all such
trajectories which end at a point on the shock front (4), we arrive at the same
answer as in (120). Thus, the average downstream residence time of trajectories
which return to the shock front is just (Atgown) = 4 (k2) /uzv. For a complete
cycle we have

tc = <Atup> + <Atdown>

_4 (@ n @) _ (121)

v U1 Uy

Of course, it is also possible to return to the transport equation (80) and de-
rive this result more formally (Toptyghin 1980, Axford 1981). In fact, one can
solve for the entire time dependent distribution function (Drury 1991), although
only approximately when « depends on @ and/or p. The application to realistic
situations such as supernova remnants, however, demands a simpler approach.

Upstream trajectory Downstream trgjectory

u u

—— A - A

™ Shock front ™ Shock front

@ (b)

Fig. 17. A stochastic trajectory in the upstream region (a), and the same trajectory,
time reversed, in the downstream medium (b)

One such, which has appeared in various guises (e.g., Axford 1981, Bogdan &
Volk 1983, Moraal & Axford 1983, Lagage & Cesarsky 1983, Schlickeiser 1984,
Vélk & Biermann 1988, Ball & Kirk 1992) consists in treating the spatial varia-
tion of the distribution around the shock front in an approximate manner. The
key to the method is to replace the escape of particles from the vicinity of the
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shock front by a ‘catastrophic’ loss-term in a Fokker-Planck type equation:

on P, 0 <Ap>
O 08 (p— 1) — 2 (- . 122
source term
escape acceleration

By integrating over a small momentum range Ap, one can easily convince one-
self that the escape term simply removes particles from the system at the rate
suggested by the microscopic treatment (97). The equation is, nonetheless, a
rather drastic simplification of the real situation. It clearly represents a spatially
averaged picture, since in reality acceleration occurs only at the shock front,
and escape only far downstream. We must, therefore, interpret n as an integral
of the density A (p) over the volume of a region around the shock front which
includes essentially all particles taking part in the acceleration process. Even so,
in the real system the probability of any given particle undergoing acceleration
is correlated with the probability of its escaping (both depend on position), so
that (122) cannot be expected to give exact results.

It is a simple matter to write down the dynamic friction term in (122) from
the microscopic picture ( 96):

(4p) _ pAu (123)
te  3((m1) /ur + (K2) /ua)
D
=2 (124)
2
(e.g., Schlickeiser 1984), where we have defined
D =4(u1 —uz2)/3v . (125)

In many applications, (122) appears supplemented by a term of second order
in the momentum derivative — a momentum diffusion term — so that the accel-
eration term takes on the full form of the Fokker-Planck operator. For diffusive
acceleration at shock fronts, however, it is quickly shown that the appropriate
momentum diffusion coefficient <Ap2> /1tc is of the order of Au/v. It must, there-
fore, be excluded from (122), which already has the form of an expansion in this
small parameter.

For a time independent shock (u1,» and k1,5 constant), (122) has a simple
solution:

th p 2—3s
w0, = <2 (L) H-p)-Hp-pms)] (120
where
pmax(t) = Po€Xp (tD/tc) (127)

and H(z) is the Heaviside function [H(z) = 1, for 2 > 0, H(2) = 0, for < 0].
The boundary conditions leading to (126) are that the distribution vanishes
before the time ¢ = 0, when the (subsequently) constant injection is suddenly
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switched on. The solution is zero for p < po and also for p > Pmax(t). In between,
it is equal to that of the steady state — a power law of index s — 2.

The inaccuracy in this solution concerns the sharpness of the cut-off at pmax.
For the special case of constant x;5 and nl/u{ = ﬁ,g/u§ a time dependent
analytic solution of the transport equation in the diffusion approximation can
be found using the Laplace transform method (Toptyghin 1980, Axford 1981,

Drury 1991):
2—3s 4o
n(p,t) x (£> |:(£> Et +E”
Do Po

3 (u1 + ua)
o 4:(11,1 —11.2)

Erfc [a In (p/Po) Vtace/t £ t/tacc]

tace = 414,1/11,% (= 4:5'.2/11,%) .

) (128)

where

E:i:

Figure 18 shows this solution for a shock front of compression ratio 4 (a = 1.25)
for various times. For values of the momentum well above that of injection, the
solution is a reasonably sharp step-function, in agreement with the behaviour of
the approximate treatment (126).

In the case of a supernova, the shock front evolves with time, so that to find
the maximum possible particle energy one must integrate the equation

d’;% = pma% (129)
with the initial condition that the momentum at ¢ = 0 is that of injection, which
is presumably a few MeV/c. However, we can make a simple estimate by putting
the acceleration timescale of the most energetic particle equal to the dynamical
timescale of the remnant, which, for a self-similar solution, is just the age of the
remnant:

pmax
B e 130
EPNYEY (130)

The minimum plausible value of the diffusion coeflicient, is obtained by assuming
D,, in (78) is roughly equal to the gyrofrequency (times the factor 1 — x? in
the isotropic case). This is known as ‘Bohm diffusion’:

2v2yme

_— 131
15ZeB (131)

KBohm —
(sometimes defined with a slightly different numerical coefficient). Inserting it
into (130) gives for the maximum Lorentz factor

6ZeB(p. — 1)

_— 132
v?mepe(pe + 1) (132)

¥R (uft)
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Fig. 18. The distribution function at the shock front in diffusive shock acceleration as
a function of momentum at three times: £ = 2¢,cc (solid line), £ = 5t.cc (dotted line)
and t = 10tacc (dashed line). Note that the distribution function is identically zero
for momenta lower than that of injection: p < po. Since the abscissa is p/pmax(t), the
injection momentum moves to the left as time advances.

In the Sedov phase, the shock remains strong (p. = 4), but from (115) we see
that the combination u2¢ falls off as t~1/5, Consequently, the highest energy
achieved will not increase significantly during this phase. The sweep-up phase,
on the other hand has u; ~ constant. Assuming constant magnetic field during
this phase implies that the highest energy is reached just at the transition to the
Sedov phase. Taking 300 years for the time #;yans of transition, 3000 km s lasa
typical shock speed and 3 uG for the magnetic field, one finds for a proton:

2
2 4 u1 tirans B
~2.1x10 GeV . 133
T fmax 2.1 X (3000kms‘1) (300yr) (MG) V. (133)

The result presents a difficulty for the theory (e.g., Lagage & Cesarsky 1983),
because the cosmic ray spectrum shows no sign of a departure from the power
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law index of 4.71 until energies greater than 108 GeV/nucleon are reached. Volk
& Biermann (1988) have suggested that a systematically stronger magnetic field
might be found close to the progenitor of a supernova, which would alleviate
the problem. Alternatively, Jokipii (1987) has suggested that an oblique shock
should accelerate particles faster than suggested by (129) (see the discussion in
Chapter 9).

7 Cosmic Ray Acceleration in Supernova Remnants II

Leaving aside the problem of the maximum energy, the questions one would like
answered about the application of diffusive shock acceleration to the production
of cosmic rays in supernova remnants are (i) is the remarkable power law form
reproduced, at least for energies below 103 eV and (ii) can the mechanism sat-
isfy the stringent efficiency requirements? Important progress in answering both
of these questions would follow if we could solve the cosmic ray transport equa-
tion (80) and couple it with realistic hydrodynamics. A limited class of analytic
solutions is known for self-similar flows (Krymsky & Petukhov 1980, Prischep
& Ptuskin 1981, Drury 1983), but this class does not include cases where the
acceleration time is comparable to the dynamical evolution time of the flow.
Considerable effort has also been invested in numerical approaches to the prob-
lem, and there has been some recent progress (Berezhko et al 1993) in this field.
Using a more limited approach, one can still hope to gain an understanding of
the underlying physics. Two such methods will be described in this chapter. The
first concerns itself more with the formation of the spectrum, the second more
with the question of the energy budget.

7.1 The Onion-Shell Model

Shortly after the publication of the theory of diffusive acceleration (Axford et
al 1977, Krymsky 1977, Bell 1978, Blandford & Ostriker 1978) several groups
attempted a more or less realistic calculation of the spectrum of cosmic rays
to be expected from a supernova remnant (Blandford & Ostriker 1980, Bogdan
& Valk 1983, Moraal & Axford 1983). The physical reasoning was in each case
basically the same: cosmic rays should be accelerated at the (unmodified) shock
front of a supernova in the Sedov phase of evolution, and, after leaving the vicin-
ity of the shock, should undergo basically just adiabatic expansion. Although the
details of the treatments differ the results are comparable.

Let us formulate such a method, starting from the phenomenological equation
(122), using the dynamic friction coefficient relevant to diffusive acceleration (96,
99 and 121)

on 8 (pD Pese
FTr (fn) t n=Qip—po) - (134)

This equation refers to particles undergoing acceleration in the vicinity of the
shock front. The precise size of this region need not be specified. On physical
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grounds one would expect it to extend a few diffusion lengths (x/w) up and
downstream from the shock. The quantity n must then be regarded as the in-
tegral of A integrated over this length (times the area of the shock front). In
the microscopic picture, particles escape from the vicinity of the shock into the
downstream plasma. Here, acceleration ceases, because we assume all velocity
gradients to be unimportant over the particle mean free path. The distribution
function is then governed by (54):

of
ot

1 af
u-Vf——(V.u)p—=0. 135
Vi (Vg (135)
In order to couple the two solutions, we must express the condition that the
particles which escape from the shock enter the adiabatic region. With the help
of the expression for the rate at which particles cross an imaginary border in the

downstream region (97) we can write:

Pesc
n

c

arpius fp, x = x,(t)] = (136)
For the function f, we can just as well consider the boundary at x = x4(¢) to
be the shock front itself, since a diffusion length is by assumption very small
compared to the typical distance scale downstream.

