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Abstract

A theory of particle acceleration is presented which is based on the
first-order Fermi Process occurring in the converging fluid flow close to a shock
front. In contrast to the standard diffusive theory of particle acceleration at
shock fronts [22], this theory permits one to treat particles whose velocity is
not necessarily large compared to that of the fluid through the shock. As such,
it finds application in two physical situations: i) the acceleration of low-energy
ions at nonrelativistic (e.g. interplanetary) shocks and ii) the acceleration of
particles at relativistic shocks (e.g. in quasars and active galactic nuclei). This

thesis emphasizes the latter application.

The pitch-angle distribution of accelerated particles is intrinsically
anisotropic, in the theory developed here, and depends on the nature of the
pitch-angle scattering processes assumed to occur in the background fluid. The
quasi-linear theory of plasma physics predicts one model of the scattering which
corresponds to diffusion in pitch-angle. However, this model cannot represent
the processes occurring in a plasma with an appreciable level of turbulence.
Therefore, a semi-empirical model is also investigated, which permits large-
angle scattering events as well as pitch-angle diffusion. At the present stage
of development of the theory, it is possible to draw only tentative conclusions
about the effects of strong turbulence by employing this kind of approach.

A detailed description of the method used in solving for the anisotropic
pitch-angle distribution is presented, followed by the results obtained upon

applying it to various kinds of relativistic shock fronts. The hydrodynamics of
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such shocks has not been investigated in sufficient depth in the literature to
permit realistic jump conditions to be extracted, so that a chapter of the thesis
is devoted to this topic. For each kind of shock, the index of the power-law
spectrum of accelerated particles is given. Since this depends on the pitch-
angle scattering operator, the results are presented separately for different
assumptions concerning the turbulence. In addition, the effects of the large-
angle scattering operator are discussed, and seen to have a significant, but not
dramatic effect.

Finally, a short discussion of the application to the problem of parti-
cle acceleration in the relativistic outflows associated with quasars and active
galactic nuclei is given. There seems to be no intrinsic difficulty in producing
the type of particle distribution which is implied by the observations. In princi-
ple, the theory is capable of enhancing the predictive power of models of these
objects which, at present, postulate the injection of the necessary energetic
particles.

A preliminary and somewhat less general account of this theory is
presented in [49], and an application to interplanetary shock fronts is discussed

in [47]. The effects of the large-angle operator are investigated in [50].
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CHAPTER I

Introduction

Particle acceleration is a process which seems to occur in Nature under
a wide variety of circumstances. Direct observations of accelerated particles
themselves are made in the case of cosmic rays arriving at Earth, as well as in
the case of energetic particles found in the Earth’s ionosphere, magnetosphere
and in interplanetary space. Apart from this, the electromagnetic radiation
emitted by accelerated electrons or positrons is detected from sources ranging
from the magnetosphere (terrestrial kilometric radiation, for example) to the

most distant objects in the universe — radio galaxies and quasars.

Many theories have been developed to account for particle acceleration
in the various situations mentioned above, and these are extensively discussed
in numerous conference proceedings, review articles and monographs. From
a general point of view, the article by Parker [75] and the monographs by
Melrose [68,69] form excellent introductions. The aim of this thesis is to present
a detailed account of a theory of particle acceleration which applies in the
vicinity of shock fronts moving at relativistic velocities, as well as in certain

other situations.

About a decade ago, Fermi’s ideas [27,28] concerning the acceleration
of cosmic rays were revived by the discovery of a mechanism now called “diffu-
sive acceleration at shock fronts” [4,6,53,10]. The most important modification

to Fermi’s proposal was that instead of assuming that cosmic rays are scat-
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tered by large-scale inhomogeneities in the interstellar medium, it was noticed
that scattering in the turbulent plasma to be found in the neighbourhood of
shock fronts would be much more efficacious. Fermi had already realized [28]
that converging scattering centres are much better at particle acceleration than
are ones which move in random directions. The new idea of 1977/78 was the
realization that scattering centres fixed in a fluid always converge at a shock

front.

It is well-known from, for example, the theory of radiative transfer
[17], that particles whose distribution function is kept close to isotropy by a
scattering process behave as if they were diffusing in space. More precisely,
the flux of such particles is linearly related to the gradient of their density
by Fick’s law — the constant of proportionality being the spatial diffusion
coefficient. Diffusion in space implies that some particles repeatedly cross and
recross the shock front, and are, therefore, systematically accelerated by the
converging scattering centres. Combined with a finite probability for escape
from the shock front into the downstream fluid, this acceleration mechanism
yields a distribution function which is a power-law in momentum under a
wide variety of physical conditions [22,3,30,7]. The original papers and much
subsequent work on diffusive acceleration has been motivated by the problem
of the acceleration of cosmic rays. However, the mechanism is so general that
many other applications are possible. Almost any location in which kinetic
energy is thermalized by a shock front is likely to be a suitable site for the
acceleration of charged particles — both ions and electrons. The latter, of
course, may be expected to radiate profusely, which has led to the suggested
identification of nonthermal radio sources with regions containing electrons

accelerated at shock fronts. Additional support for this hypothesis is provided
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by the slope of the observed spectrum of radio waves, which seems to arise from
a power-law distribution of electrons. Even in objects as diverse as supernova
remnants and the jets of radio galaxies, the spectral index required of the

electron distribution is not too different from that of cosmic rays [89].

One attractive application of particle acceleration models concerns
quasars and active galactic nuclei (AGN’s). The difficulties posed by the ap-
parently extremely high luminosity of these objects are well-known (see articles
in [95]). Indeed, they have provoked controversy and appeals for the necessity
of “new physics” [2] more often than any other astrophysical phenomenon.
Even a qualitative understanding of how those particles which radiate could
have been accelerated is, therefore, of considerable interest. Because of this
sense of urgency, the theory of diffusive acceleration at shock fronts has been
applied [42,94]. However, the basic assumption of the theory is almost cer-
tainly violated in the physical conditions pertaining in these objects. Rapid
variability, high brightness temperatures in the radio regime and observed su-
perluminal motion form the observational support for the model originally
devised by Rees [83] which requires relativistic motion of the radiating parti-
cles towards the observer, probably in the form of directed motion along a “jet”
[8,5]. If fluid flows at relativistic bulk speed with respect to its surroundings,
thermalization of its kinetic energy seems unlikely to occur by means of a shock
front through which the flow is nonrelativistic. However, only if this possibility
is realized in practice, is it possible for pitch-angle scattering to maintain an
almost isotropic distribution of accelerated particles. For relativistic shocks,
on the other hand, there can exist no distribution which is almost isotropic in
both the frame of the upstream fluid and the frame of the downstream fluid.

The application to quasars and AGN’s, therefore, requires the development of
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a new theory of particle acceleration at shock fronts: one in which the motion

of the particles is not assumed to be diffusive in space.

Until recently, little work had been done on the problem of acceleration
at relativistic shocks. Considering the microphysics, Peacock [78] investigated
two conjectures which he advanced about the angular distribution of acceler-
ated particles. But discussions of the hydrodynamics of the gas of accelerated
particles seemed to imply that special conditions are required for acceleration
to occur at all at relativistic shocks [103,104|. In addition to this, there was
a widely held belief that relativistic shocks are unable to accelerate particles

efficiently (see, for example [7], page 34).

The difficulties involved in constructing a theory of acceleration at
relativistic shocks, which is analogous to the theory of diffusive acceleration,
are considerable. The basic process by which particles gain energy remains
the same — namely by scattering between converging fluid elements upstream
and downstream of a shock front. However, abandoning the diffusion approxi-
mation introduces an additional degree of freedom — the angular distribution.
As in the theory of radiative transfer, the complexity of the problem is thereby
increased dramatically, necessitating the use of more powerful methods of so-
lution. In fact, particle acceleration poses an even more daunting problem,
because the nature of the basic interactions determining the transport pro-
cess (photon scattering in the case of radiative transfer) is largely unknown.
In the theory of diffusive acceleration, the details of the process responsible
for isotropizing the particle distribution are unimportant. However, once one
takes the step of dropping the diffusion approximation, it becomes essential to

model the pitch-angle scattering operator.

Not only the environment of relativistic shocks demands an approach
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divorced from the diffusion approximation, but also any situation in which
particles with a speed comparable to that of the fluid are accelerated. Low
energy, heavy ions at interplanetary shocks fall into this category [47], as do
all particles initially, if they are to be accelerated at a shock front and are
assumed to be injected from the thermal plasma of the background. It is here
that there is hope of observational help in attacking the problem of modelling
the pitch-angle scattering operator. Because the acceleration of low energy ions
depends on this operator, it may be possible to use in situ observations of the
angular distribution to constrain the models. One other source of assistance
lies in computer simulations of charged particle transport and of the formation
of parallel shocks [107,82]. Some of these suggest that strong plasma turbu-
lence may introduce a qualitatively different kind of scattering operator to that

derived analytically for weak turbulence (i.e. in the quasi-linear theory).

This thesis presents a theory of particle acceleration at relativistic
shock fronts, motivated by the application to shock fronts in relativistic out-
flows associated with quasars and AGN’s. Because of the uncertainty involved
with modelling the details of the plasma physics, the following approach is
adopted. In the main investigation, the analytic results of quasi-linear theory
are used, parameterized to allow for variations in the properties of the back-
ground turbulence, in order to permit a systematic parameter survey covering
a wide range of different types of relativistic shock front. In addition, the
possible effects of a large-angle scattering operator are discussed, using a par-
ticular shock front as an example. Such a scattering operator produces effects
similar to those seen in the numerical simulations mentioned above and has
recently been proposed as a semi-empirical method of accounting for the effects

of strong turbulence [50]. Its inclusion in this thesis is intended to indicate the
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extent to which the results of using a quasi-linear type of operator are likely

to be changed in the presence of strong turbulence.

As a preliminary, the mathematical formulation of the transport equa-
tion is presented in §II, together with a description of the models used both for
the quasi-linear type of scattering operator and for the large-angle scattering
operator. This transport equation is to be used to solve the problem of test
particle acceleration at parallel shocks propagating in a homogeneous back-
ground plasma. Of course, these conditions are somewhat idealized, but the
first-order Fermi process appears to be most effective at a shock front whose
normal is almost parallel to the plasma flow in both the upstream and down-
stream regions (“quasi-parallel” shocks), at least in interplanetary space [7].
Furthermore, homogeneity is required only on the relatively small length scale
associated with the mean free path of an energetic particle. The test particle
approximation is more drastic. Essentially, it consists of assuming that the
particles under consideration do not contribute appreciably to the pressure in
the fluid. The theory of diffusive shock acceleration has already proceeded
far beyond this stage, but, in view of the greater complexity of the present
theory, the assumption must still be retained. For consistency, it is necessary
to assume that if particle distributions are produced with a power-law index
s (see §4.3) less than 4, there exists a cut-off at high particle momenta, above
which some saturation mechanism (such as discussed in [94]) prevents acceler-
ation. In the absence of a cut-off, the pressure exerted by such a test particle

distribution would diverge.

Although relativistic shocks are considered in several papers to be
found in the literature, none of these presents the jump conditions to be ex-

pected for a gas with a plausible equation of state. Taub [97] discusses the
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Rankine-Hugoniot equations which determine the jump conditions, but does
not specify an equation of state for the fluid. Blandford and McKee [9] restrict
their considerations to the limit of an ultrarelativistic gas and Kénigl [52] uses
an approximation in which the adiabatic index of the gas (see equation 3.12)
is assumed constant, although this is not in general true. The case in which
the plasma returns to a state of complete thermodynamic equilibrium after
passing through the shock front has been dealt with by Peacock [78], as well
as another variation in which particles conserve their energy on crossing the
shock. However, it seems to be more physically realistic to make a somewhat
different assumption, namely that the kinetic energy of the upstream fluid is
distributed amongst either only the ions, or only the electrons. The equation
of state and the jump conditions across a strong shock are derived in §III under
these assumptions. In addition, since it is quite likely that electron—positron
pairs may be produced in large numbers in shocks close to the central engines
of quasars [94], the possibility of the injection of a number of pairs at the shock

front has been taken into account in computing the jump conditions.

The method of solving the transport equation is described in §IV.
This chapter forms the heart of the thesis. The method has been described
previously in a shorter and less general form [49] and has been applied to
shocks in the interplanetary medium [47]. Although similar to the Py method
familiar from the theory of radiative transfer, it is significantly different, in that
the distribution function is represented not as a sum of Legendre polynomials,
but as a sum of eigenfunctions chosen to be particularly suitable to either the

upstream or the downstream regions.

The application to relativistic shocks is presented in §V, and results

in a single value of s, the power-law index of accelerated particles for each of
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the shocks considered. Not only is a parameter survey presented, but also an
attempt is made to indicate the effects of large-angle scattering on the results.
If one assumes that electrons are the particles which are accelerated, then the
value of s is, in principle, observable, since it is related to the spectrum of
synchrotron radiation emitted [68]. In practice, the observed synchrotron ra-
diation stems from the entire source, consisting not only of the shock front,
but also of the downstream region in which the electrons cool. The size of this
region depends on the frequency at which observations are made. Electrons
which emit high frequency synchrotron radiation cool more quickly and fill a
smaller volume than electrons which emit lower frequency radiation. There-
fore, the complicating effects of large-scale inhomogeneities of the flow pattern
are more prominent at lower frequencies, whereas the “cleanest” picture of the
acceleration process is obtained at high frequencies. In §V, it is indicated how
the results fit into a current model aimed at explaining the flaring behaviour
of some quasars in the infra-red to microwave region of the spectrum [65].
Although much work remains to be done on detailed applications of the type
indicated, the preliminary results are encouraging. Relativistic shocks are ca-
pable of accelerating particles by the first-order Fermi mechanism, and produce
a power-law spectrum with an index which is close to that required by models
of the emission regions of at least some quasars and AGN’s. The uncertainty
which results from lack of understanding of the scattering mechanisms present
in strongly turbulent plasmas appears to have only a minor effect on these

results.



