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In this advanced-level tutorial, we illustrate several techniques for discrete degeneracy localization

in GLoBES (General Long Baseline Experiment Simulator). In order to include correlations as

well, the unused parameters are usually marginalized/minimized over for a given set of simulated

parameters. In principle, one can include all degenerate solutions in GLoBES by a complete scan

of the parameter space with glbChiSys. However, such a “grid-based” approach takes gd steps,

where g is the number of steps in one dimension (such as θ13), and d is the dimension of the

parameter space (typically d = 6 for neutrino oscillations). For example, for g = 20 steps in

one direction, 206 = 6.4 · 107 evaluations of the systematics χ2 would be necessary, costing many

hours of CPU time on a modern computer – and this is only for one set of input parameters.

Therefore, GLoBES provides the concept of local minimization: Instead of scanning the complete

parameter space, most of which is uninteresting because of a too large χ2, a minimizer is started

at the position of an“educated guess” and runs into the local minimum to include the correlations

with the other parameters. This reduces the computational effort to about n× 1 000 evaluations

of the systematics χ2, where n is the number of discrete degeneracies. For example, for n =

8, the computational effort can be reduced from several hours to a few seconds. Since the

local minimizer may end up in the wrong minimum if started too far away from the actual

solution, finding a proper educated guess for the discrete degeneracies is crucial for this approach.

Therefore, most of this tutorial deals with methods to find an educated guess. Note that the chosen

examples do not represent the standard level of sophistication needed to use GLoBES, such as to

simulate superbeams. They are chosen from a large set of calculations to illustrate cases where

the straightforward methods fail.

Finding the sgn(∆m2

31
)-degeneracy at T2HK

Problem 1: Warm-up

In this tutorial, all programs are labeled deg_tut_n.c, where n is the problem number. In
every problem, the program, which we have provided for you, illustrates a straightforward
solution. As you will see, we have chosen examples where the straightforward approach will
fail. Familiarize yourself with the source code, compile the program with make deg_tut_n,
and run it with ./deg_tut_n. You will see some additional information on screen while the
program is executed. The output is, as a standard, written into a file named tutn.dat,
n being the problem number again. Take a look at the output, which is a simple two-
column file, with the editor or plot program of your choice. For example, start gnuplot

and enter plot "tutn.dat" with lines. As the next step, we will describe a possible
solution to the problem, and is up to you to implement it in the given program file. We will
demonstrate how the output should look like, but we will not provide a specific program
code for the solution.

Let’s try that. In this example, we want to find the minimum χ2 at the sgn(∆m2
31)-

degeneracy for T2HK. This values describes the sensitivity to the normal hierarchy as



function of log(sin2 2θ13). We compute it as function of the simulated (true) log(sin2 2θ13)
for the simulated δCP = 3π/2 in the program deg_tut_1.c. Try to follow the procedure
above. This is what your result should look like:
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The result is a smooth χ2, and the straightforward algorithm seems to work. Nothing to
do here - but just wait, until we change δCP in the next problem.

Problem 2: Using analytical knowledge

In this problem, we simply change δCP, i.e., we compute the χ2 for the normal mass
hierarchy sensitivity as function log(sin2 2θ13) for the simulated δCP = π/8. The result is
the solid curve in the following plot:
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Solution, Problem 2

Straightforward

Obviously, the calculated χ2 is much to large for the experiment considered: T2HK cannot
measure the mass hierarchy very well because of the rather short baseline. The reason
for the poor performance of our method is the contribution from both appearance and
disappearance channels used in this experiment. In certain regions of the parameter space,
the disappearance information is at least comparable to the appearance χ2, which means
that one cannot rely on one specific topology (such as of the appearance channel). The
educated guess for the minimizer is obviously not good enough.

Possible improvement: For very small θ13, the appearance rate in T2HK will be almost
zero. Therefore, the topology is determined by the disappearance channel.



Fortunately, one can in this case obtain a very simple guess for the location of the degen-
eracy in ∆m2

31 (see, e.g., Ref. [1]):

(∆m2
31)

− = −(∆m2
31)

+ + 2 ∆m2
21 cos2 θ12 . (1)

Use this value to start the minimizer there. As you see in the plot (dashed curve), this
works very well for small θ13, but it fails for larger θ13 where the appearance channel adds
information. In the next problem, we will use a different method, which is more successful
in this particular example. However, note that analytical knowledge can also be used for
the appearance channel and for other problems. We have just restricted ourselves to the
simplest example we could think of.