The model is now mathematically complete. Equation (134) can be solved
once the hydrodynamic solution is prescribed, and the injection is specified.
Equation (136) then provides the necessary boundary condition for the sub-
sequent adiabatic expansion, described formally by (135). Physically, we can
imagine that the shock front continuously accelerates particles. The newly in-
Jjected ones are given a power law distribution with an index corresponding to
the instantaneous compression ratio (91); the older particles retain their index,
if it corresponds to a harder spectrum, or else they too receive the imprint of
the instantaneous value of s. As the front progresses it leaves behind it a trail
which at each point records the distribution which was present at the shock
front when that particular fluid element was overtaken. The neglect of diffu-
sion in the adiabatic region means that there is no blending of the distributions
there. In a spherically symmetric situation, the particles in each concentric shell
remain locked in it — their spectrum changing only by adiabatic expansion (or
compression) and so keeping the same power law index. In this picture, a su-
pernova remnant contains its energetic particles until the expansion has finally
finished, and the interior slowly ‘unpeels’ into the interstellar medium. Figure 19
shows an example of the results presented by Bogdan Vélk (1983) who coined
the name ‘onion shell’ for this model. The most remarkable property is that
despite the intricate calculation taking account of the different momentum scale
present at each stage of the evolution, the final result is to a good approxima-
tion a spectrum which is a single power law. Even the index is in remarkably
good agreement with the value required for an accelerator of cosmic rays. The
model used in this paper differs slightly from that described above, in that it
is assumed that the shock front leaves behind a distribution of particles in each
fluid element which is the time asymptotic result of acceleration at a shock of
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the instantaneous compression ratio, up to a momentum cut-off. There is thus
no memory built in, and so no account taken of the fact that particles which
reach high energies have accompanied the shock front through a whole range of
different conditions. This shortcoming is, however, not serious for particles far
below the maximum energy.
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Fig. 19. Results of the onion-shell model from Bogdan & V3lk (1983). The ordinate is
proportional to the logarithm of the final density of cosmic rays A(p) produced by a
single SNR.. The abscissa is the logarithm of the ratio of particle momentum p to a fixed
injection momentum po. Injection of protons at an energy of a few keV implies p; ~ few
MeV /¢, so that the maximum momentum in these models is roughly 10'3 eV /c. Three
different sets of parameters for the Sedov phase of the explosion have been chosen. The
precise values are not important for the purposes of our discussion; each produces a
spectrum of power-law type with index close to 2.1, as required for a source of cosmic

rays
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7.2 Cosmic Rays and Hydrodynamics

Perhaps the main deficiency of the method described in Section 7.1 is that it
assumes the shock front is unaffected by the particles it accelerates. In order to
produce the power required to sustain the density of cosmic rays in the galaxy,
the efficiency of acceleration in a supernova remnant must be of the order of
10%. In this case, one should expect substantial modification of the evolution
of a remnant. The effect of the energetic particles on the background plasma is
relatively simple to incorporate into the equations of hydrodynamics, because a
fluid is described completely by the values of its density, velocity and temperature
(assuming we know the equation of state). Thus, because the number density of
cosmic rays is negligibly small, we need only calculate the rate at which they
exchange momentum and energy with the fluid.

The case treated so far, in which pitch-angle scattering drives the distrib-
ution of energetic particles towards isotropy in the rest flame of the fluid, is
particularly easy. Measuring, as usual, the pitch angle in this frame we can write

the scattering term as
af 8 af
- =—\|Dy,— | . 137
<3t)scm o ( " 3#) (137)

The rate at which the background is heated by pitch-angle scattering is then

%) +1 af
—27r/ dppz/ duE (—) =0, (138)
0 -1 ot scatt

where E = /m?c* + p%c? is the particle energy. In this approximation, then,
no energy is exchanged between the particles and the fluid as seen in the fluid
rest frame. The fluid remains adiabatic, and we can continue to employ the
usual equation of state. However, if, as is usually assumed, the scattering is due
primarily to Alfvén waves, then the small but finite velocity with which these
move through the fluid leads to the possibility of an exchange of energy between
particles and waves (in fact, there is no single frame of reference in which all
Alfvén waves are stationary). This complicates the situation appreciably, since
one must in principle introduce a new equation to describe the waves, their
damping and growth, as well as their energy and momentum fluxes (McKenzie
& Volk 1982). One way out of the problem, but by no means a very satisfactory
one, is to assume the wave damping (mainly by non-linear Landau damping)
to be so effective that all the energy put into the waves by the particles is
immediately and locally transferred to the background plasma as heat. In that
case, the level of wave intensity is unimportant, and the energy transfer can be
described by an entropy source in the equation of state of the gas, together with
an appropriate damping term for the particles.

The deposition of momentum, on the other hand is rather easier to compute,
since the equation of motion of the gas just has to support the pressure gra-
dient of the cosmic rays. The fluid equations are thus modified to read, in one
dimension,
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1. The equation of continuity for the plasma:
%+ Ziw =0, (139)

where p is the density, and it is assumed that the number of particles trans-
ferred from the thermal population to the cosmic rays (via injection) is neg-
ligible.

2. The equation of conservation of momentum

8
pu’ + Pg) = ——Pcr . (140)

2 ou)+ 2
a1 P 5z

Oz (
Here the left hand side contains the divergence of the momentum flux of the
gas (Pg being the gas pressure). Neglecting the inertia of the cosmic rays
compared to that of the gas, we have on the right hand side only the con-
tribution of the pressure term from the cosmic rays. The pressure is defined
as an integral over the distribution function, giving the rate of transport of
momentum across unit area perpendicular to the z—axis:

0o +1

Pcg = 27r/0 dwz/1 dp (up)(wo) f(p, 1y 2) - (141)
In the diffusion approximation, there is a contribution to this term from
both the isotropic part of the distribution _f(o)(p, z) and the anisotropic part
f(l)(p, p,2). The latter has not been investigated thoroughly, but would
appear to be unimportant when the cosmic ray inertia is negligible (see
Webb 1989, Baring & Kirk 1991).

3. The equation of conservation of energy

9 (1 , Py 8 (1 5 e
2 (= Ll S A (e P
81 (2”" +7g—1>+6m (2”" o1

8
= — — P, .
('u, + ’DA) 92 CR (142)

Here g is the ratio of the specific heats of the gas, and v, is the velocity.
On the right hand side there appears the work done by the particle pressure
gradient against the moving gas and against the moving Alfvén waves.

There have been several numerical solutions of this set of equations, together
with the cosmic ray transport equation (80), which reads:

a5 87  18u 85 8 ( af(O)) 0
K——— =

5t %82 302 6p 0z \" 62

(143)

(assuming the velocity and distribution functions depend only on distance
from the shock front). The general appearance of a shock transition is changed
in the manner shown in Fig. 20. The pressure of the cosmic rays which diffuse
ahead of the shock front sets the upstream gas into motion, and compresses it.
It is in this ‘precursor’ that energy is exchanged between cosmic rays and the
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kinetic energy of the gas. Subsequently, the gas may pass through a weak sub-
shock, downstream of which the cosmic ray distribution and the gas velocity
are constant (at least for a planar shock). In principle, it is possible for the gas
sub-shock to disappear altogether. Analytic solutions for this kind of structure
are well-known for the closely related case of conduction dominated shock fronts
(Zeldovich & Raizer 1967), as well as photon, or cosmic ray dominated shocks
(Blandford & Payne 1981, Drury et al 1982).

A cosmic-ray-modified shock

velocity

—

X

Fig. 20. A sketch of the dependence of the density and velocity of background plasma
on position in a shock front which is modified by cosmic rays and develops a precursor
upstream of the gas sub-shock.

The most serious difficulty facing a numerical treatment is the very wide
range of spatial scales which arises in the precursor, when the diffusion coeffi-
cient is an increasing function of momentum. If, for example, we assume Bohm
diffusion, then & is proportional to yv2, and varies over a range of ten orders of
magnitude between a typical injection energy of a few keV and the maximum
energy expected in a supernova remnant. Even worse, in the early stages of the
sweep-up phase, when the particle energy is still quite low, the velocity is at its
highest, so that the length scale typical of the precursor («/u) is very small. In
contrast, towards the end of the Sedov phase, the shock slows down, and parti-
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cles of the highest energy are present. For this reason, most investigations have
used a momentum dependence of & less severe than that of Bohm diffusion (Falle
& Giddings 1987, Bell 1987, Kang & Jones 1991). Furthermore, planar geometry
has normally been employed. Only recently has the more realistic problem of a
spherical supernova remnant with Bohm diffusion been attacked, although not,
as yet with the effects of wave damping or the cooling of the background plasma
during the snow-plough phase (Berezhko et al 1993).

7.3 The Two-Fluid Model

At a more primitive level, one can hope to make progress using a cruder repre-
sentation of the spectrum of the cosmic rays in a supernova remnant. One ap-
proach, for example, is to take moments of the angular dependent transport equa-
tion (69). Those corresponding to the number density Ncg = 27 [ du [ dpp?f
and to the kinetic energy density Ecgr = 27rfdy,fdpp2(E — me?) f involve an
unweighted integration over angles which leads directly to the cosmic ray trans-
port equation (143). We can, therefore, just as well take the moments of this
equation, integrating only over p. For the kinetic energy, this leads to

BECR 8 0
31 T gg U(Ecr+ PG —u

8PS & 8Ecm

bz _833”' 8z '

(144)
where

popz(E — me?)k(8f/0z)
=2 (145)
0fdppz(E — me?)(8f/0=) .

