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What is GLoBES?

GLoBES (“General Long Baseline Experiment Simulator”) is a flexible software package to
simulate neutrino oscillation long baseline and reactor experiments. On the one hand, it
contains a comprehensive abstract experiment definition language (AEDL), which allows
to describe most classes of long baseline experiments at an abstract level. On the other
hand, it provides a C-library to process the experiment information in order to obtain
oscillation probabilities, rate vectors, and ∆χ2-values. Currently, GLoBES is available for
GNU/Linux. Since the source code is included, the port to other operating systems is in
principle possible. The software as well as up-to-date versions of this manual can be found
at this URL: http://www.ph.tum.de/~globes

GLoBES allows to simulate experiments with stationary neutrino point sources, where
each experiment is assumed to have only one neutrino source. Such experiments are neu-
trino beam experiments and reactor experiments. Geometrical effects of a source distri-
bution, such as in the sun or the atmosphere, can not be described. In addition, sources
with a physically significant time dependencies can not be studied, such as supernovæ. It
is, however, possible to simulate beams with bunch structure, since the time dependence
of the neutrino source is physically only important to suppress backgrounds.

On the experiment definition side, either built-in neutrino fluxes (e.g., neutrino factory)
or arbitrary fluxes can be used. Similarly, arbitrary cross sections, energy dependent effi-
ciencies, the energy resolution function, the considered oscillation channels, backgrounds,
and many other features can be specified. For the systematics, energy normalization and
calibration errors can be simulated. Note that the energy ranges and windows, as well as
the bin widths can be (almost) arbitrarily chosen, which means that variable bin widths
are allowed. Together with GLoBES comes a number of pre-defined experiments in order
to demonstrate the capabilities of GLoBES and to provide prototypes for new experiments.

With the C-library, one can extract the ∆χ2 for all defined oscillation channels for
an experiment or any combination of experiments. Of course, also low-level information,
such as oscillation probabilities or event rates, can be obtained. GLoBES includes the
simulation of neutrino oscillations in matter with arbitrary matter density profiles, as well
as it allows to simulate the matter density uncertainty. As one of the most advanced
features of GLoBES, it provides the technology to project the ∆χ2, which is a function of
all oscillation parameters, onto any subspace of parameters by local minimization. This
approach allows the inclusion of multi-parameter-correlations, where external input (e.g.,
from solar parameters) can be imposed, too. Applications of the projection mechanism
include the projections onto the sin2 2θ13-axis and the sin2 2θ13-δCP-plane. In addition, all
oscillation parameters can be kept free to precisely localize degenerate solutions.
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Terms of usage of GLoBES

Referencing the GLoBES software

GLoBES is developed for academic use. Thus, the GLoBES Team would appreciate being
given academic credit for it. Whenever you use GLoBES to produce a publication or a talk
indicate that you have used GLoBES and please cite the reference [1]

P. Huber, M. Lindner and W. Winter
Simulation of long baseline neutrino oscillation experiments with GLoBES
arXiv:hep-ph/0407333.

but not this manual. This manual itself is not a scientific publication and will not be
submitted to a scientific journal. It will evolve during time since it is intended for regular
revision. Besides that, many of the data which are used by GLoBES and distributed together
with it should be properly referenced. For details see below.

Apart from that, GLoBES is free software and open source, i.e., it is licensed under the
GNU Public License.

Referencing the data in GLoBES

GLoBES wouldn’t be useful without having high quality input data. Much of these input
data have been published elsewhere and the authors of those publications would appreciate
to be cited whenever their work is used. It is solely the user’s responsibility to make sure
that he understands where the input material for GLoBES comes from and if additional
work has to be cited in addition to the GLoBES paper [1]. To assist with this task, we
provide the necessary information for the data coming along together with GLoBES.

When using the built-in Earth matter density profile, the original source is Ref. [2].
All files ending with .dat or .glb in the data subdirectory of the GLoBES tar-ball have

on top a comment field which clearly indicates which works should be cited when using
a certain file. Make sure that dependencies are correctly tracked, i.e., in some cases files
included by other files need to be checked, too (for example, cross section or flux files).
One can use the -v3 option to globes to see which files are included.

It is recommended that you use the same style for your own input files, since, in case
they are distributed, everybody will know how to correctly reference your work.
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How to use this manual

As it is illustrated in Fig. 1, GLoBES consists of several modules. AEDL(“Abstract Exper-

GLoBES

GLoBES User Interface

Application software to compute
high−level sensitivities, precision etc.

AEDL
Abstract Experiment

AEDL−file(s) and

simulate experiment(s)
provides functions to

C−library which loadsAEDL−
file(s)

Defines Experiments
and modifies them

Definition Language

Figure 1: Different modules in GLoBES.

iment Definition Language”) is a language to define experiments in form of ordinary text
files. One or more of the resulting AEDL files can then be processed together with support-
ing flux or cross section files by the user interface. The user interface is a C-library, which
loads one or more AEDL file(s) containing the experiment definition(s). The user interface
is linked against the application software, and provides the user interface functions for the
intended experiment simulation.

The application software is, except from some example files, not part of GLoBES, since
the evaluation of the experiment performance is often a matter of taste and definition.
In addition, the algorithms depend, especially for high-precision instruments, very much
on the oscillation parameters. In general, it is quite simple to simulate superbeams and
reactor experiments. However, because of the more complicated topology, the simulation of
neutrino factories is much more difficult. In order to demonstrate some of these difficulties,
we present in this manual only examples with neutrino factories. These examples can be
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found in Part I within the boxed pages. As complete files, they are also available in the
GLoBES software package.

