Complete Spectroscopy of Negative Parity States in ^{208}Pb with $E_x < 6012$ keV

1 Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
2 Physik Department E12, Technische Universität München, D-85748 Garching, Germany
3 Department für Physik, Ludwig-Maximilian-Universität München, D-85748 Garching, Germany
4 Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany

Contact email: A.Heusler@mpi-hd.mpg.de

The study of the doubly magic nucleus ^{208}Pb is of key interest as more and more doubly magic nuclei come into the reach of modern experiments. The schematic shell model without residual interaction (SSM [1]) predicts 70 particle-hole states with negative parity for $E_{SSM} < 6361$ keV (Fig. 1 left, neutron and proton configurations are marked by solid and dotted lines, respectively). Recent experiments [1] revealed new identifications, spin and parity assignments for many states (Fig. 1 right; more states at $E_x > 6012$ keV are known [2]). The inelastic proton scattering on ^{208}Pb via isobaric analog resonances (IAR) in ^{209}Bi yields the main information. Additional data is known [2], especially for the $^{207}\text{Pb}(d,p)$ reaction. The excitation of the states by these two reactions is highly selective; they excite only certain neutron particle-hole configurations in each state. Experiments have been performed with the Q3D magnetic spectrograph of the Maier-Leibnitz-Laboratorium (München) at an energy resolution of 1.5 keV HWHM [1]. The $^{208}\text{Pb}(p,p')$ reaction via an IAR in ^{209}Bi is equivalent to the neutron pickup reaction on a target of ^{209}Pb in an excited state LJ. In each state of ^{208}Pb, it excites the components $LJ^{+}\nu \otimes lj^{-}\nu$ with neutron particle LJ and neutron hole lj^{-}; $^{207}\text{Pb}(d,p)$ excites $LJ^{+}\nu \otimes p_{1/2}^{-}\nu$. The sum rules for 64 out of 70 particle-hole configurations with spins 0^{-} to 8^{-} are thus found to be complete within 10%; the completeness of six configurations which are not directly detectable ($f^{+}\pi_{5/2} \otimes lj^{-}\pi$) is deduced. The large gap in the SSM space at $6033 \leq E_{SSM} < 6361$ keV together with the determination of the configuration mixing in all 70 states allows to deduce matrix elements of the residual interaction [3].

Figure 1: (left) SSM configurations, (right) identified states with spins 0^{-} to 8^{-} and $2600 < E_x < 6012$ keV.