Equation (144) has the same general form as the hydrodynamic energy equation
(142), with the exception that now the work done by the cosmic rays is subtracted
instead of added and that the energy lost to Alfvén waves has been neglected
in the transport equation. Another difference is the appearance of the quantity
ng, which is just the contribution of the isotropic part of the distribution to
the pressure, as discussed above, but the main innovation is the inclusion of a
diffusive contribution to the energy flux in the term containing &.

The hydrodynamic equations, however, do not require knowledge of Ecg, but
rather of the pressure Pocgr. A direct attempt to compute the pressure requires
weighting with the factor u?, and cannot be performed using (143) as a stepping-
stone. Returning to the angular dependent transport equation is also futile,
because other unknown moments of the distribution function enter the equation
for the pressure moment. This situation is a familiar one in many branches of
physics — it is usually called a ‘closure problem’. Exploiting the analogy with
hydrodynamics, we can define as a closure parameter the ratio of specific heats
for the cosmic rays yogr, which links Fcr to Por:

Pcr = (yer — 1)Ecr - (146)
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In hydrodynamics, we know the distribution function in a gas is close to that of
thermodynamic equilibrium, so that the ratio of specific heats can be evaluated
directly by integration. The problem we are faced with here, however, is one
of calculating the cosmic ray spectrum, so that ycr is unknown. The other
closure parameter, &, is analogous to a transport coefficient — in hydrodynamics
an additional equation would be needed to find the spatial dependence of the
distribution function (e.g., the heat conduction equation).

Several attempts have been made to find a reasonable physical basis on which
to estimate ycr and & (see Duffy et al 1994). Given that the spectrum in the
vicinity of a supernova shock front depends on the entire history of the shock
and the rate at which particles have been injected into the acceleration process
at it, it is clear that this is a difficult task. The real value of such an enter-
prise lies in the possibilities it opens up of investigating in detail the evolution
of a supernova in the presence of cosmic rays. To illustrate this point, Fig. 21,
taken from Dorfi (1993) shows the evolution of a model of a supernova remnant,
computed using the ‘two-fluid’ approach described here. Radiative cooling and
heating by Alfvén wave damping have not been included in this example, which,
however, illustrates nicely the points made in section 7.1, namely that the maxi-
mum energy is determined in the sweep-up phase, whereas the main power input
occurs in the Sedov and snow-plough phases. The energy input into cosmic rays
in this example is an impressive 60% of the total supernova energy. This quan-
tity, however, is sensitive to the rate at which particles from the thermal plasma
are injected into the cosmic ray gas at the shock front. All current models of
cosmic ray acceleration are faced with a similar difficulty, usually referred to as
the ‘injection’ problem. At present there is no self-consistent theory which would
enable one to compute such a quantity, so that one must resort to a rather ar-
bitrary parameterisation. Because the number density of cosmic rays does not
enter the two-fluid formulation, it is necessary to assume a small transfer of en-
ergy between the fluids at the shock front. In the case presented in Fig. 21, one
part in 10* of the kinetic energy flux of the gas entering the sub-shock is put
into the cosmic ray gas.

8 Jets and Active Galactic Nuclel

8.1 Introduction

That energetic particles play a fundamental part in the physics of active galaxies
has been clear for some time. Recently, this view has been emphatically confirmed
by observations of very high energy photons from several such objects. The
evidence for the presence of nonthermal particles can be grouped into three
categories:

1. In six instances, bright hot spots in the jets of double radio sources display
synchrotron radiation extending from the radio to frequencies in the near
infra-red or higher (Meisenheimer et al 1989). In addition, the relatively
nearby galaxy M87 has a jet which emits synchrotron radiation at optical
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Fig. 21. Results obtained by Dorfi (1993) showing the temporal evolution of a super-
nova remnant in the two-fluid model. Plotted is the ratio of the energy in cosmic rays to
the total energy of the explosion, the maximum momentum of an accelerated particle
(in units of mc) and the ratio of cosmic ray pressure to total pressure (i.e., cosmic ray
plus gas) at the shock front.
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and possibly higher frequencies. Of course, all radio galaxies show evidence of
nonthermal electron populations, but these jets are the most extreme exam-
ples in terms of the high energy of the emitting electrons. Standard methods
of estimating the magnetic field lead to Lorentz factors of the electrons of
up to 108.

2. Gamma-rays in the range 100 MeV to 10 GeV have been detected from about
40 AGNs by the EGRET instrument on the Compton Gamma-ray Obser-
vatory (Fichtel et al 1993). The flux level implies that gamma-rays play a
major role in the energy budget of the source. Photons of TeV energy have
been detected from one source (Mrk 421) by the Whipple telescope, using
the atmospheric Cherenkov technique (Punch et al 1992). Although such
gamma-rays can be produced by nuclei of relatively modest Lorentz fac-
tor ~ 10, most current models assume a leptonic origin (inverse Compton
scattering), in which case one again requires electrons of Lorentz factor 10°.

3. The X-ray spectra of Seyfert galaxies have a distinctive power-law form in the
energy range 2 — 10 keV (Mushotzky et al 1993). One possible explanation
involves the generation of an electromagnetic cascade by relativistic electrons
and positrons, which would require Lorentz factors in the hundreds. An
alternative picture involves Compton scattering in an electron/positron gas
with a temperature of about 50keV. Although this gas is assumed to have
an equilibrium distribution, the explanation requires some form of particle
acceleration, because the two-body collision rate is too slow to maintain a
Maxwellian spectrum in the face of cooling by Compton scattering.

Unambiguously identifying the presence of accelerated particles does not,
however, mean that we can unambiguously identify their origin. The physical
conditions in the source are generally too uncertain to permit this. In fact, of
the three examples mentioned above, only (1) has seen the application of a rea-
sonably detailed and nevertheless plausible acceleration model, simply because
of the availability of high quality, spatially resolved data. In example (2) we
have no possibility of locating the source observationally, but must rely on in-
direct arguments concerning the variability of the flux, or the optical depth to
absorption of the central region of the AGN. The X-rays referred to in example
(3) almost certainly originate from a very small region (10'* — 10!% cm) around
a super-massive black hole (in the standard scenario), but whether or not the
particle acceleration mechanism is associated with shocks is unclear.

The new aspect which arises in a discussion of acceleration in these sources
is that of loss mechanisms. Both the magnetic field and the photon field are
estimated to be considerably stronger than in the case of supernova remnants,
so that losses by synchrotron radiation and inverse Compton scattering (for the
leptons) and by pair production and photon-pion production (for the hadrons)
are correspondingly more rapid. Two applications will be discussed in this chap-
ter: hot spots in jets, and the nonthermal emission from a ‘leaky box’ model of
the central source.
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8.2 Hot Spots in Jets

A relativistic electron emitting synchrotron radiation loses energy at a rate

—dp/dt_ 2 o (Bz) , (147)

p m2c? 87

where ot is the Thomson cross section (= 6.65 x 10—25 cmz). This effect is
important for electrons which are being accelerated by the first order Fermi
process in the vicinity of a shock front if it is comparable with the rate of
acceleration given by (129). The necessary modification of the transport equation
can be found by returning to the equation expressing the conservation of flux in
phase space (2). If we assume pitch-angle scattering is sufficiently rapid to keep
the distribution almost isotropic, then we can easily include this term in the
phenomenological equation used to describe the differential density of particles
in the ‘acceleration region’ close to the shock front (134):

on 8 pD 2 Pesc
T Y I = — 148
6t+ap[(tc p)n]thcn Q6 (p— po) (148)
where
_ 40‘1' B2
B = Imic? (g) . (149)

Clearly there exists an important momentum scale in this problem: pp.x =
D/(Bt.), i-e., the point where acceleration is exactly balanced by losses. It is to
be expected that the solution will always vanish for higher momenta. Assuming
Po < Pmax, particles are accelerated away from the injection point, so that the
distribution vanishes for p < po. Just as in the problem without losses (126) the
distribution also vanishes for momenta to which there has not been enough time
to accelerate particles. In this case, however, the upper bound p; (%) is given by

1 1 n ( 1 1 ) (—tD) (150)
=—+ |- exp :
Y48 (t) Pmax Po Pmax tc

so that it tends to pmax as ¢ — oo, but never exceeds it. Once again, the distri-
bution between po and p; is independent of time, and has the shape

1 1\ (Pese=D)/D
n(p, 00) p 2 (— — )
Y4 Pmax

(151)

(Kardashev 1962). We see from this that the slope is unaffected by losses for
P < Pmax, but as the critical value is approached, the distribution either steepens
(for 8 = 3 + Pesc/D > 4) or flattens, tending to infinity at pmax (for s < 4).