Problem 3: Tracking algorithm

Let us now improve the solution from last example by using a different method.

Possible solution: Assume that the straightforward approach works in a part of the param-
eter space, and we find a solution there which is good enough. A tracking algorithm can
then use the output from glbChiAll (local minimum, returned as the second parameter)
as the input for the next minimization if the points are not too far apart from each other.
In this case, the parameter space is “adiabatically” changed. Use, for example, θ13 = 0 as
a starting guess and, from there, move gradually upward in θ13. The result should then
resemble the dashed curve in the following figure:
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Solution, Problem 3

Straightforward

In this particular case, it is a very good solution. If you scan the parameter space in
the (true) δCP-direction (and other true parameter directions) continously, you will find
cases where the method fails for small θ13. Combine then the solutions of problem 2 and
problem 3, and you will have a working algorithm.

Locating the intrinsic (δCP, θ13)-degeneracy at a neutrino factory

Problem 4: Pre-scanning a parameter sub-space

We now consider a different experiment. A neutrino factory typically faces the intrinsic
degeneracy problem in a part of the parameter space. In this example, we compute the



sin2 θ13 precision, i.e., the χ2 as function of the fit sin2 θ13 for a given set of simulated values.
We project onto the sin2 θ13-axis, because we want to read off the precision of sin2 θ13

including all correlations. In order to start the minimizer, we use the set of true/simulated
values as an educated guess for the minimizer. We obtain the solid curve in the following
figure:
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Solution, Problem 4

Straightfoward

Obviously, the (δCP, θ13)-degenerate solution on the right is not located properly. The
reason is that the minimizer ends up in the local minimum corresponding to the best-fit
point, whereas the degeneracy is located at a different value of δCP.

Possible solution: For each sin2 2θ13, use glbChiSys to pre-scan the parameter space in the
δCP direction only. Since glbChiSys is very fast, one can just scan the δCP-direction for
the local minimum in the δCP direction, and then use this as a guess for the minimizer
(such as using 50 steps from 0 to 2π). This guess does not include the full correlation, but
it exploits the dominant effect in an efficient manner. The full correlation is then obtained
by the following run of glbChiTheta13. The result is the dashed curve in the above figure.

Octant (θ23, π/2 − θ23)-degeneracy

Problem 5: Manual scan of a sub-space

Locating the octant degeneracy is a computationally equivalent to the ability of an experi-
ment to exclude the other (“wrong”) octant. Naturally, one would use π/2− θ23 as a guess
for the starting point of the minimizer. The octant degeneracy is especially tricky from
the computational point of view for θ23 very close to maximal mixing: In this case, the
local minimizer tends to end up in the best-fit octant – there is no barrier for preventing it
from doing so. We illustrate this in this problem using T2HK, which has, as a standalone
experiment without atmospheric data, a very weak octant resolution potential. For exam-
ple, for sin2 2θ13 = 0.1, we obtain the solid curve in the following figure as function of the
simulated sin2 θ23:
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Solution, Problem 5

Straightfoward

As the algorithm tells you when you run it (see source code), the minimizer ends up in the
wrong octant for four points left and two points right adjacent to the vertical line (note that
at the best-fit solution, χ2 = 0). So how can we prevent it from doing so? One possibility
is to add an external constraint on θ23. However, this does not guarantee ending up in the
targeted octant. In addition, a too high external precision in this constraint will make the
χ2 artificially higher. In this and the next problem, we therefore discuss two possibilities
which end up in the right octant for sure.