CHAPTER II

The Transport Equation

The purpose of this chapter is to derive the transport equation which
governs the propagation of energetic charged particles under certain simple
conditions. Since the scope of this work is restricted to parallel shocks in an
infinite homogenous medium, the only permitted spatial dependence is on the
coordinate of the normal to the shock z. The fluid velocity upstream and
downstream of the shock front, which is positioned at z = 0, are taken to be
constants, and only stationary solutions of the problem are considered. The key
point in the treatment is the use of comoving coordinates for the description of
the particles, whilst retaining the coordinates of the shock frame for the spatial
dependence. This technique is well-known in the theory of radiative transfer
[16,70,86]. Under these conditions, one arrives at a relatively simple transport

equation (2.26).

It is the processes which disturb or scatter particle trajectories which
are ultimately responsible for Fermi acceleration, and these appear in the col-
lision operator C. An explicit form for this operator is given in the quasi-linear
theory of plasma physics, supplemented by some assumptions about the nature
of the dominant MHD waves in the plasma, and their spectrum, This form is
presented and its range of applicability briefly discussed. Several problems are
known to occur when such a collision operator is adopted, for example there

is very little scattering of particles with a pitch-angle close to 90°. Further-
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more, it seems that the assumption of weak turbulence is violated even in the
application to the relatively slow shocks of the interplanetary medium. The
exact form of the collision operator given by the quasi-linear theory should,
therefore, be considered more as an indication of how to model the interaction
with turbulence, than as an exact representation of the scattering. The addi-
tional freedom gained by such a liberal interpretation can be used to remove
the difficulties associated with scattering through 90°, introducing at the same

time an adjustable parameter.

In the same vein, it is possible to generalize the quasi-linear operator
(which contains essentially only pitch-angle diffusion) to include processes such
as large-angle scattering. The motivation for such a course of action arises from
the results of computer simulations of the propagation of charged particles in
strongly turbulent plasmas [107]. The pitch-angle diffusion operator appears to
be an adequate description of the particle transport only for levels of turbulence
6B/B < 1/10. At higher levels of turbulence, particle trajectories are observed
occasionally to undergo rapid changes of pitch-angle in a short time (a few
gyro-periods) — behaviour not consistent with pitch-angle diffusion. Similar
events have also been observed in simulations of the formation of parallel shocks
[82], although in this case the particles involved were of only moderate energy.
Occasional events of this type could have a marked effect on the acceleration
process at relativistic shocks. However, a large measure of freedom is available
in attempting to model the process, so that it is to be hoped that a detailed
analysis of the simulations will be able to offer the constraints necessary for a
realistic model in the near future. As this is beyond the scope of this thesis,
only the simplest of possibilities is discussed, although the means by which

more sophisticated models could be investigated are indicated briefly.
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2.1 The Liouville Operator

The derivation starts with the unperturbed paths of charged particles

in phase-space:

dz®

ar P

dp® e a

dpf = e —~ILiD (2.1)

where z* and p* are the position and momentum four-vectors (latin indices
run from 0 to 3), 7 is the proper time, Fy' is the field-strength tensor of the
electromagnetic field, and T'¢, is a connection coefficient. The equation refers
to a particle of mass m = ,/p?p, and charge e, units are adopted in which
the speed of light is unity and the summation convention of Einstein is used.
In the absence of collisions, that is when equation (2.1) describes the motion
of the particle exactly, one arrives at the Liouville equation for the Lorentz

invariant phase-space density F, of the particles [60,25]:

dz* 0F, dp* 0F, _
dr dz* ' dr 9p*

0, (2.2)

where the index A is used in the second term because there are only three
independent components of p® for a particle of fixed mass and greek indices
are taken to run from 1 to 3.

Collisions may be accounted for by replacing the right-hand side of
(2.2) by (0Fo/T).optisionsi SOUTCes and sinks of particles may be incorporated in
a similar manner. These terms are usually evaluated in a particular frame. In
the case of radiative transfer, this would be the frame of the fluid containing the
scattering centres and the absorbing or emitting atoms. For charged particles,
the scattering arises from MHD waves, and is normally calculated in the frame

in which the fluid supporting such waves is locally at rest, although other
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frames have been considered [91]. On the other hand, the solutions of interest
are those which are stationary in the frame in which the shock front is at rest.
It is, therefore, desirable to mix the reference systems used in the Liouville
operator, expressing the position z* in the shock frame, whilst measuring the
momentum p® in the local fluid frame. Introducing the notation * for quantities
measured in the local fluid frame (quantities without a circumflex are measured
in the shock frame) and the Lorentz boost L¢ from the shock frame to the local

fluid frame, one obtains the equation [86]

~ O0F
LaAb
s P 90

op =P (C(Fo) + 8), (2.3)

in which the collision operator ¢ and the source term § as measured in the
fluid frame have been introduced. In the case at hand, the velocity four-vector
of the fluid flow is constant U?® = (I',0,0,Tu), where T' = (1 — u?)~1/2 and
the magnetic field By is in the z-direction and also constant. Thus, provided
the shock frame is an inertial frame (as will be assumed), the fluid frame is
also inertial, and the connection coefficients vanish. Then, a straightforward

calculation leads to the transport equation

~ A aFO P aFo
I‘(1+uv'u)6_t + (v +94) 5
5 3F0 A 3F0 € - 8F0 - aFo A &
TPy~ t By By + —Bo ('Uy o5, 2 aﬁ,) =C(Fo)+S. (24)

In this equation we have introduced the particle velocity & = p/p° (where
p = (p*P«)'/?) and the cosine of the pitch-angle 4 = p,/$, and have used
the notation p.,,. and 9;,, for the components of $* and #*. In problems
concerning the transport of charged particles, one is usually interested in only

the average of the phase-space density over the gyro-phase of the particles:

A

2r .
f(z5t$ﬁ,ﬁ'):_7r . d¢F0(zataﬁaﬁa¢)- (2-5)
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Further simplifying the situation to distributions which depend only on the

spatial coordinate 2, as indicated in equation (2.5), gives

1+ uv,u)%i—‘ + I (u —I-v,u,)%g = C(f) + $(f), (2.6)

in which, as in the remainder of this thesis, the circumflex notation for quan-

tities in the fluid frame has been dropped.

2.2 The Collision Operator in the Quasi-Linear Theory

The diffusion coefficients for scattering off hydromagnetic waves have
been given by [67]. The present investigation, however, will be restricted to
the case in which only Alfvén waves propagating parallel and antiparallel to
the magnetic field are considered. These are, in general, the waves with the
smallest damping rates, and can be expected to dominate the turbulence far
from the shock. [57,58,26]. Luhmann [61] has given the following expressions
for the diffusion coefficients in this approximation, including the effects of a

non-vanishing value of the Alfvén velocity v:

2nZe\’ vé‘B(kﬁ’)
D = 1—p4®)(1 - pva/v)? 2.7
wo= () MG )
pva
Dy = DpuzD#nm
2
vy
DPP = D##((U__”,UA))

where Ze is the charge of the ion, £ (kﬁ) is the spectral energy density of the
turbulence and the resonant value of the wave number is kj = 0/|va— pv| with
2 = |ZeBv/cp| the gyro-frequency in the magnetic field B. Equation (2.7),
which corrects some minor errors in Luhmann’s expression [91], includes only
forward propagating waves. The extension to waves propagating in each direc-

tion is straightforward (see, for example, [48]).
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The diffusion coefficients D,, and D,, are usually neglected in theories
of first-order Fermi acceleration. For scattering off Alfvén waves, the ratio of
Dyy to Dyp and Dy, is v/pus and (v/pua)?® respectively. Compared to both v
and u, va is small in the conditions envisaged, but the effect of the D,, and
D,, terms is, of course, qualitatively different to that of pitch-angle diffusion,
since they produce a change in the particle momentum. Nevertheless, it is
possible to make reasonable estimates of their effect. The term containing D,,
vanishes if the distribution is isotropic, but, by estimating the anisotropy close
to a shock to be |8f/du| < fu/v, one finds a rate of change of momentum
which is |Ap/At| < D,,u/v. However, particles accelerated by the first-order
Fermi process systematically gain momentum Ap/p = u/v each time a cycle
of crossing and recrossing the shock front is completed. This takes a time
At ~ v/uD,,, [22] and dominates the effect of the D, term provided 4 << u.
Similarly, second-order Fermi (or statistical) acceleration produced by the D,,
term is negligible provided (v4/u)? << u/v. This condition is fulfilled for
relativistic shocks unless the magnetic field is extremely strong — a situation
which occurs in models of Fermi acceleration as applied to neutron stars [43].
However, for present purposes, it is sufficient to consider only the pitch-angle
diffusion coefficient D,,. Assuming that the energy density in forward and
backward propagating waves of each polarization is equal, and can be modelled

by a power-law one finds:

E(ky) = a;% (k‘!]_w)_ (2.8)
where
7m0 E(N/v)
o = 5;_32/T7r (2.9)

is a dimensionless normalization of the turbulence. The expression for the
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pitch-angle diffusion coefficient then simplifies to

Duw = eafd(1 ) [l = va/ol"™ + [ + va/o]?]

= atﬂf)m,

to lowest order in v4. The dimensionless pitch-angle diffusion coefficient .ﬁw
has also been introduced in this equation. The collision operator for pitch-angle

diffusion can then be written

of
(a) " = v,C,f, (2'10)
collisions
where
v, = O{tﬂ
and
3 .~ 0
Ca - E‘D##(—?‘;. (2.11)

The function f)uu is displayed in Figure 2.1 for ¢ = 2 and va/v =1/50.
There is a prominent dip around p = 0, where I’jm, is a factor of about (v, /v)9~1
below its maximum. It is at these values of the pitch-angle at which particles
resonate with Alfvén waves of very short wavelength. A power-law spectrum
such as that of equation (2.8), implies very little scattering at such points. In
addition, short wavelength Alfvén waves suffer damping by thermal ions, which
has led to the suggestion that particles with u ~ 0 undergo no scattering at
all [34]. A detailed investigation of this effect by Davilla [21] has shown that
this may be the case for particles which are not highly relativistic. However,
several investigations of the higher order nonlinear effects of the waves on the
particle orbits [101,38,32] indicate that, in fact, a substantial amount of pitch-
angle scattering is present at small u. Thus, although f)m‘ does not go to

zero for finite v4 [26], it is nevertheless desirable to incorporate the findings of
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Figure 2.1: The pitch-angle diffusion coefficient as a function of the cosine pof
the pitch-angle, according to the quasi-linear theory. Alfvén turbulence with a
wmﬁmnq=2h%mmﬁ¢mdme%d@ammﬁﬂ=0mnm&&dumﬁmg
to the prescription of Volk et al. [102], using the parameter e. For ¢ = 0
(solid line) the Alfvén speed is taken to be 1/50 times the particle speed. For
€ = 1/30 (dotted line), € = 1/10 (dashed line) and € = 1 /3 (dot-dashed line),
the Alfvén speed is set to zero.
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the nonlinear calculations in the model for this coefficient. To this end, Volk
et al. [102] introduced a simple prescription: setting v4 = 0, they assumed
D, to be constant for lu| < € and retained the quasilinear expression for
|| > €. For various values of €, the resulting coefficient is shown in Figure 2.1.
Two remarks should be made on this procedure. Firstly, the importance of
the u ~ O region is larger for larger ¢. At ¢ = 1 there is no reduction in
Doy, which then corresponds to isotropic diffusion. Secondly, the difference
between this procedure and the alternative of taking € = 0 and leaving v,
finite is significant only for small ¢, i.e. in that part of parameter space in
which the precise dependence of f)m‘ at 4 ~ 0 is in any case less important.
For ¢ = 2, setting v4 = 0 and ¢ = ¢ is equivalent to setting v4 = ¢v and
€ = 0. As the results presented below are not very sensitive to the value of ¢,

it is justified, for the present, to adopt this simple prescription, and restrict

consideration to the representative forms of fjm. shown in Figure 2.1.

2.3 The Collision Operator for Large-Angle Scattering

The quasi-linear theory is restricted to levels of turbulence which are
much lower than those encountered in practice, so that pitch-angle diffusion as
described above is not necessarily a good model for the transport of charged
particles close to relativistic shock fronts. However, there is no theory of strong
turbulence which enables one to compute scattering operators, so that the
only alternative is to use semi-empirical forms motivated by the results of
computer simulations. One salient property of these simulations remarked
upon by Zachary [107] and Quest [82] is large-angle scattering. Consequently,
it is of interest to investigate the effect of such a scattering operator on Fermi

acceleration. Of course, there is even more freedom available in choosing a
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model of the large-angle scattering operator than is the case for small-angle
scattering, so that severe restrictions must be placed on the parameter range

to be investigated.

As a mathematical model we choose the Boltzmann collision operator
in the test particle approximation. This operator has been widely studied in
the theory of radiative transfer and neutron transport [23]. Allowing for the

possibility of absorption as well as scattering, it reads:

(%) oo ¢ {w U:l du' f (W' )p(u, “')] =F (ﬂ)}, (2.12)

where v, is the frequency of (large-angle) scattering or absorption events,
p(u, 4')du is the probability that in a single scattering a particle with pitch
p' is scattered into the range du around x and w is the single scattering albedo
[17], which is the probability that an elementary interaction is a scattering and
not an absorption event. From these definitions as probabilities, one has the

additional properties:

+1

dup(u, i) = 1, (2.13)
p(u,u') > 0 (2.14)

and
w < 1. (2.15)

In the following, we shall usually be interested in the case w = 1, i.e. pure
scattering, in order to model the effects of strong turbulence on charged par-
ticles. Further it will be assumed that the phase function for the distribution
of scattered particles is a function of only the angle ©® between the initial and

final velocity vectors; p(u,u') = p(cos ©). It is then convenient to represent
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p(cos ©) in terms of the Legendre polynomials:

pleca®) = 2(211—%-1)0“&,((:03@). (2.16)
One then has

plus ) = §(2n+1)anpn(um(u') (2.17)
17, §48].