If we want to explain a hot spot in a jet by this acceleration mechanism,
we must calculate the synchrotron emission from the distribution of particles.
Not only would we expect a contribution from particles in the vicinity of the
shock, but also from each of the ‘onion shells’ left behind. In the case of a jet
of constant cross section, the adiabatic losses included in (135) are absent, but
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we must instead take account of synchrotron losses. The distribution function
downstream of the shock front is then determined by the equation

af 18

§+u-v —Fg(ﬂp‘lf)zo, (152)

together with the boundary condition at the shock

Pesc

7vp’ fp, x = x4(t)] = n n . (153)

The solution of this equation is again simple. The main properties can be found
by qualitative considerations and are illustrated in Fig. 22. In interpreting an
observation, we must take account of the fact that the instrument integrates the
total synchrotron emission originating from a region of finite size. In the case of
a hot spot, we can assume this region includes the shock front and a finite length
of the downstream plasma. It is this length, or more precisely, the time taken by
a fluid element to traverse it, which defines a characteristic momentum py, to
which a particle starting off at the shock front with p = pyax will have had time
to cool. (Provided the region is not too small, this ‘break momentum’ is almost
independent of pmax.) Well below py;, the particle spectrum remains f o< p~*
throughout the whole emission region, so that the synchrotron spectrum is given
by the usual formula, for frequencies below 14, which is that typically radiated
by a particle of momentum py,;.

I, c p=(4-3)/2 for v < vy, . (154)

However, as shown in Fig. 22, the distribution above py, has a cut-off, in the
neighbourhood of which the spectrum steepens or peaks (depending on s). The
frequency of this structure moves gradually down in p-space as the fluid element
progresses further and further from the shock, arriving at py, at the edge of the
emission region. The number of radiating particles at any given p is therefore
proportional to the magnitude of the distribution at the shock, times the length
over which such particles can avoid cooling. From (150) one sees that this length
is proportional to 1/p, so that the overall effect is to steepen the ‘injected’ dis-
tribution by unity. Thus, for a frequency range above vy, the emitted spectrum
is steepened by 0.5:

I, oc = (6-2)/2 for vmax > vV > tor , (155)

where vpax is the characteristic frequency emitted by a particle of momentum
Pmax- This argument breaks down if the peak which forms close to the upper
cut-off contains an important fraction of the radiating particles, which occurs
for s < 3. Independently of s, the spectrum then tends towards that emitted by
monochromatic cooling particles, which have I, v~1/%in the Tange Vmax > V >
Vpr. The result (154) remains valid unless the low frequency emission emitted
by energetic particles overwhelms that emitted by lower energy ones i.e., unless
8 < 7/3.
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f(p)
Electron spectrum

Synchrotron spectrum
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Fig. 22. The electron spectrum and corresponding synchrotron emission from the shock
and downstream region for s = 4. The electron spectrum extends up to a cut-off whose
value depends on position: pmax at the shock, py: at the furthest point downstream
from which the detector collects radiation, and p; at some arbitrary point in between.
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This type of spectrum has been used to model the emission from hot spots in
the six cases mentioned above (Meisenheimer et al 1989). In general, the model
spectra fit well, and have enabled constraints to be placed on the jet parameters.
In particular, the frequency of the observed cut-off together with an estimate of
the magnetic field fixes the value of the diffusion coefficient

&~ 10*KBohm - (156)

Clearly, this model does not run into the difficulty which besets cosmic ray accel-
eration in SNR, namely the lower limit & > KBohm. However, we must remember
that it is electrons rather than ions which are being accelerated here. Figure 23
(from Meisenheimer et al 1989) displays the data on hot spot ‘A’ in the jet of the
radio galaxy 3C111. Two theoretical models have been plotted, one in which the
electron distribution is assumed to be a power law f & p~ 3 up to a maximum,
above which there is a sharp cut-off (f = 0 for p > pmax) (dashed line) and
one in which the distribution is an approximation based on an exact solution
of the cosmic ray transport equation, including synchrotron losses (Heavens &
Meisenheimer 1987). Clearly, the most sensitive part of the fit is close to the up-
per cut-off. Unfortunately, it is precisely here that the phenomenological model
used above fails. The reason is that the model treats the acceleration region as
homogeneous. Near to the cut-off, however, particles lose a significant amount
of energy whilst still inside the acceleration region. In fact, the higher the en-
ergy of a particle, the thinner is the sheet around the shock front in which
they can be found. Thus, in order to calculate the emission reliably, one must
return to the transport equation (79) and solve it at a shock front including
the synchrotron loss term (Webb et al 1984, Bregman 1985, Heavens & Meisen-
heimer 1987). These analytic approaches give a cut-off which is much too gradual
to fit the observations shown in Fig. 23, but there remain two possibilities of sav-
ing the model: the use of a momentum dependent diffusion coefficient (not taken
account of in the analytic treatments) and the generalisation to relativistic flows.
The first of these seems to offer good prospects of obtaining very sharp cut-offs
(Fritz 1989, 1989), the ability of the second to do so is more controversial (Kirk
& Schneider 1987b, Kriills 1992)

8.3 The Central Source

A fascinating property of the X-ray emission of Seyfert galaxies and quasars is
its rapid variability. Occasionally, these objects have been known to change their
luminosity by a factor of two within about one hour. To quantify this behaviour,
observers define the ‘compactness’, which is proportional to the ratio of the X-
ray luminosity to the fastest timescale of variability. Denoting this timescale by
At, the dimensionless compactness is

Lxor

bx = —————
X~ 4nAtmet '

(157)

where Lx is the luminosity in the X-ray band, calculated on the assumption
that the source radiates isotropically, and lies at a distance indicated by its
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Fig. 28. The synchrotron spectrum of the hot spot 3C111 East, from Meisenheimer
et al (1989). Both the flux S(v) and vS(v) (which is proportional to the luminosity
per frequency decade) are shown. Two models are drawn on each plot: the solid line
results from an approximate solution of the electron transport equation, the dashed
line from the idealised distribution shown in Fig. 22. This source does not display a
spectral break at low frequency.
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redshift. This quantity is typically in the range 10 — 100 for variable sources.
The presence in (157) of o1 indicates that £x is connected with the reaction rate
or optical depth of an electromagnetic process. The minimum value of the energy
demnsity of radiation in the source occurs if photons escape freely and is given by
Lx/(4wR%c), which translates into a photon number density when divided by
the energy (z) me? typical of an X-ray photon. If we consider now a gamma-ray
of energy sufficiently high that it can create an electron positron pair on collision
with an X-ray photon, we can use the fact that the cross section for this process
is roughly o1/4 to write for the optical depth of the source

(158)

For X-rays in the band 2 — 10keV, the average photon energy lies in the range
1/50 > (2) > 1/250, so that for variable sources 7y, > 1. This observation has
led to the generally accepted view that electron positron pairs are present and
are important factors in forming the spectra of sources of high compactness. This
is probably true, but it is as well to remember that even in sources of very high
compactness, no pairs are created unless there are pair producing gamma-rays.
Caution is not out of place, because recent observations by the SIGMA telescope
and by the OSSE instrument on the Compton Gamma-Ray Observatory have
rather unexpectedly failed to confirm the presence of electron positron pairs in
these sources (Jourdain et al 1992, Maisack et al 1993). Another point concerning
the compactness which is often overlooked is that it gives only a lower limit to
the photon column density. There may be many sources of low compactness
which have very high photon column densities, but do not vary rapidly. In fact,
the X-ray luminosity of Seyferts and quasars seems to be positively correlated
with the timescale of variability, which could even mean that low compactness
sources are those with the highest photon column densities (see Mushotzky et
al 1993).

Although basically an observed quantity, the term ‘compactness’ has been
widely adopted as a name for related parameters in theoretical models. Thus,
the rate at which electrons or photons are injected into a source model is usu-
ally given as a dimensionless compactness. In this case, the definition uses the
actual source dimension R instead of the quantity Atc in (157). Given that
most theoretical models compute stationary spectra, the observed compactness
is predicted to be zero! Another convenient quantity related to the observed
compactness (and usually called by the same name) is defined in terms of the
photon energy density Upaq in the source:

UradRo'T
b= — . 159
o2 (159)

To link this with the observed compactness one must not only relate At to R,
but also Lx to Upaq. In the same spirit, one can define a magnetic compactness:

_ BZRO'T

lp = (160)

8Tmc?
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From the synchrotron loss-rate of an electron, Eq (147) one quickly sees that
the energy loss timescale measured in units of the light crossing time R/c
is just 3/(4£p7v). If, as is frequently assumed (see, for instance Protheroe &
Kazanas 1983) , the energy density in the magnetic field in the inner regions of
an AGN is of the same order of magnitude as the energy density in photons,
then we can conclude that electrons or positrons will cool long before they are
able to leave the source. The same estimate applies also to the cooling time of a
relativistic electron by inverse Compton scattering off soft photons. In the case
of a Seyfert or quasar, the most numerous soft photons are presumably from
the spectral maximum in the UV region. Interpreting U;aq as referring to these,
one arrives at 3/(44y) as the inverse Compton cooling time in units of R/c. The
inescapable conclusion is that the variability timescale is much longer than (and
therefore unlikely to be related to) the loss timescale of the electrons/positrons.
Since in any model the acceleration rate must exceed the loss rate at least up
to the maximum energy, variability cannot be connected with the acceleration
mechanism either.

In view of the extremely rapid cooling rate for leptons, it has been sug-
gested that the basic process of production of nonthermal particles is not one
of electron acceleration, but primarily one of proton acceleration (Protheroe &
Kazanas 1983, Sikora et al 1987). Electrons then arise as the products of pair
and pion producing interactions of the energetic protons with the background
plasma, and, especially, with the photons. Of course, the physical conditions in
the central region of an AGN are not known with any degree of certainty, so that
it is perhaps wisest to adopt a crude approach to modelling particle acceleration.
In the context of first order Fermi acceleration, the obvious first step is to re-
gard the acceleration region as a box, within which particles are accelerated at a
constant rate, and out of which they can escape with a certain probability. For-
mally, this is just the same as the phenomenological model of Chapter 6 (122).
One has, however, the freedom of choice, at least in principle, between allowing
the escaping particles to cool and further contribute to the emitted radiation, or
losing them once and for all into the black hole (e.g., Mészdros & Ostriker 1983).