Possible solution: Instead of minimizing over all parameters simultaneously, scan the θ23-
direction separately and use glbChiNP with a user-defined projection to marginalize over
the other parameters (keeping θ23 fixed). Therefore, we split the marginalization procedure
in a grid-based and local minimization process. For example, for the simulated sin2 θ23 =
0.45, scan the fit sin2 θ23 from 0.5 to 0.6 in steps of 0.005 (or larger steps, if too slow), and
minimize over the other parameters for each sin2 θ23. Choose the minimum χ2 from the θ23

scan. Make sure to cover a large enough range for the θ23 scan in the wrong octant. Using
this procedure, it is obvious that one cannot end up in the unwanted octant. As a result,
you should find the dashed curve in the above figure (for a stepsize of 0.005). However,
as you can check, the result somewhat depends on the grid width/stepsize (which explains
the discrepancy for the points ending up in the correct octant). For a precision calculation,
many steps in θ23 are required (or interpolation techniques in the θ23 direction). In addition,
the procedure is extremely slow.

Problem 6: Using Schwetz-priors (requires GLoBES 3.0 or higher!)

Here we will use a more advanced and very fast approach to the last problem, which is
named after its inventor Thomas Schwetz. It requires GLoBES 3.0 or higher and uses
user-defined priors. However, you will not need any particular knowledge about the imple-
mentation: The example deg_tut_6.c already defines a standard prior for you. You will
only need to modify the prior where indicated to include the solution.

Possible solution: Add a very large value to the χ2 if the minimizer ends up in the wrong
octant. This can be done with a user-defined prior, which is a function of the oscillation
parameters only to be added to the χ2 before the oscillation parameter marginalization.
Modify the already implemented user-defined prior function where marked in the code. Use



the central_values to find out which the right and wrong octant is. Use in to extract
the tested θ23 and compare it to the one from central_values. If in the unwanted octant,
add a very large number to the χ2.
As a result, you should find the following dashed-dotted curve with triangles:
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Solution, Problem 5

Straightfoward

As you can easily see, the procedure reproduces the correct solutions from the “straight-
forward” curve, but it does not fall in the unwanted octant in the few points close to the
vertical line.

Advanced topic: Eight-fold degeneracy

Problem 7: Using iso-rate curves (homework: requires extensive programming!)

In practice, one wants to have a stable and reliable tool for discrete degeneracy localization.
Unfortunately, such a tool depends on the topology and therefore on the experiment. A
typical very sophisticated experiment with all degeneracies being relevant, is a neutrino
factory at a baseline of about 2 000 km to 4 000 km. In the literature, the degeneracies are
defined by equal probabilities for both neutrinos and antineutrinos

Peµ(ηbest−fit) = Peµ(η′) , Pēµ̄(ηbest−fit) = Pēµ̄(η
′) (2)

at an oscillation parameter point η′ and the best-fit value ηbest−fit (see, e.g., Ref. [2]). In
principle, one can use analytical knowledge to find all such points η′ corresponding to the
different discrete degeneracies. However, for an experiment using spectral information, the
dominating effect will we a weighted average over different energies including the convolu-
tion with cross sections, flux, etc. Therefore, in practice, two different methods turn out
to be very efficient:

a) Winter’s method: Use glbTotalRuleRate to obtain the total event rates for the
neutrino and antineutrino appearance channels. Plot the curves with equal total rate
in the sin2 2θ13-δCP-plane for both neutrinos and antineutrinos using the same rates
as in the best-fit point. The curves will intersect at the intrinsic degeneracy (if it all).
Plot the same curves for the same rates with sgn(∆m2

31) flipped. Again you will find



a maximum of two intersection points. Now do the same for π/2 − θ23 flipped, and
for sgn(∆m2

31) combined with π/2− θ23 flipped (mixed degeneracy). You will find at
most two more intersection points in each case. The results should look somewhat
like this, where the best-fit point is not marked (the marks correspond to the points
where the discrete degeneracies are located according to this specific algorithm):
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Altogether, there is a maximum of eight intersection points in the sin2 2θ13-δCP-plane,
one of which is the best-fit point. These points can be using as starting points of the
minimizer to locate the eight-fold degeneracy.

b) Huber’s method: Pre-scan the χ2 in the sin2 2θ13-δCP-plane for the cases described
in a). Find the local minimum which is separated from the best-fit solution. This
method is similar to a), but it uses the χ2 instead of the total event rate.

References

[1] A. de Gouvea and W. Winter, Phys. Rev. D73, 033003 (2006), hep-ph/0509359.

[2] V. Barger, D. Marfatia, and K. Whisnant, Phys. Rev. D65, 073023 (2002), hep-

ph/0112119.