This phase function is conventionally said to describe “anisotropic
scattering”. However, the anisotropy which it describes is restricted. Although
the phase function may depend on the scattering angle, it must, for this rep-
resentation, be independent of the direction of propagation of the incoming
particle. In modelling the transport of charged particles, it may become neces-
sary to relax this restriction, in order to allow for the presence of a background

magnetic field. Then, instead of equation (2.17), one would write

pmk) = 3 Vem DEn 1) PaomPalu),  (28)

where 0,,, must be a symmetric matrix to fulfil the principle of detailed bal-
ance.

However, for the present, we retain the simpler description and further
model it in terms of a single parameter, using the Henyey/Greenstein [33] phase

function:
1
p(cos®) = 5(1 —9*)(1+ g* — 2g cos ©)73/2 (2.19)

in which the parameter g is just the mean of the cosine of the scattering angle.

Differentiating the generating function of the P,,

(1-2gcos®+¢%)7* = 3 g*P,(cos ©) (2.20)
k=0
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with respect to g, multiplying the result by 2¢ and adding it to equation (2.20)

yields, by comparison with equation (2.19),

p(cos @) = % i(?n + 1)g" Py (cos ©). (2.21)

n=0

Together with (2.12-2.17) this then leads to the equation

ad
(a_f) = vCof. (2.22)
t collisions
The large-angle scattering operator is
+1
Ce = — [1 —wfl d,u,’K(,u,p,')O] (2.23)
where the more conventional notation K (1, i) is used for the kernel:

K(ui) = 3o Pulu) 2, (2.24)

which is just equal to the phase function p(u,p'). Here, we have introduced

the normalized Legendre polynomials P,, related to the standard P,’s by

Pa(p) = Po(p). (2.25)

The stationary transport equation including both pitch-angle diffusion

and large-angle scattering is, therefore,

D +om) ol = wCl(f) +mCulf) + S(1). (2.26)



CHAPTER III

Relativistic Shock Fronts in Fluids

Relativistic effects can be important at shock fronts for two distinct
reasons. On the one hand, the post shock temperature can be so high that the
thermal motion of individual particles approaches the speed of light. On the
other hand, it is possible that so much energy is released into a region contain-
ing fluid that the subsequent expansion proceeds at a bulk speed approaching
that of light. It is certainly possible for the former effect to arise when all bulk
velocities are quite modest. For example, a hot plasma in which the pressure
is provided predominantly by photons is always relativistic in this sense, and
behaves as a gas whose ratio of specific heats is 4/3. If the mass density in
such a plasma is dominated by atoms or ions, there exists a sound velocity
which is determined by the pressure of the photons and the inertia of the ions
and which can be small compared to the speed of light. In the subsonic zone
downstream of a strong shock front in such a plasma, the bulk speed is, of
course, less than this sound speed, whereas the upstream fluid speed (provided
it is still nonrelativistic) is equal to seven times the downstream speed. Such
conditions can occur in several astrophysical situations e.g. in the break-out
phase of a supernova shock front, or in a standing shock in an accretion flow
onto a neutron star, or in the radiation dominated phase of the early universe
[62,11,46]. In contrast, it does not seem possible for a relativistic bulk flow to

be thermalized by a shock front without producing thermal velocities which



22

are also relativistic. As a consequence, it is essential to consider the fully
relativistic equation of state of a plasma before proceeding to investigate the
possible jump conditions.

Astrophysical plasmas are rarely observed to be in full thermody-
namic equilibrium. Indeed, the time required for a diffuse interplanetary or
interstellar plasma to relax to such a state by two-body collisions is normally
prohibitively long. On the other hand, some components of a plasma may reach
a state close to that of equilibrium by means of collective interactions, but this
does not mean that the individual components necessarily reach equilibrium
with each other. The jump conditions for relativistic shocks which are derived
in this section depend sensitively on exactly how the upstream kinetic energy
is converted into thermal energy in the various components of the downstream
gas. In the absence of any detailed theoretical model, the best approach is to

investigate several possibilities. Four will be considered:

1. The downstream plasma reaches full thermodynamic equilibrium.

2. The electrons in the downstream region remain cold, the pressure being

provided by the ions.

3. The ions in the downstream region remain cold and electron pressure

dominates.

4. Electron—positron pairs are produced at the shock front and they, to-

gether with the original electrons, provide the pressure.

Each of these options is a plausible model of the potentially complicated effects
of a collisionless shock front [98]. The first assumes that collective processes in
the shock are effective in coupling the electron temperature to that of the ions.

The second assumes that the carriers of kinetic energy in the upstream zone —
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which are the ions — retain this energy and thermalize it amongst themselves.
The third assumes the opposite, and might occur if the collective processes
which mediate the shock are ones which heat predominantly light particles —
electrostatic modes, for example. The fourth takes account of the fact that the
electron temperature behind a relativistic shock can easily attain values in the
MeV range, in which case significant numbers of electron—positron pairs could
be produced.

For each of these possibilities, the equation of state of a plasma con-
sisting of a mixture of fully ionized hydrogen and helium, together with the
associated electrons, is investigated. (The third and fourth cases are identi-
cal for this purpose.) The main factor complicating the relativistic equation
of state is that the mean particle energy is no longer directly proportional to
the temperature, as it is in the nonrelativistic case, necessitating a numerical
approach. Following this, the jump conditions for a strong shock are derived
by demanding continuity of the particle, momentum and energy fluxes at the
shock front. The possibility of electron—positron pair creation is included by

relaxing the equation of continuity of the particle flux.

3.1 Equation of State

Assuming that the fluid under consideration behaves as a classical
ideal gas, the phase-space density of the fluid particles fi (where ¢ labels the

constituents of the fluid) is simply given by
fi < exp(—E/Ty) (3.1)

[96], where T; is the temperature associated with the i’th constituent (Boltz-
mann’s constant is set equal to unity) and E = p° is the particle energy. The

components of the stress-energy tensor T%* for each constituent are related to
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the phase-space density by

T — f %{’ apd g, (3.2)

This tensor is diagonal provided, as assumed here, that f; is isotropic in the
frame considered. The total energy density e¢; (including the rest-mass) of the
¢’th component is the element 7°° and the pressure P; is equal to each of the
other diagonal elements. The equation of state follows in a straightforward
manner by elimination of the constant of proportionality in equation (3.1).

Denoting this constant by A, one has

g = drd fo ” dpp*Eexp(~E/T)) (3.3)
47 [ pt
Po= ZA[" dpZexp(-E/T), (3.4)

and for the number density n;:

n; = 47rA/0 dppzexp(—E/J}). (3.5)

With the use of the relation E = \/m} + p? (m; is the rest-mass of the particles
of the 7’th constituent) and some standard integrals, the equation of state for

a single component is obtained:
€e; = m,-n,-R(m;/T.-) (3.6)

where the function R is defined according to:

R(z) =2+ % (3.7)

with K, (z) the modified Bessel function of order v. In addition, the ideal gas

law
P; =n; T (3.8)

follows from equations (3.4) and (3.5). The fluid we wish to investigate is

composed of fully ionized helium and hydrogen, together with the associated
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electrons. Summing over these, one has for the total pressure P, energy density

e and “rest-mass density” p:

P = Y "nT; (3.9)
e = Zm;n,R(m,/T,) (3.10)

po= > mn,. (3.11)

(Note that the Einstein summation convention does not apply in this chapter.)
The equation of state for the fluid as a whole is best presented by defining a

quantity I'eq, in analogy with the ratio of specific heats [9]:
P = (T, —1)(e — p). (3.12)

Three cases are of interest: equilibrium (T; = T, for all t), ion pressure (Ty =
Tge = T, T. = 0) and electron pressure (Ty = Tg, = 0, T, = T). T,q can
then be found from equations (3.6-3.11), given the composition and either
the energy density, or the pressure, or the temperature T'. Finding the jump
conditions requires one to evaluate I'y; as a function of the average Lorentz
factor of the fluid e/p. This involves solving (3.10) numerically to find T (note
that R(oo) = 0). Since the right hand side of (3.10) is a monotonic function
of T, there is no difficulty in finding a suitable algorithm. Then, using the
pressure computed from (3.9) and (3.8) enables I'y4 to be evaluated by means
of equation (3.12).

In the nonrelativistic and ultrarelativistic limits it is possible to sim-
plify the equation of state considerably. At low temperatures, the function
R of equation (3.7) may be evaluated using the asymptotic expansions of the

modified Bessel functions for large argument:

3
R(z) -1+ 3, Wz—0 (3.13)
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Thus, not only is the partial pressure of each constituent of the gas proportional
to the temperature (equation 3.8) but the contribution to the energy density

fulfills an equally simple relation;

3
e = n;m,-+§n,-1",-. (3.14)

3
n;m; + ER (3.15)

Because the definition of the ratio of specific heats in equation (3.12) has been
chosen to exclude the rest mass contribution to the energy density, one obtains
independent of T; and n; the value Ty = 5 /3, as expected for a nonrelativistic,
monatomic gas.

In the opposite limit of very high temperature, the expression for R
may be simplified by expanding the modified Bessel functions for small values

of the argument:
3
R(z) =1+ S forz<<i (3.16)
and the resulting energy density is given by

e ~ 3nTL. (3'17)

= 3P, (3.18)

This time, one obtains — again independent of T; and n; — the value Lot =4/3,
appropriate for a gas of ultrarelativistic particles. In a similar manner, one
may obtain I'y4 for a gas composed of nonrelativistic ions and ultrarelativistic
electrons at equal temperature. If just protons and electrons are present, the
result of applying both approximations (3.13) and (3.16) is ['aq = 13/9.
Figure 3.1 shows the results of numerical calculations of the equa-
tion of state. The quantity I';; tends to the nonrelativistic value of 5 /3 for a

monatomic gas in each of the three cases investigated. At higher values of the
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Figure 3.1: The equation of state of a gas consisting of fully ionized hydrogen
and helium (25% by mass). Plotted is the ratio of specific heats, as defined in
equation (3.12), as a function of the average Lorentz factor e /p. The abscissa
has been chosen as the logarithm (to base 10) of the average Lorentz factor
minus 1, to show the nonrelativistic regime in detail. Three cases are shown:
thermal equilibrium (solid line), electron pressure only (dotted line) and ion
pressure only (dashed line).
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average Lorentz factor e/p the value of I,y for the gas dominated by electron
pressure falls off first, reaching the value 4/3 appropriate for an ultrarelativis-
tic gas well before the average Lorentz factor (always evaluated for the gas
as a whole) significantly exceeds unity. Such behaviour is easily understood,
because the Lorentz factor of the electrons, which determines I'a4 in this case,
is much larger than the average Lorentz factor of the entire fluid. A similar fall
off occurs in the case of full thermodynamic equilibrium. However, at moder-
ate values of the average Lorentz factor, nonrelativistic ions contribute to the
pressure, so that a plateau region is reached where I',y ~ 13 /9. Only when
the ions themselves become relativistic does I'y4 tend to the value 4 /3. If the
pressure is supplied by ions alone, the result is similar in form to that obtained
when only electron pressure is present. However, the curve is shifted to higher
Lorentz factors by a factor of roughly 2000.

Figure 3.2 shows essentially the same as Figure 3.1, except that the
temperature found by a numerical solution of equation (3.12) is plotted in the
abscissa. As the temperature is given in units of the electron rest mass, it can
now clearly be seen that the fall off of the curve describing the case of electron

pressure occurs when these particles become relativistic.
3.2 Jump Conditions

The equations of hydrodynamics can be expressed as the vanishing

divergence of the stress-energy tensor:
T, =0. (3.19)

From a knowledge of the explicit form of 7% in the fluid frame it is straight-

forward to write down this tensor in an arbitrary frame in terms of the four-
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Figure 3.2: As in Figure 3.1, but with the logarithm of the temperature in
units of the electron rest mass as the abscissa.

velocity U? of the fluid:
T = wUU* + Pg™, (3.20)

[56] where ¢g* is the metric tensor (signature —+++) and w is the enthalpy
density measured in the fluid frame: w = e + P.