One can fairly generally estimate the maximum possible energy of a proton
by comparing the acceleration rate in a particular model with the loss rate. To
order of magnitude, the rate of energy gain in first order Fermi acceleration is
(123)

tace P R ul/K . (161)

With the assumption of Bohm diffusion, one finds

1, v
tace R c—zﬂ , (162)
where 2 is the gyrofrequency. This estimate is based on the diffusion approxi-
mation, and thus depends on the shock being nonrelativistic. Numerical inves-

tigations of the relativistic case have given results ranging from a factor of 3 to
13 faster (Quenby & Lieu 1989, Ellison et al 1990). It is interesting to note that
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the acceleration rate for shock-drift acceleration, which makes use of the electric
field induced in the plasma by motion across the magnetic field at speed u, is
approximately tacc ! ~ f2u/c; almost the same (to order of magnitude) as that
given in (162).

The important loss processes, on the other hand, are threefold

1. Nuclear collisions with the background plasma

p+p—p+p+ s (163)
p+p—p+n+ 7s, (164)

which result in a total energy loss rate:
o = 6.7 x 107 "%n;, [secs™'] (165)

where n is the proton number density of the background.
2. Pair production

p+v—p+ et + e (166)

3. Photo-pion production
p+v—p+ 7 (167)
p+y—on+ 7t (168)

The relative importance of processes 2 and 3 depends on the photon spectrum:
2 has a larger cross section but a very low inelasticity. However, it enjoys the
advantage of a lower threshold, giving it many more target photons. For a power
law spectrum with intensity inversely proportional to frequency, 2 and 3 turn
out to be almost equally effective, resulting in an energy loss rate:

toiz X tojon A 3 X 107159 Traq [secs™'] (169)
where Upaq is the radiation energy density per frequency decade (measured in
erg cm~3). If the background plasma density is low, we can confine ourselves to a
consideration of the photon losses, in which case equating rates (162) and (169)
leads to an estimate of the maximum proton Lorentz factor:

~ 10° B \Y%*/ At 10*2erg s~ 1/2 U (170)
Tmax 103G 10%s L c/10)

This is, of course, an upper limit, because of the identification we have made

of the radiation energy density with luminosity and of the source size with the
variability timescale. Nevertheless, it hints at the possibility of producing very
energetic protons in AGNs.

A closer consideration of the reactions (165) and (168) leads to the conclusion
that the energy they remove from the protons is largely put into other poten-
tially interesting forms such as neutrons and neutrinos (Kazanas & Ellison 1986,
Biermann & Strittmatter 1987, Kirk & Mastichiadis 1989, Begelman et al 1990,
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Atoyan 1992, 1992). The fact that the interaction cross section of the neutrino
rises as a function of energy, means that the highest energy neutrinos produced
in the decay of the muons which, in their turn, come from the pions produced in
reactions (165) and (168) could be observable using proposed neutrino detectors
(Stecker et al 1991).

Another possible effect of these reactions is a contribution to the observed
cosmic ray flux between 1015 and 101 eV. The formulation of the acceleration as
a stochastic process with quite specific values of escape probability and accelera-
tion rate lends itself readily to a Monte-Carlo simulation. Processes which result
in a very small change in particle energy per event (such as pair production losses
or acceleration on crossing a shock front) can be treated as quasi-continuous and
incorporated into the particle orbit, whereas discrete jumps in energy (as in pion
production) are simulated stochastically. Protheroe & Szabo (1992, 1994) have
recently performed such simulations including a careful treatment of the loss
processes, and have calculated the neutron spectrum emitted by the source.
These particles escape ballistically from the central region and decay into pro-
tons at a distance which depends on the Lorentz factor: d ~ 3 x 1013y[cm], thus
contributing to the cosmic ray density in the host galaxy.

The two largest uncertainities in such a model are the speed of the accelera-
tion process (equivalent to the strength of the magnetic field, since it is assumed
that & ~ KBohm) and the strength of the radiation field in the source. The latter
can be parameterised by the value of the maximum proton energy, provided a
realistic estimate can be made of spectral distribution of the radiation. Finally,
in order to compute the contribution of all AGN to the cosmic ray spectrum
measured at Earth, one must estimate the escape probability of energetic cos-
mic rays from the host galaxy of an AGN and the average number density of
AGN in the universe as a function of redshift. Then, provided the characteris-
tics of the intergalactic medium (i.e., the diffusion coefficient) allow cosmic rays
to diffuse over a distance larger than the average intersource distance, one can
estimate the AGN contribution to the local density. Using models intended to
span a plausible range for these quantities, Protheroe & Szabo arrive at the pre-
diction shown in Fig. 24. The closeness of the predicted flux with that observed
is impressive, especially if one remembers that the normalisation of the model
flux is not a free parameter. This model also makes a clear prediction of the
composition, because only neutrons can leak out of the central parts of an AGN.
Thus, if AGNs are important for cosmic rays of energy around 107 GeV, one
should expect mostly protons in this range. Recent results from the Fly’s Eye
(Gaisser et al 1993), however, seem to indicate a different picture.

The Monte-Carlo calculation of Protheroe & Szabo is, of course, linear, in
the sense that the photon field responsible for the energy loss of the protons
is taken as fixed. In fact, it is to be expected that the relativistic particles
themselves supply the energy which subsequently appears in the X-ray band.
In this case, different parts of the photon spectrum originate in different spatial
regions, and a simple estimate of the radiation density in the source is likely to
be unreliable. The only way to improve on the calculation is then to attempt to
include the feedback between energetic particles and photons in a self-consistent
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Fig. 24. The contribution to the local cosmic ray flux by AGNs predicted by Protheroe
& Szabo (1994). The shaded bands give the range of results found using different AGN
luminosity functions and shapes for the radiation spectrum in the source. Each pair
of curves corresponds to a different assumption about the strength of the acceleration
process: £ = KBohm (strongest flux), 10kBohm, and 100kBorm (weakest flux). The points
are from compilations of the cosmic ray flux at Earth

manner. To date, only preliminary investigations of this difficult problem have
been attempted (e.g., Kirk & Mastichiadis 1992).

9 Radio Supernovae

9.1 The Radio Emission of Supernovae

Supernova remnants are prominent and well-studied sources of nonthermal radio
emission. But, until fairly recently, none of the ‘modern’ supernovae (i.e., those
discovered after 1885, when the first extragalactic supernova was found in An-
dromeda) had been detected at radio wavelengths. There are now over a dozen
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examples of supernovae which are also radio sources, including SN1987A in the
Large Magellanic Cloud (for a review see Weiler & Sramek 1988). The emission,
which has a nonthermal spectrum, does not always start at the same time as
the optically detected explosion, but has, in some cases, been detected for the
first time several months afterwards, and in one case was seen about ten days
before ‘maximum light’ (i.e., the optical maximum). As in the applications we
have considered in previous chapters, the acceleration of nonthermal particles (in
this case electrons) accompanies a phenomenon which produces a shock front.
Therefore, it seems natural to attempt once again to apply the best developed
model of particle acceleration — diffusive acceleration — to these sources.

There are several reasons why theorists have been cautious in doing so. Syn-
chrotron emission, as we have seen in Sect. 3.1 is a very sensitive indicator of
the hydrodynamics: a minor fluctuation in the magnetic field strength — which is
quite likely to be unimportant dynamically — suffices to make a particular region
stand out on radio maps. Furthermore, in the case of young supernova remnants
such as Cas A it is known that the magnetic field in the radio emitting region is
too strong to be just the interstellar field compressed by the shock front (Ander-
son et al 1991). Turbulent motion is thought to be responsible for enhancing the
field, and where there is turbulence, there will be particle acceleration, but not
necessarily of the diffusive kind. Even if most of the energy going into nonther-
mal particles does so by means of diffusive acceleration at the shock front, the
synchrotron emission may still be dominated by those electrons located in (and
possibly accelerated in) regions of amplified magnetic field. Another difficulty
with the application of diffusive acceleration is that the spectrum of electrons
responsible for synchrotron emission in both radio supernovae and supernova
remnants is not the simple power-law of index s = 4 which the diffusive process
predicts for test particles at a strong shock front. Whereas this problem is not
so severe for the case of electron acceleration in the hot spots of jets (Sect. 8.2),
supernovae and supernova remnants sometimes display spectra which are very
much too steep (e.g., 8 = 5) to be accommodated in a simple picture.