Integrating equation (3.19) over a volume element which is contained
between two surfaces, one just in the region upstream of a shock front and one
just in the downstream region and applying Gauss’ theorem leads to equations
for the continuity of the energy and momentum fluxes across the shock. Placing
the shock in the z—y plane, and taking both the upstream and downstream fluid

velocities along the z-axis (i.e. U* = (U°,0,0,U,)) gives

[wt.U°] = o (3.21)

[wU?+P] = o, (3.22)

where the notation [z] means the difference in the quantity z measured just
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upstream and just downstream of the shock front. These equations can be
supplemented by one describing the conservation of particle flux across the
front. However, since we wish to allow for the possibility of the production of
electron—positron pairs at the shock front itself, such an equation can be valid

only for the ions and their associated electrons:
[nU:] =0.  (for conserved constituents) (3.23)

The rest-mass density associated with such conserved particles will be denoted
by p- (upstream) and p; (downstream). Then the rest-mass density ppgirs
of particles created at the shock can be conveniently parameterized by the

quantity

P+
N=— 3.24
P+ + Ppairs ( )

which lies between 1 (no pairs) and 0 (pairs dominate the rest-mass density).
Equations (3.21), (3.22) and (3.23) can be simplified by the introduction of the

following notation: let the quantity ¢ be defined by

U° = cosh¢. (3.25)
Then one has

U, = sinhg. (3.26)

Further, using again the suffix + to indicate upstream and downstream, the

fluid velocity is
Uy = tanhqﬁ:t (3.27)

In terms of the energy per unit rest mass &- = e_/p_ and &, = e+/(p+ + Ppairs)

(we assume that pairs are present only in the downstream plasma) and the
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similarly defined pressure per unit rest mass P, one obtains

p+sinhg, = p_sinh¢_ (3.28)
(e + P,)sinh?¢, + P, = qu [(z- + P_)sinh?g_ + P (3.29)
+

(e+ + P;)sinh¢, coshg, = r,'i:sinhq&_ coshg_(e- + P_).  (3.30)
+
Elimination of p; /p_ leads, after a little manipulation, to

wicoshéd, = nw_coshe_ (3.31)

and
p 2
14 P_ccith d_

e_

(wicosh’¢, —&;) = ne_sinhg, sinhé_ ( ) ,  (3.32)

where Wy = & + P;. The last term on the right-hand side of equation (3.32)
can be neglected if one restricts one’s consideration to strong shocks, i.e. to
shocks in which the upstream pressure is negligible. This approximation may
be extended by assuming the upstream medium is cold, in which case the
gas possesses only that energy attributable to its rest mass: & = 1. Then,

eliminating cosh¢,, one has

72 (52 2
hid. = wy (el —n )_ ;
cosh’d (@ — ni— P (3.33)

which is a generalization of the relation given by Peacock [78].
Alternatively, one may obtain from equations (3.31) and (3.32) the

relation

€ = cosh¢_coshg, — npsinhé_sinhg, (3.34)
= cosh(¢_- — ¢;) (for n =1) (3.35)
valid for strong shocks which do not produce pairs. The right-hand side of this

expression is just the Lorentz factor associated with the relative velocity of the

upstream fluid with respect to the downstream fluid. Thus, when &_ = 1 and
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pairs are absent, the energy per particle is constant across the shock, as seen
from the frame of the downstream fluid [35,9].

For a given upstream velocity u_, equation (3.33) must be solved
numerically to give the downstream parameters. The procedure is as follows:
u- determines coshg_ through the relation cosh¢_ = (1 — u2?)~1/2, The right-
hand side of (3.33) is a function of the single parameter €. — which is termed
the average Lorentz factor in the previous section — since the pressure P, is
given through the equation of state I';4(2;) and the relation (3.12). A root
finding algorithm can therefore be used to find &,. By means of equation (3.31),

which specializes to

coshd, = mlcoshgﬂ_, (3.36)
+

one finds the downstream velocity u..

Before proceeding to discuss the results of the numerical solutions, it
is instructive to consider the two limits in which the equation of state takes
on a simple form. In the absence of pair production (m = 1) and at low
temperatures, the use of equation (3.15) enables equations (3.33) and (3.31)

to be written

16 _
ul = 3 P+ (3.37)
and
2 15
o= 3P (3.38)

from which one readily deduces the well-known jump conditions for a nonrel-

ativistic strong shock in a gas of Ty = 5/3:
u. = 4Ur+. (339)

The ultrarelativistic case is best considered without imposing the restriction

to strong shocks. The equation of state (3.18) can then be applied in both the
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Figure 3.3: a) The downstream velocity u, as a function of the upstream
velocity u_ for a strong shock in an ideal gas under the assumption that the
pressure is provided either by the electrons alone (dotted line), or by the jons
alone (dashed line), or that the gas is in full thermodynamic equilibrium (solid
line). b) The logarithm of the temperature (in units of the electron rest mass)
behind the shock front. Electrons are relativistic for log(T') > 0, whereas ions
require log(T) > 3. When both ions and electrons contribute to the pressure,
a lower temperature is achieved behind the shock front.

upstream and downstream regions. Returning to equations (3.31) and (3.32),

one finds, after a straightforward calculation,

1
-ty = 2 (3.40)

This is the simplest jump condition available which is valid in the relativistic
regime. It is independent of the composition of the plasma and the presence
or absence of pair production; as such, it has been used to illustrate the basic
properties of acceleration at relativistic shocks [49]. The case of a strong shock
arises when the upstream velocity tends to the velocity of light u_ — 1. The

downstream velocity is then u, = 1/3.

The jump conditions as calculated numerically are shown in Figure 3.3.
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Without pair production (7 = 1), three cases are considered. Figure 3.3a shows
the downstream velocity as a function of the upstream velocity for each of these.
At very low upstream velocities, the downstream medium remains nonrelativis-
tic and the jump conditions are given by equation (3.39). However, as can be
seen from Figure 3.3b, where the temperature of the downstream medium is
shown, the electrons quickly become relativistic as the upstream velocity is
increased. There follows a region in which the compression ratio of the shock
is 1/7, when only electron pressure is included. This corresponds to the result
obtained for a gas with a relativistic equation of state, equation (3.18), in non-
relativistic motion. As can be seen from Figure 3.3b, the ions start to become
relativistic only when the upstream velocity approaches unity. Consequently,
when only ion pressure is present, there exists a large region of parameter
space 0 < u_ < 1/2 within which the compression ratio is 4, as in the case of
a nonrelativistic monatomic gas. If the pressure in the downstream medium
is provided by the electrons alone, the equation of state is “soft”, leading to
a higher compression ratio than is the case when the ions contribute to the
pressure. The case in which complete thermodynamic equilibrium is assumed
is intermediate in both the softness of the equation of state (Figure 3.1) and
the resulting compression ratio. As the upstream velocity tends to unity, each

of the three curves tends to the limit of the strong relativistic shock uy — 1/3,

The results of permitting various numbers of electron-positron pairs
to be created in the shock front is shown in Figure 3.4. The equation of state
remains the same as that obtained when only electron pressure is present.
Nevertheless, Figure 3.4 shows that except for very high upstream speeds,
there is a marked increase in the compression ratio as the number of pairs is

raised. This can be explained as the result of having more particles available



35

(a) (a)

LT T T T T T T T T T T ¥
0.4F — 2Fr -
0.3fF . ~ ]

[ ] 2 L ]

] S I} [ b

b e

] o [ 1
o

4 ]} N
0‘ -

; 13 |

4 Ly 1

] o0 ]

] (o) )

- | )

0.0F ] _—

o | " 1 i 1 i 1 " 1 A 1.3 3 i 1 1 i 1 1 1

0.6 0.8 1.0 0.6 0.8 1.0
u_ U

Figure 3.4: a) The downstream velocity u, as a function of the upstream ve-
locity u_ for a strong shock under the assumption that the pressure is provided
by the electrons and electron—positron pairs created at the shock front. The
number of pairs is controlled by n of equation (3.24). The cases n = .99 (dot-
ted line), 0.95 (solid line) and 0.9 (dashed line) are shown. b) The logarithm
of the temperature (in units of the electron rest mass) behind the shock front.
Pairs are very effective at supporting the shock front, so that in their presence
a much lower post-shock temperature is obtained.

to transport away from the shock the energy and momentum fluxes brought
in from upstream. A lower fluid velocity then suffices. Furthermore, since the
density is increased by the presence of pairs, a lower temperature is obtained
behind the shock, as may be seen in Figure 3.4b. Once again, as the upstream
velocity tends to the speed of light, the limit of an ultrarelativistic strong shock
is approached, independent of the number of pairs produced.

In summary, a variety of jump conditions may occur at a strong rela-
tivistic shock. If electron pressure dominates, a large compression ratio is ob-
tained — as a result of the soft equation of state. The production of pairs at the
shock front further increases the compression ratio. The smallest compression

ratios are obtained when the pressure is dominated by the ions. Thermody-
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namic equilibrium produces results intermediate between these two extremes.
As the upstream speed tends to that of light, all cases tend to that of a strong

ultrarelativistic shock with u_ = 1 and uy = 1/3.



CHAPTER 1V

The @ Method

The stationary transport equation (2.26) is an equation for the distri-
bution function f(p,u,2) in two independent variables z and pu. The variable
p enters as a parameter, since neither the Liouville operator, §2.1 nor the col-
lision operators considered in §2.2 and §2.3 operate on p. Depending on the
character of these operators, the equation is either a partial differential equa-
tion or an integro-differential equation. A standard method of attacking the
problem of solving such equations is the separation of variables. Fortunately,
this is always possible in the problem to be treated here and, as is usually
the case, the technique reduces the equation to an eigenvalue problem. In the
theory of the transfer of neutrons in fission reactors this technique was used by
Case [15] in order to solve the so-called “single-speed transport equation”. The
collision operator for neutrons is that of large-angle scattering (2.3) for which,
as is discussed below, the eigenfunctions are singular. Thus the method came
to be known as the “singular eigenfunction method”. In the theory of radia-
tive transfer, the same equation is obtained when the approximation of “grey”
opacities is made, or when the medium gives rise only to coherent scattering
of photons and not to absorption. Early work on solutions of this equation —
including the celebrated Milne Problem [71] — employed the related technique

of integral transforms [105,17).

In principle, the problem at hand can be solved by the singular eigen-



38

function method. The only generalization of the single-speed transport equa-
tion arises because we are interested in transport in a moving medium, whereas
only stationary media have been considered in previous applications. How-
ever, to compensate for this complication, the present problem is in some ways
simpler than that in which only the large-angle scattering operator appears.
In particular, if the collision operator for pitch-angle diffusion is adopted —
which will be the case for the major part of the investigation — the eigenvalue
problem is a second-order differential equation of the Sturm type [40]. The
eigenfunctions are then no longer singular, which renders feasible the task of
expressing the solution as a finite sum over these functions. As is demonstrated
in §4.1, this advantage remains even when the collision operator is modified to

include a contribution from large-angle scattering.

Although the pitch-angle scattering operator results in a relatively
simple eigenvalue problem, it does not appear possible to express the eigen-
functions in closed form. A direct numerical integration of the equation would,
of course, be possible. However, it turns out that only a few eigenfunctions
are required to represent the solution accurately, so that a Galerkin method
is adequate. This method is described in detail in §4.2. It consists of express-
ing each eigenfunction as an expansion in “trial functions” plus a remainder,
and then demanding that the remainder be orthogonal to the trial functions
themselves [29]. The Galerkin method has one further advantage: if Legendre
polynomials are used as the trial functions, much of the formalism is similar
to that of the “Py method” of radiative transfer [80]. Treatment of the large-
angle scattering operator in terms of the Henyey—Greenstein phase function,

equation (2.19), is then considerably facilitated.

Once the eigenfunctions have been found, the general solution of the
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stationary transport equation with constant fluid speed u can be written down.
For a shock front, one obtains the general solution in each half-space: the
upstream region, and the downstream region. Boundary conditions can be
imposed on these solutions at large distances from the shock. Thus, the re-
quirement that the distribution not diverge far upstream of the shock limits
those eigenfunctions which may be employed in expressing the solution in the
upstream region, and a similar limitation can be found for the downstream
solution. However, these conditions do not suffice to determine the solution
completely. In addition, it is necessary to decide upon what happens to the

distribution at the shock front itself.

The simplest condition — that the distribution be continuous across
the shock front — is also the one with the strongest physical motivation. What-
ever the collective processes are which succeed in thermalizing the energy of
the upstream fluid as it passes through the shock front, it is unlikely that they
are the same as those responsible for the scattering of energetic particles in
the plasma. If, for example, an electrostatic potential barrier decelerates the
upstream fluid, the potential drop must be of the order of the kinetic energy
of an ion in the upstream fluid. An ultrarelativistic particle such as those
considered here has, by assumption, a much higher energy, so that the slight
acceleration or deceleration suffered by it on crossing the shock is negligible.
Similarly, if waves operating at the ion-cyclotron resonance are responsible for
the formation of the shock front (as is currently thought to be the case for
parallel shocks [82]), these will have negligible effect on the ultrarelativistic

particles because of the much smaller gyro-frequency which they possess.

Continuity of the distribution function across the shock front com-

pletes the specification of the problem. However, it is not an easy condition
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to implement. Only when the momentum dependence of the distribution as-
sumes a simple form does the problem become tractable. Since the scattering
operator is independent of momentum, a power-law distribution in momentum
will result if the boundary conditions far from the shock front can be formu-
lated in a momentum independent manner and the matching condition at the
shock front also does not introduce a momentum scale. This is the case for
ultrarelativistic particles, for which v = 1, irrespective of the fluid velocities.

It is also true provided all particles are much faster than the fluid v >> u.

Physically, a power-law solution means that no momentum scale has
been introduced into the problem. One obvious momentum scale is that of a
particle whose velocity equals the fluid speed (either downstream or upstream)
and such particles may not be represented by a power-law distribution. In
the application to relativistic fluid flows, the energetic particle velocity, being
limited by that of light, is always comparable to the fluid velocity. Hence, a
power-law solution can be found only for ultrarelativistic particles, and the
treatment of §4.3 is restricted to this case. Suitable boundary conditions are
discussed in §4.3, where the details of the matching procedure at the shock
front are also presented. The problem is thus formulated as that of finding the
power-law index of the distribution of accelerated particles, given the upstream

and downstream fluid velocities and the nature of the scattering.

4.1 The Eigenfunction Expansion

Separating the variables in the stationary transport equation (2.26),

leads to the general solution expressed in the form

o0

f= > a(p)Q(n)exp(Aiz/Tv), (4.1)

i=—co
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where the g;(p) are arbitrary functions of momentum. The eigenvalues A; and

eigenfunctions Q¥ (u) are solutions of the equation

ds @ .
VsaDuani (P‘)

+u [w f_ jl du' K (p, ') Q7 (u’)} =[Ai(v+u) + v QF (1), (4.2)

where v = u /v, is the ratio of the fluid speed to the particle speed. In this
section, the explicit dependence on the velocity of the accelerated particles
is retained, since the eigenfunction method finds application to low energy
particles in the solar wind [47]. Only in §4.3 is it essential to specialize to the
case v = u. The boundary conditions to be imposed on equation (4.2) are that
f),man’ (1)/Op =0 at u = +1. Since the pitch-angle diffusion coefficient itself
is zero at these end points, the boundary condition amounts to a regularity

condition on the eigenfunctions.