Because of these difficulties, work on the radio emission of SNe and SNRs has
concentrated on the hydrodynamical aspects, rather than the particle accelera-
tion model. A widely accepted and well-developed model of radio supernovae has
been proposed Chevalier (1982). In it, it is assumed that the supernova shock
front propagates in a medium whose density falls of inversely as the square of the
radius, such as in a stellar wind of approximately constant velocity. In fact, it
seems from observations that only massive stars explode into supernovae which
emit in the radio, and these stars are indeed thought to drive a dense stellar
wind in their pre-explosion phase. In the model, the emission switches on when
the absorbing screen of wind material becomes sufficiently thin to let out the ra-
dio waves. The dominant absorption mechanism is free-free absorption, which is
stronger at low frequency, so that high frequency emission is predicted to switch
on first, in agreement with observation. The underlying, unabsorbed emission
always decreases with time, and its exact time dependence can be calculated us-
ing a self-similar solution for the free-expansion phase, in which the expanding
shell of shocked material is treated as being geometrically thin (the ‘mini-shell
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model’). The time dependence of the shock radius in such a model is given by
re x t™ (171)

where m is related to the density profile of the outer edge of the ejecta, and is
very close to, but slightly less than unity. Thus, the shocked ejecta suffer slight
deceleration by the less dense surroundings — a situation analogous to that of
a heavy fluid supported against gravity by a light one. This configuration is
subject to the Rayleigh-Taylor instability. The growth time turns out to be of
the same order as the age of the supernova, making it plausible that turbulence
will develop, amplifying the magnetic field and accelerating particles. The total
thermal energy E}j scales as the product of volume and pressure of the shocked
material, i.e., as 72 x (75/7s)?, so that

Eyp o t3™72 (172)

In the absence of a detailed theory describing how acceleration occurs, the model
assumes that a fixed fraction (typically 1%) of Eyp is converted into magnetic
field energy, and an equal amount also goes into relativistic electrons, which
leads to a magnetic field scaling
B x Etllf 21-5_ 3/2
ot (173)

Given a time independent power law index for the electron spectrum as defined
in (41), one finds C o t>™~5, which leads via (42) to a synchrotron flux which,
in the absence of absorption, has the time dependence:

L (t) o 3m=3- | (174)

where & = (s — 3)/2 is the spectral index of the underlying radio emission.
Equation (174) describes the decay of the radio flux which sets in once the source
becomes optically thin. When combined with the variable absorption controlling
the switch-on phase, a description of the emission results with four (or, including
internal free-free absorption, five) free parameters. Extensive fits of this model
to the data can be found in Weiler et al (1986). Although remarkably good for
some RSNe, there are several cases in which the model has difficulty.

9.2 Supernova 1987A

Studies of this remarkable object have given new impetus to many branches of
research into supernovae. This may well turn out to be the case for the theory
of particle acceleration in radio supernovae too.

There have been two phases of radio emission from SN1987A: an initial
‘prompt’ radio burst which started about two days after explosion, and lasted
for a couple of weeks, and the current, steadily rising emission, which was first
detected just over three years after explosion, in July 1990. The prompt burst
has been the subject of a considerable amount of theoretical work (Storey &
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Manchester 1987, Chevalier & Fransson 1987, Benz & Spicer 1990, Bisnovaty-
Kogan 1990, Kirk & Wassmann 1992) involving various acceleration models, but
this is not the topic of the present discussion. Perhaps the most interesting and
at the same time least controversial conclusion one can draw from the prompt
emission is that the stellar wind material allowed radio waves to escape from close
to the star as early as two days after explosion. Consequently, the switch-on of
the second phase of emission after three years cannot be due to the emergence
of the shock front from an absorbing screen, and a straightforward application
of the mini-shell model fails.

Not just the existence of the prompt emission, but also the details of the
switch-on of the second-phase emission itself show the inadequacy of the ab-
sorbing screen explanation. The emission was first detected at low frequency
(843 MHz) and only later at high frequency (4.8 GHz). This is particularly in-
teresting from a theoretical point of view. Applying an ‘onion-shell’ type model
to the particles in the acceleration zone around the supernova shock front (122)
one arrives at a solution for the distribution of these particles given by (126):

th p 2—3s
w0,)= 22 (2) (o) - Hp-pmw)]  (175)
where
pmax(t) = Po€Xp (tD/tc) . (176)

This solution applies for time independent flow speeds, such as is expected in
the early (sweep-up) phase of the explosion. If we assume that the magnetic field
did not change much in the emission region between detection at low frequency
(v = v1, t = t1) and at high frequency (v = v3, t = t3), the maximum particle
energy must have changed during this time by a factor

pmax(tZ) _ v
pmax(tl) [ 41
=exp [D(t2 — t1)/tc] - (177)

Recalling the definitions of ¢, (121) and D (125), one finds that given the speed
of the shock front, the time delay ¢ — ¢;, which is observed to be about 30
to 60 days, yields the spatial diffusion coefficient directly (Ball & Kirk 1992).
The speed of the material immediately behind the shock front (u; — u2) can be
estimated to be about 25,000kms ™' from the observations of fast moving line
emitting plasma seen immediately after the explosion, since we do not expect
the ejecta to have decelerated appreciably. The compression ratio of the shock
follows from the observed synchrotron spectrum and is u;/us ~ 2.7. Taken
together, these lead to

-1
kK~ 2x10%%cem?s .

(178)

Other parameters can be derived if we use an estimate of the magnetic field.
Thus, taking a value of 1073G, which can be found by extrapolating the (un-
fortunately model dependent) estimates of the magnetic field strength during
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the prompt burst, one can deduce that the Lorentz factor of the radio emitting
electrons (4.8 GHz) is roughly

Ymax = 2000 . (179)

Diffusive acceleration takes about 300 days to accelerate an electron from an
energy of 500 keV up to a Lorentz factor of 2000, given the values of u;, 2 and
& derived here. We can conclude that the acceleration process must have begun
operating about two years after explosion.

In quasilinear theory, the coefficient of pitch-angle scattering is proportional
to the square of the magnitude of the magnetic field fluctuations (§B/B)” (see,
for example, Blandford & Eichler 1987), which enables us to approximate the
spatial diffusion coefficient of a relativistic electron as:

2
KR %)\gc (6%) , (180)

where Az = ymec? /eB is the gyroradius. This expression can be turned around
to estimate the amplitude of the magnetic fluctuations present around the shock
front of SN1987A. Inserting the value of x from (178) one finds:

§B
(F) ~ 0.003 (181)

which is similar to the level of fluctuations required in the local interstellar
medium for cosmic rays of this energy, but significantly below that estimated
at the shocks of young supernova remnants (Blandford 1992, Achterberg et
al 1994), indicating that the level of turbulence in SN1987A is as yet rather
modest.

These arguments, concerning the switch-on time at different frequencies, de-
pend solely on the upper limit to the energy of particles in the acceleration zone
around the shock front. The onion-shell approach, however, is capable of giving
the entire history of the synchrotron emission including that emitted by elec-
trons left behind in the expanding shocked material. All we must do is specify
the rate at which particles are injected into the acceleration process, and give
the radial dependence of the magnetic field and density. The shock, we can as-
sume, is essentially piston driven, and maintains a constant velocity. If it moves
out into the undisturbed stellar wind of the progenitor, then it is reasonable to
assume the density falls off as 1/7% and the magnetic field, which is likely to
be wound up into a toroidal direction by the rotation of the progenitor, varies
inversely with r. The number of particles overtaken by the shock front per sec-
ond is then constant, so that a constant injection rate is suggested. Under these
assumptions, the model is so simple that an analytic expression for the emitted
synchrotron flux as a function of time can be found (Ball & Kirk 1992). The time
dependence is shown in Fig. 25. Initially, the emission rises on the acceleration
timescale. This slows as adiabatic losses of the electrons downstream of the shock
make themselves felt. Finally, even though injection continues at a constant rate,
the light curve turns over. This indicates that the freshly accelerated electrons
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are unable to compensate for the adiabatic losses of their predecessors. It arises
because the magnetic field decreases monotonically outwards, so that the freshly
accelerated electrons emit progressively less synchrotron radiation.

Model Light Curves
25IIII|IIII|IIII|IIII

- 843 MHz 5

O |
1000 1500 2000 2500 3000
t (days)

Fig. 25. The light curve of a single clump at low and high frequency. (From Ball &
Kirk 1992)

Observations of the supernova paint a different picture. Firstly, fluctuations
on a timescale of several days were observed shortly after the emission was de-
tected (Staveley-Smith et al 1992), indicating that the emitting region is smaller
than a spherically symmetric shell of radius equal to that of the shock front.
Secondly, the flux did not turn over, but increased sharply after nearly one year.
One is thus driven to the conclusion that one or more small clumps of mate-
rial are contributing an important part of the emission. The model described
above can accommodate such clumps, provided they take part in the radial flow
pattern, so that one can hope to model the emission using several components
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similar in appearance to that in Fig. 25. The result obtained with two clumps is
shown in Fig. 26, superimposed on the data up to early 1992.

Light Curves
5OIII|III|III|III|III

843 MHz

0
1000 1200 1400 1600 1800 2000

t (days)

Fig. 26. The predicted light curves at 843 MHz and 4.8 GHz from two clumps of emit-
ting electrons superposed on the observations up to day 1800. (From Ball & Kirk 1992)

9.3 Future Prospects

In this section, I would like to depart from the approach adopted hitherto and
present some opinionated speculation about problems associated with much of
the material I have presented, and about the trends of future research which I
hope will address them. I have chosen the context — the application to SN1987A
— deliberately: a wealth of data should be forthcoming on the radio emission of
this object and on other RSNe in the next few years, giving us a chance to gain
a much better grasp of the physical processes involved.
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The model calculations shown in Fig. 26 agree well with the data. The first
order Fermi process at a shock front is, it would seem, not too unreasonable a
model for the radio emission of SN1987A. However, it is important to note that
the predictive power of the simple model described here is limited. In fact there
are three aspects of the model which are not dealt with self-consistently, and
these are closely connected with fundamental problems in the theory of diffusive
acceleration.

The first, and perhaps least serious, concerns the compression ratio of the
shock front. In the simple model, this is taken from the observed power-law index
of the synchrotron emission according to the well-known formulae connecting
the synchrotron index « with the electron index s (appropriate to the phase-
space density): s = 2a + 3, and the electron index with the compression ratio:
pc = 8/(s — 3) (see 91). The data give p. ~ 2.7, whereas a strong shock front in
an ideal gas of adiabatic index 5/3 has a compression ratio of 4. However, if the
shock front accelerates not only electrons, but also protons, and if the pressure in
the energetic protons becomes significant, then a structure of the type depicted
in Fig. 20 establishes itself. Electrons of GeV energy, which have a much lower
mean free path than the energetic protons, move adiabatically in the precursor
region of this structure. Their diffusive motion ‘feels’ only the sharp compression
of the sub-shock. Because the plasma in front of this sub-shock is compressed
and heated by the protons, and also because it is accelerated in the direction of
the flow, the Mach number of the sub-shock is reduced. This effect, suggested as
an explanation of the range of spectral indices observed in supernova remnants
by Bell (1987) has also been investigated by Ellison & Reynolds (1991) in the
same context.

In principle, it is possible to compute the modification of the shock structure
for a radio supernova using the techniques described in Chapter 7. However, close
to the site of the explosion the progenitor can be expected to have modified its
environment substantially. An undisturbed stellar wind such as assumed in the
simple model is one possibility, but SN1987A is known to be more complex,
possessing not only a dense ring of material at a radius of about 0.2pc, but
also most probably a region interior to this in which the wind stagnates (see
McCray 1993 for a recent review). A computation of the self-consistent evolution
of the compression ratio of the sub-shock in this environment would clearly
supply valuable information for the interpretation of the radio data. However,
numerical difficulties due to the strong magnetic field and the correspondingly
short acceleration times close to the position of the progenitor must first be
overcome. Preliminary calculations are reported in Kirk et al (1994).

The second problem concerns injection. This is an issue which I have avoided
in most of these lectures. The main reason is that injection involves the transport
properties of particles of thermal energy, for which the structure of the collision-
less shock itself, complete with the effects of electrostatic potentials, magnetic
overshoots and non-coplanar field components, is crucial. In view of this, the
most promising attack on the injection problem seems to me to be full-scale
numerical simulation (cf. the section on simulations in Zank & Gaisser 1992).
However, this is as yet of little use in direct astrophysical application. An alter-
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native approach is to ignore nonstochastic effects and insist that the transport is
governed by pitch-angle diffusion. Unfortunately, this also does not get us very
far. A self-consistent analytic treatment of the resulting anisotropic distribution
is lacking. Monte-Carlo simulations are successful (see Jones & Ellison 1991),
but are limited to a very specific pitch-angle diffusion coefficient (isotropic) and
to stationary solutions. Thus, the only practical course at present is to use the
cosmic ray transport equation (80) for energetic particles and to adopt a more
or less plausible prescription for injection. In the application to SN1987A, the
injection problem arises for both electrons and protons, but fortunately the ob-
servations of both light curves and spectra are sufficiently detailed that one can
still hope to constrain the models.

The third problem is that of the transport process of energetic particles. The
overall structure of the magnetic field in the simple model of SN1987A is toroidal.
The spatial diffusion coefficient found in (178) thus refers to transport across the
direction of the average field. In simple scattering theory, the spatial diffusion
coeflicient parallel to the magnetic field is given in terms of the mean-free path
for scattering A by

1
K| = EATJ (182)

and is related to the perpendicular diffusion coefficient by

R
k| 1+ (A/Ag)?

so that k1 < Agv/6. The value of k given in (178) violates this limit by about
five orders of magnitude. Clearly, something is wrong either with the model, or
with the picture of scattering outlined above.

Anomalous transport across magnetic field lines is a problem which has been
studied for some time in laboratory plasmas. Basically, although the direction of
the average magnetic field is well-defined, each individual field line can wander
around and diverge systematically from its neighbours. Even if a particle under-
goes no scattering in the usual sense, and remains tied to a single field line, it
will nevertheless undergo stochastic transport across the direction of the mean
field (Rechester & Rosenbluth 1978). Clearly, such an effect could be important
in giving the electrons at the shock front of SN1987A such a large perpendicular
diffusion coefficient (Achterberg & Ball 1994).

(183)

9.4 Concluding Remarks

In assembling the material for these lectures I have followed a fairly straight and
narrow course along the path of diffusive shock acceleration, with occasional
excursions to consider shock-drift acceleration and relativistic flows. The reason
for this is partly fashion, since the theory has undergone rapid development over
the last twenty years. But, more importantly, this theory provides us with a
fairly simple means of making useful statements about very exotic objects. The
plasma physics which lies behind it is, ignoring cross-field diffusion for a moment,
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fairly well understood. It is also robust — we can rely on streaming cosmic rays
to provide their own scattering centres (see Melrose, Lecture 4, this volume),
and do not have to assume special properties of the turbulence, as in most other
stochastic acceleration models. The theory has its problems, as I have tried to
point out, but these do not seem to be insuperable. In any case, they are an
indispensable part of any theory worth further research.

Acknowledgments

I would like to thank Arnold Benz and Thierry Courvoisier for their excellent
organisation of this Advanced Course. Several figures in the text have been
taken from the work of others; for permission to do this, my thanks are due to
Rob Decker, Ernst Dorfi, Klaus Meisenheimer, Ray Protheroe and Heinz Volk.
Finally, a thorough and constructively critical reading of the text was undertaken
by Lewis Ball, to whom I am especially grateful.

References

Abramowitz, M., Stegun, I.A. 1972 Handbook of Mathematical Functions (Washington
DC: National Bureau of Standards)

Achatz, U., Steinacker, J., Schlickeiser, R. 1991 Astron. Astrophys. 250, 266

Achterberg, A., Ball, L.T. 1994 Astron. Astrophys. 284, 687

Achterberg, A., Blandford, R.D., Reynolds, S.P. 1994 Astron. Astrophys. , in press

Anderson, M., Rudnick, L., Leppik, P., Perley, R., Braun, R. 1991 Ap. J. 8373, 146

Atoyan, A.M. 1992a Astron. Astrophys. 257, 465

Atoyan, A.M. 1992b Astron. Astrophys. 257, 476

Axford, W.I. 1981 Proc. 17th. Int. Cosmic Ray Conf. (Paris) 12, ,

Axford, W.I., Leer, E., Skadron, G. 1977 Proc. 15th. Int. Cosmic Ray Conf. (Plodiv)
11, 132

Baade, W., Zwicky, F. 1934 Phys. Rev. 45, 138

Balescu, R. 1988 Transport Processes in Plasmas, North-Holland (Amsterdam)

Ball, L.T., Kesteven, M.J., Campbell-Wilson, D., Turtle, A.J., Hjellming, R.M. 1994,
M. N. R A.S.,in press

Ball, L.T., Kirk, J.G. 1992 Ap. J. Letters 396, .39

Baring, M.G., Kirk, J.G. 1991 Astron. Astrophys. 241, 329

Begelman, M.C., Kirk, J.G. 1990 Ap. J. 353, 66

Begelman, M.C., Rudak, B., Sikora, M. 1990 Ap. J. 362, 38

Bell, A.R. 1978 M. N. B. A. S. 182, 147

Bell, A.R. 1987 M. N. R. A. S. 225, 615

Benz, A.O., Spicer, D.S. 1990 Astron. Astrophys. 228, L13

Benz, A.O., Thejappa, G. 1988 Astron. Astrophys. 202, 267

Berezhko, E.G., Yelshin, V.K., Ksenofontov, L.T. 1993 Proc. 23rd. Int. Cosmic Ray
Conf. (Calgary) 2, 354

van den Berg, S., Tammann, G.A. 1991 Ann. Rev. Astron. Astrophys. 29, 363

Biermann, P.L., Strittmatter, P.A. 1987 Ap. J. 322, 643

Bisnovaty-Kogan, G.S. 1990 Proc. Joint Varenna — Abastumani — ESA — Nagoya —
Potsdam Workshop on Plasma Astrophysics Eds: T.D. Guyenne, J.J. Hunt, Telavi,
Georgia.



Particle Acceleration 93

Blandford, R.D. 1992 in Particle Acceleration in Cosmic Plasmas, AIP conference
procedings #264, eds: G.P. Zank, T.K. Gaisser, page 430

Blandford, R.D., Eichler, D. 1987 Physics Reports 154, 1

Blandford, R.D., Ostriker, J.P. 1978 Ap. J. Letters 221, L.29

Blandford, R.D., Ostriker, J.P. 1980 Ap. J. 237, 793

Blandford, R.D., Payne, D.G. 1981 M. N. R. A. S. 194, 1041

Bogdan, T.J., Vélk, H.J. 1983 Astron. Astrophys. 122, 129

Bregman, J.N. 1985 Ap. J. 288, 32

Chevalier, R.A. 1982 Ap. J. 259, 302

Chevalier, R.A., Fransson, C. 1987 Nature 329, 611

Cox, D.P., Reynolds, R.J. 1987 Ann. Rev. Astron. Astrophys. 25, 303

Decker, R.B. 1988 Space Sc. Rev. 48, 195

Decker, R.B. 1990 in Particle Acceleration in Cosmic Plasmas, AIP conference proced-
ings #264, eds: G.P. Zank, T.K. Gaisser, page 183

Dolginov, A.Z., Toptyghin, I.LN. 1966 Sov. Phys. JETP 51, 1771

Dorfi, E.A. 1993 in ‘Galactic High-Energy Astrophysics High-Accuracy Timing and
Positional Astronomy’ (Lecture Notes in Physics #418) Eds.: J. van Paradijs,
H.M. Maitzen, Springer-Verlag, Berlin