4.1.1 Pitch-Angle Diffusion

When only pitch-angle diffusion is considered (v, = 0), equation (4.2)
is a second-order linear differential equation of the Sturm type, although it is
not the most commonly encountered case because the weighting function (v+p)
changes sign within the interval under consideration (—1 < g < 1) for particles
which move faster than the fluid (|| < 1). Richardson [84] has called this the
‘Polar Case’ (see also [40]). There are an infinite number of discrete eigenvalues
which occur in pairs A®) such that A®) > 0 and A < 0,fori = 1,... co. The
only limiting points are at +oco. In addition, there is the eigenvalue A(©) = 0,
with the eigenfunction Qo(x) =constant. The eigenfunctions are orthogonal

on the interval [—1,+1] with the weighting function (v + W):

" QW) + QW) =0 [for i 5], (4.3)

-1
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However, some care is necessary with the normalization. Rewriting equa-
tion (4.3) leads to

+1

dp QY (1) (v + 1) Q% ()

Il

-1

o e 5 Duis) (44

E i r BQV(M) BQV(.U')
— _Zs D i J ;
A s dp Dy B_p, Ay (4 5)

valid for 1 # 0. For ¢ = j, the integrand on the right-hand side of equation (4.5)

is positive definite. Consequently, the most convenient normalization is

+1 Vs

L, QI+ eIk = 1, % (4.6)

in which case

o 0QF (1) 0QF (k)
D : L
f—1 @ Doy ou ou

4.1.2 Large-Angle Scattering

When only large-angle scattering is included (v, = 0) the eigenvalue
problem is a homogeneous, linear, integral equation (in fact, a Fredholm equa-

tion of the second kind [66]):

v f:l du' K (p, 1) Q5 (1) = [Ai(v + 1) + ] QY (n). (4.8)

It can easily be shown that the eigenfunctions of this equation also satisfy the
orthogonality relation (4.3). However, the spectrum of the eigenvalues is very
different in this case. For values of A; such that the factor on the right-hand
side of equation (4.8) has a zero for —1 < p < +1 it is clear that a well-behaved
eigenfunction does not exist. In fact, such values of A; belong to the continuous

spectrum of the equation. Defining

)\,’ = Ug/A;‘, (4‘9)

this range corresponds to

—1l—v<A<l—yp, (4.10)
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Figure 4.1: The graphical determination of the eigenvalues (A;) for the
isotropic, large-angle scattering operator. The discrete eigenvalues are posi-
tioned at the intersections of the curves y = y; = v + A (dash—dotted line)
and y = y2 = coth(1/wA) (solid lines) and the continuum lies between the
intersections of y = v + A and the lines y = 1 (dotted lines). The asymptote
of y; is shown as a dashed line, the values v =1/4 and w = 3 /4 being used in
this example.

where the suffix has been dropped in order to emphasize that the eigenvalue
forms part of a continuum. The position of the continuum is independent of

the kernel K and of the albedo w.

In addition to the continuum, there also exists a discrete spectrum of
eigenvalues. For the simple case of K = 1/2, for example, which corresponds to
isotropic scattering (¢ = 0 in equation 2.19), the left-hand side of equation (4.8)
is independent of p. As the equation is homogeneous, one may choose the

normalization of the eigenfunctions such that

+1
dp QY (u) = 1. (4.11)
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The eigenfunctions are then simply

Vew
v+ )+’

Q¢ (w) = 2 TA (4.12)

and the eigenvalues are found by inserting this expression into the normaliza-

tion condition equation (4.11). This results in the equation

Ajw ANi+rv+1
) = 1 .
L(\) 5 n )\,--i—u—l” (4.13)
= 1
or, equivalently,
Nty = th(l) 4.14
i =% 0 o) (4.14)

Considering the normalization condition for continuum eigenfunctions indi-

cates the form they must assume:

Q" (k) +[1 =LA+ v + p), (4.15)

YTy
where P denotes the Cauchy principal value. The solution of equation (4.14)
is best considered graphically. Figure 4.1 shows the functions y; = A + v and
yz = coth(1/wA). The intersections of these two curves give the locations of the
discrete eigenvalues A;. For large A, y, — wA and for A — 0%, y, — £1. Tt can
be seen from the figure that there are two discrete eigenvalues of opposite sign
which are placed symmetrically with respect to the origin for v = 0. However,
if the function y, and the asymptotes of y, have the same slope, which occurs
for w = 1, then each of these roots goes to infinity when y; passes through the
origin (v = 0). If y; has a positive intercept on the y—axis between 0 and 1 (i.e.
0 < v < 1), only one of the roots goes to infinity, the positive one remaining
finite. It can also be seen from Figure 4.1 that the discrete eigenvalues are
always outside of the continuum, which lies between the intersections of y;

with the lines y = +1.
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An infinite eigenvalue X; (i.e. A; = 0) corresponds to an eigenfunction
which is a constant, implying that a homogeneous, isotropic distribution is
a solution of the stationary transport equation. Physically, this can happen
only in the absence of absorption, as seen from the figure. Furthermore, if
the solution to the transport equation is assumed to be stationary in the fluid
frame (v = 0), an isotropic distribution is the only physically permitted solu-
tion in a semi-infinite domain, since all other eigenfunctions acquire a spatial
dependence which diverges either as z — co or as z — —oo. Only the presence
of a finite speed of the fluid in the frame in which the solution is stationary
permits one to balance the transport due to scattering against advection by
the fluid. Then, far upstream (z < 0 for v > 0) of a boundary or shock front,
the solution tends to the eigenfunction corresponding to the single, discrete,

positive eigenvalue and decays exponentially according to this eigenvalue.

Finding the discrete eigenvalues for more general forms of the kernel
is somewhat complicated. However, it is interesting to note that the scat-
tering phase function corresponds to a class of kernels about which much is
known. Thus, because of the normalization property (2.13) and the symmetry
K(z,y) = K(y,z) the kernel belongs to the Schmidt-Hilbert class [23]. Fur-
thermore, the kernel of equation (2.17) is degenerate provided the series may
be truncated after a finite number of Legendre polynomials. Under these con-
ditions, equation (2.18) may also be cast in degenerate form by diagonalizing
the symmetric matrix om,. One useful application of these properties is that
they enable one to conclude [20] that the number of discrete eigenfunctions of
the kernel (2.17) is less than or at most equal to the highest order polynomial

used in the expansion.
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4.1.3 The Mixed Operator

Whereas in the case of pitch-angle scattering the spectrum of eigen-
values is known to be purely discrete and in the case of large-angle scatter-
ing, a continuum is known to be present, little seems to be known about the
spectral properties of mixed integral and differential operators. However, the
singular eigenfunctions of §4.1.2 are associated physically with the unscattered
component of a collimated beam of particles (or photons) injected into the
medium. The exponential decay of this component along the path of the beam
requires that the system have eigenvalues with the same spatial dependence:
exp [(£2/(v + p)]. These are indeed provided by the continuum for all |uz| < 1.
Once an amount of pitch-angle diffusion is introduced, however, there are no
longer any unscattered particles in the medium. As soon as a particle enters,
it begins to suffer a continuous deflection of its trajectory by the pitch-angle
diffusion process. Thus, one concludes on physical grounds that the spectrum
of the mixed operator need not contain a continuum, which leads one to sus-
pect that the spectrum of the mixed operator is similar to that of pitch-angle
diffusion i.e. purely discrete. Support for this suspicion can be found in the
assertion of Kato [41] that continuum spectra are “rather unstable” as well as

in the results of the numerical evaluation presented in §4.2.

4.1.4 The Diffusion Approximation

As noted in §4.1.2, a physically acceptable distribution function up-
stream of a boundary or shock front can be represented solely in terms of those
eigenfunctions corresponding to positive eigenvalues. Far upstream, only the
eigenfunction of the smallest positive eigenvalue A;=; survives. This function,

therefore, must represent a physically acceptable distribution function. For
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example, it may not possess a zero in the range —1 < u < 1.

In the diffusion approximation, it is assumed that the distribution
function is everywhere close to isotropy. Applying this idea to the region far
upstream of a shock front suggests that some information about the eigenvalue

Ai=1 and its eigenfunction Q¥ (4) may be gained by a perturbative approach.

This is indeed the case.

Assume that the eigenfunction in question can be approximated by

Qi(r) o 1+ g(u)+ h(w) (4.16)

where
: dug(u) = /_jl dp h(p) = 0, (4.17)
g(u) ~O(e)y,  h(u) ~O(¢?) and e<<1. (4.18)

Substituting into equation (4.2) (with v, = 0), without making any additional
assumptions concerning the ordering of the terms, immediately leads to the
conclusion that A; cannot be larger than ~ O(e). Collecting all the terms of
O(e) leads to an ordinary differential equation for g which can be integrated
to give:

2

A d
V*’Dm&ﬁ = Ay (V,u + —'(-;—) + constant. (4.19)

According to the boundary conditions on the eigenfunction, the right-hand
side of equation (4.19) must vanish for y = £1. Therefore, one concludes that
the ratio of velocities v must be of order € or smaller for the present approach
to be valid. In this case, another integration yields:

p 1 == g
f d,u,' —.\"-‘u'— (420)
0 D”:#r

Ay
2v,

g(m) =

which leads to:
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Al B 1~ ﬂz'z
(514 = 1-— f dy ——. 4.21
(k) 2v, Jo K Do (4.21)
‘_ ne The constant of integration here is chosen from the constraint (4.17), assuming,

for simplicity, that f),‘,, is an even function of u.

Turning now to the equation for terms O(€?), this may be integrated

once to give:

- dh

12
u,Dm,@ = Ay [uu + f_ . dy' y,'g(,w')] + constant,. (4.22)

Once again, the right-hand side must vanish at y = +1, which leads this time

to the requirement

e

+1
d f el I o
e w'g(u) 1\21/ (4.23)

and, hence, to an expression for the eigenvalue:

~ 1 —‘.i 2 291
y . 7 +1 1—
1 Ly, Y[ X C,l‘.‘}, (\ ")w.: : A = 8y [ du —'—( = - ) ] ; (4.24)

& ‘b!,, IS - Hy
These expressions provide a useful test of the Galerkin method described in
§4.2 below. To express them in terms of the spatial diffusion coefficient K, note

that this coefficient relates the gradient of the particle density to the flux [24].

One then has:

kK = V,V‘szAl. (4.25)

4.2 Numerical Evaluation of the Eigenfunctions

The Galerkin method adopted here consists of writing the eigenfunc-
tions in terms of a number of trial functions and a remainder. Using the first
N + 1 normalized Legendre polynomials as trial functions, one has

Qi (k) = [i Pn(ﬂ)q,‘;l + R¥(m). (4.26)

n=0
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Now, the coefficients ¢; are determined by imposing the requirement that the
remainder R} (u) be orthogonal to the trial functions 7, (). When substituted
into equation (4.2), this results in an algebraic eigenvalue problem:

N N

,;1 Smntr; = —A; ;:%Wmnq:i [m=0,...N]. (4.27)

The symmetric matrices S and W are defined by

B H . dPa(p) dPa(k) i
Swn = T [./;1 dp D, an du + Vebmn(l —wg™)  (4.28)
and
+1
Wi = / _ du (v + 1) Pr() Palm), (4.29)

where the form of the kernel given by equation (2.24) has been used. The
matrix W of the weighting function has the elements W,,, = v and W,,,_; =
W sin =n) V4n? —1.

In order to solve the generalized eigenvalue problem of equation (4.27)
one may proceed by inverting either the matrix W or the matrix S, so reduc-
ing the equation to a standard eigenvalue problem. However, the matrix W,
although symmetric and tridiagonal, may be singular, depending on its order
(N +1) and on the value of v. This is the case, for example, when N = 1 and
pr == 1/\/5 Fortunately, it is always possible to invert S, either directly, or
after eliminating the row and column with m = 0 and n = 0. This can be de-
duced from a simple physical argument: consider the time-dependent, spatially
homogeneous transport equation for a stationary fluid (¢f. equation (2.6))

i

= = (). (4.30

Separating the variables ¢t and p (contained in C) leads to the standard eigen-

value problem for the matrix —S. The time dependence of the solution is
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determined by the eigenvalues of S. According to the H-theorem, which ap-
plies to both the Fokker-Planck type of collision operator (of which pitch-
angle diffusion is a special case) and to the Boltzmann collision operator (of
which large-angle scattering is a special case), all distributions evolve towards
a unique equilibrium state. In the present case the equilibrium state is that of
isotropy, provided absorption is absent. In the presence of absorption, all par-
ticles should disappear eventually f — 0 as t — co. Therefore, all eigenvalues
of S must be positive, except for a possible eigenvalue of zero corresponding to
an isotropic eigenfunction. Once this eigenfunction is removed, the resulting
matrix is positive definite.

The mathematical proof of the positive definite nature of S, or its
reduced version, is straightforward: Since S is a real symmetric matrix, there

exists a real orthogonal matrix R, whose columns consist of the eigenvectors

of S, such that
> RjiSijk Ry = &6u,
Ik

where ¢; are the eigenvalues of S. Now, from the definition of S,

- e 4P| [, dP(w)
££5£,1 - %:./;1 d}u'Dm.: lRJt é l [Rkl ]+

7 du
+ Zk: R;i 61 (1 — ng) Ry.
Therefore, " \
& = _:1 dpDyy %:R;f,fd}zi(f) + XJZ (R;)* (1 - wg?)
> 0,

since D,, > 0, for —1 < u < +1 and the second term is also > 0 for allw < 1
and g < 1. Therefore, all the eigenvalues of S are positive, with the possible

exception of an isotropic eigenfunction, which would cause the first column of
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the orthogonal matrix to read Ry = §;. The corresponding eigenvalue is then
zero for w = 1.

In the presence of absorption, therefore, equation (4.27) can be con-
verted directly into a standard eigenvalue problem by inverting §:

N N 1
ZZ(S‘l)m!qu; = ——¢ [m=0,...N] (4.31)

n=0 =0 A;
The N + 1 eigenvalues and eigenvectors are then found by standard numerical
methods [106].

If there is no absorption (w = 1), the eigenvalue Aq = 0 must first be
removed from the problem. Since the eigenfunction is known to be isotropic,
the values of the expansion coefficients g%, are easily calculated. With the
normalization Q¥(u) = 1/4/2, one finds ¢%, = 1. For this eigenfunction to be
orthogonal to all the others, the zeroth components of the remaining eigen-
functions must fulfil the condition:

-1,
r = Lo ~1,...N]. 32
Qoi V\/?—)‘hs [¢ ] (4.32)

Removing the equation ¢ = 0 from the set of equations (4.27) then leads to

Y 1 y i, & y ,
> (Wmn = = nléml) @i =—-2_ Smndk [t #0, m=1,...N], (4.33)
n=1 3v A" n=1

where the matrix Spn, [m,n = 1,...N], is positive definite. After inversion,
one again obtains a standard eigenvalue problem similar to equation (4.31),

but with the order reduced by one.

4.2.1 Pitch-Angle Diffusion

Figures 4.2 and 4.3 present results obtained using the methods de-
scribed above for the case of isotropic pitch-angle diffusion in the absence of
absorption: v, = 0, w = 1, f)pp = 1 — u?. The matrix S is in this case di-

agonal, with elements Sy, = n(n + 1), and its inversion presents no difficulty.
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Eigenvalue

0.0

Figure 4.2: The largest and smallest eigenvalues A; and A_; defined by equa-
tion (4.35), for the case of isotropic pitch-angle diffusion, as a function of the
ratio of the fluid velocity to the particle velocity. The approximation for )\
from diffusion theory is shown as the dashed line.

The eigenvalues are ordered according to the prescription A; < A;iy1 for both
positive and negative ¢, as well as the special case Ag = 0. These eigenvalues de-
termine the spatial dependence of the component of the distribution attributed
to the associated eigenfunction. Thus, the “range” R of an eigenfunction may

be defined as its e-folding length in space, and is given from equation (4.1) by
R = |Iv/Al. (4.34)

A convenient quantity, proportional to the range, is defined, by analogy with

equation (4.9), as

A = Va/A-l'- (4'35)

The largest and smallest A; correspond to the eigenfunctions with largest range
which are permitted in the upstream and downstream regions, respectively and

are shown in Figure 4.2. At particle speeds large compared to the fluid speed
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Figure 4.3: The eigenfunctions QY(x) for7=1...5 (a) and fori = —1... -5

(b). Those of (a) correspond to positive eigenvalues, and may be used to repre-
sent the distribution in the upstream region, whereas those of (b) have negative
eigenvalues, and are permitted components of downstream distributions.

(v << 1), the approximation from diffusion theory, equation (4.24), which is
simply A; = (62)~! in this case, is accurate. At speeds approaching that of the

fluid, but still larger than it, the largest eigenvalue tends to zero, reflecting the

small range of such particles into the upstream region.

The eigenfunction corresponding to A; of Figure 4.2 is shown in Fig-
ure 4.3a for v = 1/2, together with four eigenfunctions of shorter range: Q5
- Q¢. Note that Q7(ux) is the only eigenfunction with no root in the range
—1 < p < +1. The others possess ¢ — 1 roots, and vary more rapidly as
their range decreases. The oscillations occur for —1 < g < —v. As one may
readily show from equation (4.2), the eigenfunctions may have neither a root
nor a turning point for —v < p < 1. The corresponding five eigenfunctions
of negative eigenvalue are shown in Figure 4.3b. In this case, the number of

roots is |¢|, and the oscillatory behaviour occurs in the interval —y < B <1
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Because this is a larger interval than in Figure 4.3a, these functions are easier

to represent as a sum of Legendre polynomials (20 of which are used here).

Turning to pitch-angle diffusion with the diffusion coefficients depicted
in Figure 2.1, the problem arises of evaluating the elements of the matrix S.
A rapid numerical solution can be found by evaluating the integrals in equa-
tion (4.28) using Gauss-Legendre quadrature. It is helpful to note that the
evaluation of the weights automatically provides the derivatives of the P, [81].
The generalized eigenvalue problem (similar to equation 4.27) must then be
converted into a standard problem. However, instead of inverting S , it is
numerically more economical to use standard routines (e.g. from the “NAG-
library”) to perform a factorization of S into the product of a lower-triangular
matrix and an upper-triangular one. The remaining steps are straightforward;
details of the method may be found in the monograph by Wilkinson [106].
Results of this procedure are shown in Figures 4.4 and 4.5, where the pa-
rameter ¢, which is connected with the spectrum of the Alfvén turbulence
(equation 2.8), has been set equal to 2 in order to enhance the effect of the
“dip” in the diffusion coefficient around p = 0. Figure 4.4 shows the ratio of
the range — from equation (4.34) — of the eigenfunction Q¥, which determines
the length of the precursor to a shock front, to the value for this quantity given
by the diffusion approximation (equations 4.24 and 4.35). Three values of the
parameter € have been chosen: € = 1/30, 1/10 and 1/3. It can be seen that
the value of € has some effect on the range of the eigenfunction Q@Y i.e. of the
precursor to the shock front. The difference between ¢ = 1/30 and ¢ = 1/3
reaches a factor of 2 at u/v = 0.6, with the larger value of € having the longer
range (relative to the value in the diffusion approximation). The reduction

over the values given by the diffusion approximation is also striking — roughly
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Figure 4.4: The length of the precursor to a shock, normalized to the value
given by the diffusion approximation, as a function of the ratio of the speed of
the upstream plasma to the particle velocity. The spectral index of the Alfvén
turbulence is ¢ = 2 and the values € = 1/30 (dotted line), e = 1/10 (dashed
line) and € = 1/3 (solid line) are shown.

a factor three for particles moving twice as fast as the shock i = 1/%

This figure also indicates the accuracy of the Galerkin method. For
the smallest value of ¢, many Legendre polynomials are needed to deal with
the quickly changing value of the diffusion coefficient at x = 0. In the cal-
culations shown, 50 polynomials were used, with a 200 point Gauss-Legendre
quadrature employed to evaluate the matrix S. Since the curves in Figure 4.4
are normalized using the exact value of the precursor length in the diffusion
approximation, they must tend to unity as u/v — 0. An error of about 0.5% is
visible for € = 1/30. For smaller values of € it would probably be preferable to
integrate the differential equation (4.2) directly to find the eigenvalues, rather

than use the Galerkin method.

The eigenfunctions corresponding to the eigenvalues of Figure 4.4 are
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Figure 4.5: The eigenfunctions corresponding to the eigenvalues of Figure 4.4
(¢ = 2 with € = 1/30 (dotted line), ¢ = 1/10 (dashed line) and ¢ = 1/3
(solid line)) for the ratio of the fluid velocity to the particle velocity v = .15.
Also shown is the result of the diffusion approximation (dot-dashed line) for
e = 1/30.

shown in Figure 4.5 for v = .15 and Figure 4.6 for v = 1/2. The results of the
diffusion approximation are shown only for the lower value of v. Already at
v = 1/2, the diffusion approximation yields an unphysical eigenfunction which
contains a root in the interval —1 < u < 1. The most prominent feature of
these figures is the sharp change of the eigenfunction around x = 0, where the
pitch-angle diffusion coefficient is small. This sharp change in the monotonic

eigenfunction is most prominent for € = 1/30, as is to be expected.

The ratio of the number of particles moving in the direction x = 1
(towards the shock) to the number moving in the direction g = —1 (away from
the shock) is more than 50 in Figure 4.6. Even when the diffusion approxi-
mation is a valid, such as in Figure 4.5, this number — now 2 — reflects a

relatively strong anisotropy.
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Figure 4.6: The eigenfunctions corresponding to the eigenvalues of Figure 4.4
(¢ = 2 with € = 1/30 (dotted line), € = 1/10 (dashed line) and € = 1/3 (solid
line)) for the ratio of the fluid velocity to the particle velocity v = .5.

4.2.2 Mixed Operator

The Galerkin method yields N approximations to the eigenvalues and
eigenfunctions when the highest order Legendre polynomial used in the expan-
sion is Py. When the mixed operator is used, the values of the largest and
smallest eigenvalues A;; quickly stabilize, as N is increased. This is followed
by the stabilization of Ai;, and so on. Thus, it is easy to find the number of
polynomials required in order to determine a particular eigenvalue to a certain
desired accuracy. Furthermore, one may conclude that the eigenvalues found
in this way belong to the discrete spectrum. In contrast, application of the
same method in the absence of pitch-angle diffusion leads to a stabilization of
the approximations only for ¢ = 1 (when g = 0). All other values continue to

approach each other as N is increased.

To combine the large and small-angle scattering operators in a mean-
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ingful way requires a measure of their relative strength. The approximation
discussed, for example, by Case and Zweifel [15] in which the distribution is
written as a constant plus a term proportional to p provides a convenient
method, since the resulting spatial diffusion coefficient « depends only on oy

of equation (2.16) for the large-angle operator:

N 4.36)
Kge = ——————. ;
¢ 3 vy(1 — 20y) (
Similarly, for the pitch-angle diffusion operator
g = oo 4.37
3 == 6 Vs. ( A )

Defining an effective diffusion coefficient for the combined scattering operator

=1

by k7! = ;! + k', one finds

df _ 'U'2 2ﬁ
(E) collisions B aﬂ' [(1 - ﬂ)cs T (1 — g) Cg f (4.38)

where § = k/k; measures the relative contribution of large-angle scattering.
It is interesting to see how the discrete eigenvalues evolve as a function
of B. In the limit 8 — 1, it is known that only one positive discrete eigenvalue
remains, the remainder forming part of the continuum. Figure 4.7 displays the
six largest eigenvalues as a function of 3, for ¥ = 0.1, ¢ = 0 (isotropic large-
angle scattering) and w = 1 (no absorption). The largest eigenvalue is only
weakly dependent on $. This is, in fact, a result of the manner in which the
two scattering operators have been combined. The largest eigenvalue is closely
related to the spatial diffusion coefficient through equation (4.25), so that the
fact that A, is almost independent of § merely indicates that at the relatively
low value of v used in Figure 4.7, the simple expansion f « agPy + a1 P is
quite accurate. The other eigenvalues, however, all increase with 8 and have

the limiting behaviour A; — (1 — v)/2 = 0.45 for ¢ > 2, which corresponds
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Figure 4.7: The eigenvalues of the combined pitch-angle diffusion and
large-angle scattering operator as a function of the relative amount of
large-angle scattering #. The six largest eigenvalues are plotted for v = 0.1
and g = 0. Of these, the largest is well separated from the others and is plot-
ted on a separate scale. The remaining five tend towards the end point of the
continuum spectrum as § — 1.
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Figure 4.8: The eigenfunctions of largest eigenvalue, for v = 0.4, and various
values of the parameter 4, which controls the amount of large-angle scattering
in the collision operator. The cosine of the mean scattering angle is g = 0.

precisely to the upper end point of the continuum spectrum of the large-angle
operafor.

To complete the picture, the eigenfunction QY corresponding to the
largest eigenvalue A; is shown in Figure 4.8. As in the case of pitch-angle
diffusion, this eigenfunction is a monotonic function of 1, and does not possess
a root within the physically meaningful range —1 < u < 1. The effect of
increasing the relative amount of large-angle scattering (with ¢ = 0 in this

case) is to increase the peaking of the function towards y = —1.

4.3 Solution of the Transport Equation with f « p™*

4.3.1 DBoundary Conditions

Having found the eigenfunctions and eigenvalues and, therefore, the
general solution in the form of the expansion (4.1), it remains to impose the

boundary conditions and match the upstream and downstream solutions at
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the shock front, assuming the accelerated particles to be ultrarelativistic (v =
1). Far downstream, the solution is bounded provided the coefficients of all
eigenfunctions which correspond to positive eigenvalues vanish; the distribution
is driven to isotropy in this limit and is represented solely by the eigenfunction
Q¢. Far upstream, the solution is bounded only if there is no component
of an eigenfunction of negative eigenvalue. Thus, there are two choices for
an upstream boundary condition: either the distribution tends to zero for
z — —o0, i.e. there are no particles in the fluid far upstream, or the distribution
tends to a finite isotropic one far upstream, corresponding to an advection
of particles into the system by the upstream fluid. (The amplitude of the
upstream distribution is arbitrary, since the problem is homogeneous.)

The solutions to be sought are assumed to have everywhere a power-
law dependence on momentum p. If particles are advected into the system from
far upstream, then these too must have the same power-law index. Physically,
a power-law solution cannot apply at all momenta, since the number density

of test particles,

n — [0°° dpp*f, (4.39)

would diverge either at the high momentum end of the integration (for s < 3)
or at the low momentum end (for s > 3). Introduction of a cut-off at low
momentum py removes this problem, because all solutions are found to have
s > 3, but an additional boundary condition must be imposed at po. However,
if the power-law solution is regarded as an approximation which is to apply
only at momenta which are large compared to pgy, then one is free to assume
that particles with momentum around py are advected into the system with
the fluid, or are injected by a source term at any point in the flow. The

resulting solution is independent of which of these possibilities actually occurs
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and of the boundary condition itself (to within a multiplicative constant).
This kind of approximation is not required in the diffusive theory of particle
acceleration at shocks, the reason being that the distribution function is known
to be isotropic in the downstream region in this theory [22]. Thus, particles may
be injected isotropically at momentum p; anywhere in the downstream region.
On crossing the shock, they undergo only acceleration and never deceleration
so that the power-law solution establishes itself for all p > py, whereas there
are no particles with p < po. In the relativistic case, in which the distribution
is not isotropic, several crossings of the shock front may be required before the
injected particles “forget” the details of their injection, and assume the angular

distribution of the power-law solution, which is attained only for p >> p,.