Drury, L.O’C. 1983 Rep. Prog. Phys. 46, 973

Drury, L.O’C. 1991 M. N. R. A. 5. 251, 340

Drury, L.O’C., Axford, W.I., Summers, D. 1982 M. N. R. A. S. 212, 413

Duffy, P., Drury, L,0°’C., Volk, H.J. 1994 Astron. Astrophys. , in press

Duin, R.M., van der Laan, H. 1975 Astron. Astrophys. 40, 111

Eichler, D. 1985 Ap. J. 294, 40

Ellison, D.C., Jones, F.C., Reynolds, S.P. 1990 Ap. J. 360, 702

Ellison, D.C., Reynolds, S.P. 1991 Ap. J. 382, 242

Falle, S.A.E.G., Giddings, J.R. 1987 M. N. R. A. S. 225, 399

Fermi, E. 1949 Phys. Rev. 75, 1169, also Collected Papers vol. II page 656 (1965
Chicago: University of Chicago Press)

Fermi, E. 1954 Ap. J. 119, 1, also Collected Papers vol. IT page 970 (1965 Chicago:
University of Chicago Press)

Fichtel, C.E., Bertsch, D.L., Hartman, R.C., et al. 1993 Astron. Astrophys. Suppl. 97,
13

Fritz, K.D. 1989a Astron. Astrophys. 214, 14

Fritz, K.D. 1989b Ap. J. 347, 692

Gaisser, T.K. 1990 Cosmic rays and particle physics Cambridge University Press, Cam-
bridge.

Gaisser, T.K. et al 1993 Comments on Astrophys. 17, 103

Ginzburg, V.L., Syrovatskii, S.I. 1965 Ann. Rev. Astron. Astrophys. 3, 297

Gleeson, L.J., Axford, W.I. 1967 Ap. J. Letters 149, L.115

Green, D.A. 1984 M. N. R. A. S. 211, 433

Green, D.A. 1992 Proc. 22nd. Int. Cosmic Ray Conf. (Dublin) 2, 412

Hall, D.E., Sturrock, P.A. 1967 Phys. Fluids 10, 2620

Han, X., Hjellming, R.M. 1992 Ap. J. 400, 304

Heavens, A.F., Drury, L.O’C. 1988 M. N. R. A. S. 235, 997

Heavens, A.F., Meisenheimer, K. 1987 M. N. R. A. S. 225, 335

Hjellming, R.M., Johnston, K.J. 1988 Ap. J. 328, 600

de Hoffmann, F., Teller, E. 1950 Phys. Rev. 80, 692

Holman, G.D., Pesses, M.E. 1983 Ap. J. 267, 837

TAU Colloquium #142 1994 Ap. J. Suppl. ,



94 John G. Kirk

Jokipii, J.R. 1987 Ap. J. 313, 842

Jones, F.C., Ellison, D.C. 1991 Space Sc. Rev. 58, 259

Jourdain, E., Bassani, L., Bouchet, L. et al., 1992, Astron. Astrophys. 256, .38

Kang, H., Jones, T'W. 1991 M. N. R. A. S. 249, 439

Kardashev, N.S. 1962 Sov. Astron. J. 6, 317

Kazanas, D., Ellison, D.C. 1986 Ap. J. 304, 178

Kennel, C.F., Coroniti, F.V. 1984 Ap. J. 283, 694

Kirk, J.G., Duffy, P., Ball, L.T. 1994 Ap. J. Suppl. 90, 807

Kirk, J.G., Heavens, A.F. 1989 M. N. R. A. S. 239, 995

Kirk, J.G., Mastichiadis, A. 1989 Astron. Astrophys. 2183, 75

Kirk, J.G., Mastichiadis, A. 1992 Nature 360, 135

Kirk, J.G., Schlickeiser, R., Schneider, P. 1988 Ap. J. 328, 269

Kirk, J.G., Schneider, P. 1987a Ap. J. 815, 425

Kirk, J.G., Schneider, P. 1987b Ap. J. 322, 256

Kirk, J.G., Schneider, P. 1988 Astron. Astrophys. 201, 177

Kirk, J.G., Wassmann, M. 1992 Astron. Astrophys. 254, 167

Kriills, W.M. 1992 Astron. Astrophys. 260, 49

Kruskal, M. 1962 J. Math. Phys. 3, 806

Krymsky, G.F. 1977 Sov. Phys. Dokl. 22, 327

Krymsky, G.F., Petukhov, S.I. 1980 Sov. Astron. Lett. 6, 124

van der Laan, H. 1962a M. N. R. A. S. 124, 125

van der Laan, H. 1962b M. N. R. A. S. 124, 179

van der Laan, H. 1966 Nature 211, 1131

Lagage, P.O., Cesarsky, C.J. 1983a Astron. Astrophys. 118, 223

Lagage, P.O., Cesarsky, C.J. 1983b Astron. Astrophys. 125, 249

Laing, R.A. 1981 M. N. B. A. S. 195, 261

Leroy, M.M., Mangeney, A. 1984 Ann. Rev. Geophys. 2, 449

Luhmann, J.G. 1976 J. Geophys. Res. 81, 208

McCray, R. 1993 Ann. Rev. Astron. Astrophys. 81, 175

McKenzie, J.F., Volk, H.J. 1982 Astron. Astrophys. 116, 191

Maisack, M., Johnson, W.N., Kinzer, R.L. et al. 1993, Ap. J. Letters 407, L61

Mastichiadis, A., Kirk, J.G. 1992 in ‘High-Energy Neutrino Astrophysics’, eds: V.J.
Stenger, J.G. Learned, S. Pakvasa, X. Tata, (World Scientific, Singapore), page 63

Meisenheimer, K., Réser, H.-J., Hiltner, P.R., Yates, M.G., Longair, M.S., Chini, R.,
Perley, R.A. 1989 Astron. Astrophys. 219, 63

Melrose, D.B. 1969 Astrophys.& Space Sci. 4, 143

Melrose, D.B. 1980 Plasma Astrophysics Vol. II (Gordon & Breach, New York)

Melrose, D.B., Dulk, G.A. 1987 Physica Scripta T18,29

Mészaros, P., Ostriker, J.P. 1983 Ap. J. Letters 273, L59

Moraal, H., Axford, W.I. 1983 Astron. Astrophys. 125, 204

Miller, J.A., Buessoum, N., Ramaty, R. 1990 Ap. J. 361, 701

Mushotzky, R.F., Done, C., Pounds, K.A. 1993 Ann. Rev. Astron. Astrophys. 81, T17

Parker, E.N. 1958 Phys. Rev. 109, 1328

Parker, E.N. 1965 Planet. Space Sci. 13, 9

Prischep, V.L., Ptuskin, V.S. 1981 Sov. Astron. J. 25, 446

Protheroe, R.J., Kazanas, D. 1983 Ap. J. 265, 620

Protheroe, R.J., Szabo, A.P. 1992 Phys. Rev. Letts. 69, 2885

Protheroe, R.J., Szabo, A.P. 1994 submitted to Astroparticle Physics

Punch, M. et al 1992 Nature 358, 477

Quenby, J.J., Lieu, R. 1989 Nature 342, 654



Particle Acceleration 95

Rechester, A.B., Rosenbluth, M.N. 1978 Phys. Rev. Letts. 40, 38

Schatzman, E. 1963 Annales d’Astrophys. 26, 234

Schlickeiser, R. 1984 Astron. Astrophys. 136, 227

Schliiter, A. 1957 Zeitschr. Naturforsch. 12a, 822

Sedov, L.I. 1959 ‘Similarity and Dimensional Methods in Mechanics’ Academic Press,
New York

Shklovskii, I.S. 1960 Sov. Astron. J. 4, 243

Sikora, M., Kirk, J.G., Begelman, M.C., Schneider, P. 1987 Ap. J. Letters 320, L81

Skilling, J. 1975 M. N. R. A. S. 172, 557

Staveley-Smith, L., et al 1992 Nature 335, 147

Stecker, F.W., Done, C., Salamon, M.H., Sommers, P. 1991 Phys. Rev. Letts. 66, 2697

Storey, M.C., Manchester, R.N. 1987 Nature 329, 421

Swann, W.F.G. 1933 Phys. Rev. 48, 217

Taylor, G.I. 1950 Proc. Roy. Soc. A201, 159

Toptyghin, I.N. 1980 Space Sc. Rev. 26, 157

Vélk, H.J., Biermann, P.L. 1988 Ap. J. Letters 333, L65

Webb, G.M. 1989 Ap. J. 340, 1112

Webb, G.M., Axford, W.I., Terasawa, T. 1983 Ap. J. 270, 537

Webb, G.M., Drury, L.O’C. 1984 Astron. Astrophys. 137, 185

Weiler, K.W., Sramek, R.A., Panagia, N., van der Hulst, J.M., Salvati, M. 1986
Ap. J. 301, 790

Weiler, K.W., Sramek, R.A. 1988 Ann. Rev. Astron. Astrophys. 26, 295

Whipple, E.C., Northrop, T.G., Birmingham, T.J. 1986 J. Geophys. Res. 91, 4149

Wu, C.S. 1984 J. Geophys. Res. 89, 8857

Zank, G.P., Gaisser, T.K. 1992 (editors) Particle Acceleration in Cosmic Plasmas, AIP
conference procedings #264.

Zel’dovich, Ya.B., Raizer, Yu.P. 1967 Physics of Shock Waves and High-temperature
Hydrodynamic Phenomena Academic Press, (New York)

This article was processed using the IATEX macro package with LMAMULT style