The power-law assumption also introduces another problem. For all
solutions with f o« p™ and s < 4, the pressure of the gas of accelerated particles
diverges. This problem does not manifest itself in the equations themselves,
because the test-particle approach has been adopted. However, it means that
the solutions are physically realistic only up to a cut-off momentum, above
which an unspecified saturation mechanism is postulated. Various possibilities
for this mechanism have been considered in the application to particle acceler-
ation in active galactic nuclei [94]. The problem is not peculiar to relativistic
shocks; it arises also in the diffusive theory for shocks of compression ratio

greater than 4.

4.3.2 Matching Conditions

The distribution function of accelerated particles (which is a Lorentz
scalar) is assumed to be continuous across the shock front. Denoting the up-

stream momentum and cosine of the pitch-angle by (p, x) and the downstream
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values by (p, i), this matching condition reads:

flo,w) = £, i) (4.40)

The relation between (p, 1) and (p, it) is provided by a Lorentz transformation:

p = Top(l+ump) (4.41)
= “+ U,

= 4.42
# 1+ up’ ( )

where I', = 1/4/1 — u? and u, denotes the relative velocity of the upstream

fluid with respect to the downstream fluid:

U — U4
=T 4,43
U 1- U—_Up ( )

Equation (4.40) cannot, of course, be satisfied exactly if the distribution is
represented by only a finite number of eigenfunctions, so that one must have
recourse to approximate methods. In the Q; method [49], one satisfies the
boundary conditions downstream and the matching condition at the shock
exactly, and attempts to satisfy the boundary conditions upstream approxi-
mately. To this end, the distribution function downstream is written:
0

f(Bh,2) = §7° ‘__E_:J &Q;" (i)exp(Aiz/Ty), (4.44)
where the a@; are constants and T'y = 1/ m This expression satisfies
the downstream boundary conditions exactly. According to the matching con-
dition, equation (4.40), the upstream distribution at the shock front; z = 0,
may be computed from equation (4.44) by substituting for f and /i using equa-
tions (4.41) and (4.42). One must now try to fit the upstream boundary
conditions as well as possible using the J + 1 constants &; and the power-law
index s. Although f of equation (4.44) cannot be required to be orthogonal to

all the upstream eigenfunctions which cause divergent behaviour at z — —00;
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it can at least be made orthogonal to those J of them with the longest range.

Projecting onto the upstream eigenfunctions gives:

I Z f dp Qi (W) (u + )1+ w) QU (@) d; = ai, (4.45)

j=—J
where the a; are the expansion coefficients of the upstream eigenfunctions
Q; " (4). The boundary conditions thus require ¢; = 0, for 7 < 0; for ao,
one is free to choose the value 0, for the case in which no particles are advected
into the system, or any finite value (e.g. 1), for the case in which a power-
law distribution is allowed to enter far upstream. In the former case, the set
of J + 1 equations (4.45) is homogeneous. The condition that it possess a
nontrivial solution is sufficient to determine the unknown power-law index s.
In the latter case, the set (4.45) is inhomogeneous. Specification of the power-
law index of injected particles enables the downstream distribution (the &) to
be evaluated, provided the specified index is smaller than the value of s found
from the homogeneous problem [51].

The numerical procedure for evaluating the determinant of the left-
hand side of equation (4.45) is simple. The eigenfunctions are first found in
terms of the expansion coefficients of the Galerkin method. Then, the value of
each eigenfunction is stored on a grid in g, together with the quantities u_ + 73
and 1+ pu,. Finally, the integration is performed over this grid using a trial
value of s, and the determinant evaluated. There are, of course, more elegant
ways of evaluating the determinant. For example, one can write equation (4.45)
entirely in terms of the matrix elements

" s Pr) (e + 1) (14 ) P,

A recursion formula can then be derived which enables all elements to be

evaluated starting from only the four with m,n = 0,1 — which can themselves
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easily be evaluated analytically. This procedure, however, turns out to be
fraught with numerical problems arising from the large number of Legendre
polynomials (up to 100) necessary to represent the eigenfunctions.

The symmetry of the problem suggests another approach to finding an
approximate solution: first fit the upstream boundary conditions exactly, im-
pose the matching condition, and then attempt to fit the downstream boundary
conditions by projecting the distribution onto the first J “forbidden” eigen-
functions downstream. A glance at Figure 4.3a,b shows why this method is
unsuitable. The eigenfunctions which are forbidden downstream have positive
eigenvalues and are shown in (a). They have much more rapid oscillations than
the eigenfunctions which are forbidden upstream (b). Therefore, a method
which uses only eigenfunctions of positive eigenvalue requires more Legendre
polynomials than one which uses only eigenfunctions of negative eigenvalue.

The accuracy attainable numerically would be reduced as a result.



CHAPTER V

Results

5.1 A Parameter Survey

Two basically different physical processes influence the spectrum of
ultrarelativistic particles accelerated by the first-order Fermi mechanism oper-
ating at a parallel, unmodified, relativistic shock front — assuming there are
no pre-accelerated particles advected into the system. These are the process
responsible for the formation of the collisionless shock front itself, which de-
termines the jump conditions as discussed in §3.2, and the process which gives
rise to the collision operator describing the transport of ultrarelativistic parti-
cles (§II). Five different possibilities for the jump conditions may be relevant;
their effects are investigated below. In the case of the collision operator, the
number of possibilities is even larger. However, an overview of the effects at
play may be obtained by first restricting consideration to pitch-angle diffu-
sion, as described by two parameters: ¢, which is related in the quasi-linear
theory to the spectrum of Alfvén turbulence, and ¢, which models the extent
to which nonlinear effects enhance the scattering of particles moving almost
perpendicular to the magnetic field. Each of these parameters is discussed in

§2.2.

Large-angle scattering has a substantial effect on particle acceleration,
but there is no theory of turbulence which is capable of predicting a phase-

function suitable for modelling the process. In view of this, the investigations
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presented here are restricted to isotropic scattering, and emphasize the changes
to be expected in the spectrum of particles accelerated by one particular shock
when various amounts of large-angle scattering are introduced in the upstream

and downstream regions.

5.1.1 Pitch-Angle Diffusion

Consider first the case in which the gas behind the shock front reaches
full thermodynamic equilibrium. Using the appropriate jump conditions and
assuming that pitch-angle diffusion controls the particles transport, the results
of applying the Q; method are shown in Figure 5.1. In (a), the pitch-angle
diffusion coefficient is taken to be isotropic. The scattering matrix S given by
equation (4.28) is then diagonal. This case arises whenever the spectrum of
Alfvén turbulence is given by ¢ = 1, independent of the value of the parameter
e. In (b), a highly anisotropic diffusion coefficient is assumed, similar to that
shown in Figure 2.1, but with ¢ = 2 and € = 1/30. This represents the most
anisotropic form of the diffusion coefficient which can be comfortably treated by
the methods of §IV. Already it is difficult to extend the range of investigation
to very high upstream velocities. In (a), the maximum value is u_ = 98, but
in (b), satisfactory convergence is obtained only up to u_ = .9. As well as the
fully converged result of the @; method, Figure 5.1 also displays the result of
applying the formula s = 3r/(r — 1) (with r the compression ratio), which is
obtained in the nonrelativistic diffusion theory.

As expected the two curves agree for small upstream speeds. The
compression ratio tends to 4 in this case, and s also tends to this limit for
small u_. However, the softening of the equation of state due to the relativistic
speed of the thermal electrons quickly makes itself felt as u_ rises. At u_ =

.1, the power-law index is much harder: s = 3.7. The Q; method and the
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nonrelativistic diffusion approximation still agree well at this low value of u_,
indicating that the distribution function of accelerated particles is close to
being isotropic. As u_ rises further, the nonrelativistic diffusion approximation
predicts a spectrum which is steeper than the “exact” one in both the isotropic
case (a) and the anisotropic case (b). A similar result has been obtained
by Kirk and Schneider [49] using a fixed compression ratio and an isotropic
diffusion coefficient. The discrepancy is, however, not due to the failure of
the diffusion approximation, but to the failure of the nonrelativistic version
of it. A relativistic diffusion approximation can be formulated by assuming
isotropy in only the downstream fluid frame. It does not, however, yield a

simple expression for the power-law index s [49).

In Figure 5.1a, the exact result remains harder (smaller s) than the
value given by the diffusion approximation as u_ is increased towards unity.
Both values increase, however, and exceed 4 before u_ reaches the maximum
investigated speed of .98c. On the other hand, Figure 5.1b shows the effect
of the anisotropic diffusion coefficient. The difficulty experienced by particles
in crossing over the region yu = 0 reduces the probability of their returning to
the shock front once they have entered the downstream fluid. This reduction
becomes apparent when the distribution function is driven away from isotropy
by the high speed of the fluid through the shock. A decreased probability of
recrossing implies a steeper spectrum which is seen in Figure 5.1b for u_ > .3.
At u_ = .4, the exact solution crosses that of the nonrelativistic diffusion

approximation and proceeds to even higher values of s.

In §III, four other possible jump conditions were investigated for rel-
ativistic shocks. The effects of each of these is displayed in Figure 5.2. For

a shock front in a relativistic gas with an equation of state given by equa-
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Figure 5.1: The power-law index of particles accelerated by a relativistic shock
front when the particle transport is governed by pitch-angle diffusion. In
(a), the pitch-angle diffusion coefficient is isotropic, whereas in (b), a highly
anisotropic diffusion coefficient with ¢ = 2, € = 1/30 is assumed. The jump
conditions are for a gas which reaches full thermodynamic equilibrium be-
hind the shock front. The solid curve presents the results of applying the Qs
method; the dashed curve is the result of applying the formula derived from
the nonrelativistic diffusion approximation: s = 3r/(r — 1) (where r is the
compression ratio).
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Figure 5.2: The power-law index of particles accelerated by a relativistic
shock front when the particle transport is governed by pitch-angle scatter-
ing. In (a), the pitch-angle diffusion coefficient is isotropic, whereas in (b), a
highly anisotropic diffusion coefficient with ¢ = 2, ¢ = 1 /30 is assumed. The
dash-dotted line corresponds to a relativistic gas with equation of state (3.18).
The dashed line is for a strong shock with only ion pressure supporting it, the
solid line for support by electron pressure only. The dotted line is for a strong
shock with pressure provided by electrons and pairs, the number of these being
about 100 per proton [i.e. n = 0.9 in equation (3.24)].
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tion (3.18), the jump conditions are simply u_u; = 1/3 (equation 3.40). For

u- — 1, the downstream speed tends to u; = 1/3, but as the upstream velocity
decreases, the downstream velocity increases until the shock peters out with
u_ = u; = 1/+/3, the sound velocity in an isotropic relativistic gas. Thus, as
this shock gets weaker, it advects the downstream particles more quickly away
from the region of acceleration. Unlike the other types of shock investigated,
this shock is not strong, because the pressure of the upstream gas plays an
important role. It is the only case in which the downstream velocity increases
as the upstream velocity decreases; as a result, the power-law index of acceler-
ated particles becomes much harder as u_ — 1. Such behaviour can be seen in

Figure 5.2b. All other shocks produce a softer spectrum of particles as u_ — 1.

When the pressure behind the shock is provided by the ions alone, the
jump conditions remain close to those of a nonrelativistic shock for upstream
velocities extending up to about 0.7¢c. For isotropic pitch-angle diffusion, the
nonrelativistic diffusion approximation provides a reasonably accurate value
of s in this range, although a little larger than the exact value, as can be
deduced from the discussion of Figure 5.1. However, for the anisotropic case
shown in Figure 5.2b, the spectrum steepens markedly at about u_ = 0.4,
indicating that the particles can no longer be kept isotropic by this relatively
ineffective pitch-angle diffusion. A similar, but less pronounced steepening can
be observed in the spectrum calculated for the case in which only electron
pressure is present behind the shock. The spectrum in this case is generally
much harder, because of the softer equation of state which becomes important

already at quite low upstream velocities.

Pair-production in the shock front produces a dramatic effect on the

spectrum which is rather insensitive to the kind of pitch-angle diffusion as-
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sumed. As is pointed out in the discussion of §III, the compression ratio of the
shock is greatly increased if some of the energy is channelled into electron—
positron pairs. The resulting hard spectrum is shown in Figure 5.2. For
u— < 0.5 it approaches the value of 3, corresponding to equal numbers of
accelerated particles in each decade of the entire momentum space. This value
can be attained only if the probability of a particle escaping to z = co in the

downstream fluid is zero — i.e. if the downstream fluid is stationary.

5.1.2 Mixed Operator

The number of free parameters available in describing large-angle scat-
tering is even larger than in the case of pitch-angle diffusion. Furthermore,
there is no quantitative theoretical basis which could limit the choice signifi-
cantly. Therefore, in investigating the general effect of such scattering, only the
simplest case will be considered. All results of this section refer to a shock with
upstream velocity u_ = .9 and jump condition u, = (3u—)~1. No absorption is
permitted (w = 1), and the scattering operator is a mixture of isotropic pitch-
angle diffusion and large-angle scattering described by the Henyey—Greenstein
phase function (equation 2.19). The relative amount of large-angle scattering
compared to pitch-angle diffusion is given by the parameter 8 as described in

§4.2.2.

In Figures 5.3a, b and ¢, the behaviour of s for a relativistic shock
is depicted. First of all, the case in which the upstream and downstream
scattering laws are the same is presented. Figure 5.3a shows s as a function
of B (= B~ = PB4) for various values of g (= g_ = g+). In this case the
spectrum is hardened considerably by increasing the relative contribution of

large-angle scattering (increasing §) or by increasing the average scattering
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Figure 5.3: The power-law index s for the mixed operator consisting of
pitch-angle diffusion and large-angle scattering, without absorption. A rel-
ativistic shock is taken, with u_ = .9 and uy = 1/3u_. In (a), large-angle
scattering is permitted both upstream and downstream, in (b) only upstream
and in (c) only downstream. The values of the cosine of the mean scattering

angle are g = 0, .2, .4, .6 and .8. The dependence of s on g is monotonic for
each 8.

angle (decreasing g). For isotropic scattering, s changes by about 10% when

B goes from 0 to 0.8.

The situation becomes more complicated when large-angle scattering
is included in only the upstream or only the downstream medium (leaving just
pitch-angle diffusion in the other medium). In the first case (8; = 0), which
is shown in Figure 5.3b, The effect is similar to that observed in Figure 5.3a,
but not quite as strong. However, if large-angle scattering is permitted only
downstream (Figure 5.3c), the effect is opposite — the spectrum softens with
increasing effectiveness of large-angle scattering. To understand these results,
it is instructive to consider the process of particle acceleration as a competition
between the tendency of a particle to escape from the shock by being advected
downstream and the fractional increase in momentum which it gains by making

an excursion into the upstream medium. The index s is related to the ratio
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Figure 5.4: The distribution function f at the relativistic shock front of Fig-
ure 5.3 as a function of the cosine u of the pitch-angle measured in the down-
stream fluid frame for ¢ = 0. The effects of switching on and off large-angle
scattering in the upstream and downstream regions is displayed.

of these quantities. As a rough guide to interpretation, one can say that the
fractional gain in momentum is largely determined by the scattering which
occurs during the excursion into the high-speed upstream region. If a particle
reenters the downstream region moving close to the shock normal, the gain in
momentum is much larger than if it enters moving almost parallel to the shock
surface. When only pitch-angle diffusion is included, most particles cross into
the downstream region moving almost parallel to the shock surface. This can
be seen in Figure 5.4 where the distribution function at the shock is displayed
as a function of the cosine of the downstream pitch-angle (/z). When large-angle
scattering is introduced upstream, this distribution is changed dramatically. A
peak consisting of particles crossing the shock with i ~ 1 appears, which is
easy to understand as consisting primarily of the Lorentz boosted distribution

of particles which have suffered a large-angle scattering event upstream. The
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fractional energy gain of such particles is large compared to that of those
particles which return without suffering a large-angle scattering. Thus, one is
able to understand that for a fixed type of downstream scattering, increasing

the effectiveness of upstream scattering hardens the spectrum.

The situation is different when the downstream scattering is varied.
The fractional momentum gain is not sensitive to the angle at which a particle
leaves the downstream region. In fact, in the shock frame, a particle which
returns to the shock front from the downstream region has a slightly lower
momentum than it had upon entering this region. The change is small because
the downstream fluid moves much more slowly relative to the shock front than
the upstream fluid. However, changing the downstream scattering law has
a marked effect on the escape probability. From Figure 5.4, one sees that
particles entering the downstream region have a distribution either peaked
parallel to the shock surface (8- = 0) or parallel to the shock normal (B- =
0.8). Large-angle scattering downstream tends to move particles rapidly out
of the peak of the distribution, whereas pitch-angle diffusion tends to broaden
the peak. Thus, in the first case, pitch-angle diffusion can be quite effective
in sending particles back across the shock, since the peak is already almost
parallel to the shock surface. Increasing the relative amount of large-angle
scattering inhibits this process by destroying the peak. Thus, when only pitch-
angle diffusion is present upstream, increasing the effectiveness of large-angle
scattering downstream increases the escape probability and, therefore, softens

the spectrum. This effect is seen in Figure 5.3c.

Consider now the case in which the distribution of particles enter-
ing the downstream region is peaked along the shock normal, i.e. the case

in which large-angle scattering dominates upstream. Pitch-angle scattering
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succeeds only in broadening the peak, so that it is ineffective at reversing the
direction of motion of particles in the peak of the distribution. Reversal is, how-
ever, required in this case, if particles are to return to the shock. Large-angle
scattering, on the other hand, is effective at reversing the particle direction.
Consequently, increasing the amount of large-angle scattering reduces the es-
cape probability when the distribution is peaked along the shock normal. This

results in the harder spectra of Figure 5.3a compared to those of Figure 5.3b.

In summary, the introduction of large-angle scattering has a substan-
tial effect on the slope of the spectrum of accelerated particles. If it dominates
only upstream, the spectrum is harder than in the case of pure pitch-angle
diffusion. If it dominates only downstream, the spectrum is softer. If both up-
stream and downstream are dominated by large-angle scattering, the hardest

spectral index of all is obtained.

5.2 An Astrophysical Application

Fluid motions at speeds approaching the velocity of light are implied
in the nuclei of active galaxies and quasars for two reasons. Firstly, the proper
motion of distinct “knots” or “components” has been observed in small-scale
jets emerging from the cores of such objects [108]. Although the motion is small
(of the order of 1072 arcseconds per year), when combined with the large dis-
tance obtained from the standard cosmological interpretation of the observed
redshift, the apparent speed projected onto the plane of the sky frequently lies
in the range 1-10 times ¢. The most plausible explanation of this phenomenon
is that one is observing the apparent velocity of a source moving at a speed
close to ¢ in a direction almost directly at the observer [83,90]. Relativistic

speeds are also implied by the fact that the so-called “Compton Catastrophe”
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apparently does not occur in AGN’s and quasars. This phenomenon predicts
a very high X-ray flux from any source of synchrotron radiation which has a
brightness temperature in the radio greater than about 10'?K [44]. Such X-ray
fluxes are not observed, although radio brightness temperatures of 105K are
often found in the cores of AGN’s and quasars when an estimate of the size of
the emitting region is available. Sometimes such an estimate can be made from
the timescale over which broad band variations of the radio emission occur [73];
less frequently from a direct measurement of the angular size of the object [64].
Once again, the standard explanation is that the observed brightness temper-
ature is boosted by the Lorentz factor associated with the relativistic motion
of the source towards the observer — in the frame of reference in which the
source is stationary, however, the brightness temperature does not violate the
limit imposed by the Compton Catastrophe. In cases in which the radio flux at
high frequencies does not vary rapidly, and in which the object is too small to
be resolved, the variability of the low-frequency radio emission has been used
to estimate the size of the source [39]. Again, this frequently leads to apparent
contradictions with the observed X-ray flux (or upper limit) [19]. However,
there is considerable uncertainty involved in interpreting the timescale of vari-
ation as the light crossing time of the source. It is probable that such variations
arise during the propagation of the signal through the interstellar medium (85],

as seems to be the case with pulsars [93].

In view of this evidence, models have been advanced to explain the
spectrum of “superluminal” sources in terms of the synchrotron radiation of
a distribution of relativistic electrons carried by a relativistically moving jet
[83,12,8]. Geometrical factors tend to have a large effect on the predictions of

such models and have usually been emphasized at the expense of the physics of
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the particle acceleration. However, the results of §5.1.1 are directly applicable
to such situations and provide a functional dependence of the power-law index

of an accelerated electron distribution on the speed of the shock front.

Consider the model in which the knots of a superluminal jet are pro-
duced by a relativistically moving shock front. The direction and speed of the
front differ from that of the fluid, so that the knot can move either away from
the core of the AGN or towards it [59]. In a few cases, complicated patterns of
motion are in fact observed [76]. However, the motion of the knots is usually
in the outward direction; presumably in the same direction as the fluid flow.
Two different situations are possible: either the shock moves inward relative to
the fluid, in which case material closer to the central object is cold, unshocked
fluid and the outward velocity of the shock is lower than that of the unshocked
fluid, or the shock moves outward relative to the fluid, in which case the out-
ward velocity of the shock is larger than that of the unshocked fluid. Since the
shock front is presumably formed as a result of a nonuniformity in the flow,
one would expect both kinds of shock to develop at each knot. An obstacle in
the flow, such as, for example, a dense gas cloud, would form a shock which
moves into the obstacle as well as a reverse shock propagating back into the
flow [1]. In practice, one of these shock fronts will be stronger than the other,
in the sense that it will tend to accelerate particles into a harder power-law
spectrum. Then it is reasonable to suppose that most of the observed radiation

comes from particles accelerated by this shock front.

Perhaps the most detailed recent model of a shock front in a relativistic
jet is that proposed by Marscher and Gear [65] to account for observations of
the flare in the quasar 3C 273 which occurred in 1983. This object was, in

fact, the first in which superluminal motion of a component was discovered
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[79]. A dramatic increase of the flux at millimeter to micrometer wavelengths
was observed [87] in early 1983, which it is attractive to associate with the
emergence of a new knot from the core of the radio source [14], similar to
events previously detected by VLBI observations. In the model, the knot is
assumed to be a shock front propagating away from the core. Observations
in the far-infrared are particularly useful, since electrons which radiate in this
frequency range have rather short lifetimes (of the order of weeks). Thus, one is
looking at electrons close to the shock itself — if that is where the acceleration
occurs. The much longer radiative lifetimes of electrons which emit at gigaherz
frequencies, on the other hand, mean that the properties of the flow behind
the shock front (where the plasma probably undergoes re-expansion) may play
a major role in forming the spectrum.

The model proposed in [65] uses a fixed value for the power-law index
of radiating electrons which corresponds to s = 4.4 for the quiescent compo-
nent (i.e. the radio emission present before and after the flare) and s = 5.4
for the flare itself. These values are obtained by assuming the spectrum in
the far-infrared is either optically thin synchrotron radiation, or comptonized
radiation; in each case the observed spectral index of radiative energy flux «

is related to s by the formula

(5.1)

However, if we assume that the shock front continually accelerates electrons
which subsequently cool in the downstream region, the index of the observed
power-law spectrum is steeper by 0.5 than the value implied by equation (5.1).
This is because the volume occupied by energetic electrons radiating at high
frequencies is smaller than the volume occupied by those radiating at low

frequencies (which take a longer time to cool after leaving the shock front [72]).
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Thus, the model requires a shock front to accelerate electrons into a power-law
spectrum with index s = 4.4, which subsequently cool to produce the flare
spectrum. Figures 5.1 and 5.2 indicate that this value is rather too steep for
a strong relativistic shock. If the plasma reaches thermodynamic equilibrium
behind the shock, or if electron pressure dominates, a very much lower value
of s is predicted (< 4). Only if the jump conditions are such that ion pressure
supports the shock, can a reasonable value be obtained (s = 4.3 at u_ = .9),
and this only when the pitch-angle diffusion coefficient is assumed to possess
a significant “hole” around u = 0 (see Figure 5.2b). An interesting alternative
to this picture is that of a shock front which is not strong. If, for example,
the pressure in both the upstream and downstream regions is dominated by
the radiating electrons themselves, the expected value of s is given by the dot-
dashed curve in Figure 5.2, corresponding to a relativistic gas. Much higher
values of s are then expected, and these increase rapidly as the shock loses
strength. Another possibility is that relativistic shocks may not be treated as
a discontinuous jump in the fluid velocity. Shocks of finite thickness (compared

to the mean free path of the energetic particles) have been found to produce a

steepening of the spectrum, at least in the diffusion approximation (13,92].

The above interpretation rests on the assumption that particle trans-
port can be described by the pitch-angle diffusion operator. As yet, it is not
known whether or not the large-angle scattering operator introduced in §2.3
is an accurate way of modelling the effects of strong plasma turbulence and
this question is much more likely to be addressed by in situ observations of
particles accelerated at shock fronts in the solar system. In particular, the
anisotropy which is produced at the shock front by the inclusion of large-angle

scattering is a characteristic feature which is in principle measurable. How-
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ever, in the absence of a better guide, the results presented in Figure 5.3 may
be interpreted as indicating that the value of s could be changed by as much
as 0.4 if such scattering were present. The steeper values of s which seem
to be indicated by the above discussion would result if large-angle scattering

occurred predominantly in the downstream region.

Flaring behaviour is not confined to the quasar 3C273. In a recent
survey of BL Lac objects and optically violent variable quasars (collectively
termed Blazers), Gear et al. [31] find variability consistent with the interpre-
tation that relativistic jets, possibly containing shock fronts are responsible.
Of the 12 sources studied, 5 are known to display superluminal motion. The
spectral indices measured for the optically thin emission in the highly variable
1-4pm range imply electron injection with 4 < s < 6.4, indicating a wide vari-
ety of shocks. However, none of the observations is compatible with injection
at s < 4, such as would be expected from a strong shock dominated by electron

pressure.

Much of the difficulty of modelling the flaring behaviour of AGN’s is
associated not with the spectral index, but with the time dependence of the
observed flux, a subject not touched upon in the discussion presented above.
The time dependence, however, can be discussed in a relatively simple model
of the type proposed by Marscher and Gear [65]. On the other hand, older
models, which deal with expanding homogeneous plasma clouds, [54,77] gen-
erally predict a decrease in time of the peak flux, in contrast to the observed
increase. Those models which do not include shock fronts resort to specify-
ing continuous reacceleration of the electrons throughout the emission region
(usually an expanding jet) [63,18,100] and encounter problems in explaining

the simultaneous variation of the optically thin emission at all frequencies.
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Further work is clearly required in order to incorporate into realistic
models both the jump conditions for relativistic shocks and — more especially
— the dependence of the index s on these conditions. Because the angular
dependence of the electron distribution would then be obtained (see Figure 5.4)
such a model would be capable of more detailed predictions concerning, for
example, the degree of circular polarization to be expected.

Investigations of this kind go beyond the scope of the thesis presented
here. However, even a preliminary application shows that it is not difficult
to envisage a relativistic shock front capable of accelerating electrons into the
required power-law spectrum. On the contrary, since the strong shocks investi-
gated produce harder spectra than those observed, one is faced with the more

agreeable problem that the mechanism is, if anything, too effective.
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