The GLoBES software may have two target groups: Physicists, who are mainly inter-
ested in optimizing the potential of specific experimental setups, and others, who are mainly
interested in the physics potential of different experiment types from a theoretical point of
view. For the first group, AEDL could be the most interesting aspect of GLoBES, where the
user interface is only a tool to obtain specific parameter sensitivities. In this case, GLoBES
could, serve as a unified tool for the comparison and optimization of different experiment
setups on equal footing, where it is the primary objective to simulate the experiments as
accurate as possible. In addition, changes in experimental parameters, such as efficiencies
or the energy resolutions, can quickly be tested. For the second user group, the pre-defined
experiment definition files might already be sufficient to test new conceptual approaches,
and the user interface is the most interesting aspect for sophisticated applications includ-
ing correlations, degeneracies, and multi-experiment setups. In either case, the GLoBES
software could serve as a platform for the exchange of experiment definitions, and for an
efficient splitting of work between experimentalists and theorists.

The user interface functions are described in Part I of this manual, which is the “user’s
manual”. In there, first of all a short GLoBES tour is given in Chapter 1 in order to have an
overview over GLoBES. After that, the user interface is successively introduced from very
basic to more sophisticated functions. Eventually, it is demonstrated how one can change
many experiment parameters at running time (such as baseline or target mass), and how
one can obtain low-level information. We recommend that everybody interested in GLoBES
should become familiar at least with the concepts in Chapter 1 and some of the examples
on the boxed pages. The examples can be directly compiled from the respective directory
in the GLoBES software package.

In Part II of the manual, AEDL is described. After an introductory chapter, all functions
are defined in greater detail. This part might be more interesting for the experimental
users who want to modify or create AEDL files. A useful tool in this context is the software
program globes, which returns event rates and other information for individual AEDL
files without further programming. For example, flux normalizations can with this tool be
easily adjusted to reproduce the event rates of a specific experiment. It is described in the
last chapter of Part II.

Note: All examples for application software in C do require a C++ compiler to be prop-
erly compiled. For pedagogical reasons, variable declarations are done at that place where
the variable is needed for the first time, which is at variance with C syntax but not with
C++ syntax. That is the only way in which the examples deviate form ISO C. Moreover
the actual numerical values of the results of the examples may be different from the ones
in this manual.
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Chapter 1

A GLoBES tour

In this first chapter, we show a GLoBES tour illustrating the main features of GLoBES. The
complete example can be found as example-tour.c in the example subdirectory of your
GLoBES distribution. The output is written to stream, which can be either stdout, or a
file. Details about how to use GLoBES with C can found in Chapter 2 and the following
chapters. You can also find a summary of the most important GLoBES χ2-functions in
Table 1.1. Note that this chapter can be skipped without loss of relevant information.

Initialize the GLoBES library:

glbInit(argv[0]);

Define my standard oscillation parameters:

double theta12 = asin(sqrt(0.8))/2;

double theta13 = asin(sqrt(0.001))/2;

double theta23 = M_PI/4;

double deltacp = M_PI/2;

double sdm = 7e-5;

double ldm = 2e-3;

Load one neutrino factory experiment:

glbInitExperiment("NuFact.glb",&glb_experiment_list[0],

&glb_num_of_exps);

Initialize a number of parameter vectors we are going to use later:

glb_params true_values = glbAllocParams();

glb_params fit_values = glbAllocParams();

glb_params starting_values = glbAllocParams();

glb_params input_errors = glbAllocParams();

glb_params minimum = glbAllocParams();
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Function Purpose Parameters → Result
Systematics only:
glbChiSys χ2 with systematics

only
(glb_params in, int exp, int

rule) → double χ2

Projections onto axes:
glbChiTheta Projection onto θ13-

axis
(glb_params in, glb_params out,

int exp) → double χ2

glbChiDelta Projection onto δCP-
axis

(glb_params in, glb_params out,

int exp) → double χ2

glbChiTheta23 Projection onto θ23-
axis

(glb_params in, glb_params out,

int exp) → double χ2

glbChiDm Projection onto
∆m2

31-axis
(glb_params in, glb_params out,

int exp) → double χ2

glbChiDms Projection onto
∆m2

21-axis
(glb_params in, glb_params out,

int exp) → double χ2

Projection onto plane:
glbChiThetaDelta Projection onto θ13-

δCP-plane
(glb_params in, glb_params out,

int exp) → double χ2

Projection onto any hyper-plane:
glbChiNP Projection onto any

n-dimensional hyper-
plane

(glb_params in, glb_params out,

int exp) → double χ2

Needs glbSetProjection before!

Localization of degeneracies:
glbChiAll (Local) Minimization

over all parameters
(glb_params in, glb_params out,

int exp) → double χ2

Table 1.1: The GLoBES standard function to obtain a χ2-value with systematics only or systematics
and correlations. The parameters rule and exp can either be GLB_ALL for all initialized experiment or
the experiment number (0 to glb_num_of_exps-1) for a specific experiment. The format of glb_params is
discussed in detail in Chapter 2. Note that all functions but glbChiSys are using minimizers which have
to be initialized with glbSetInputErrors and glbSetStartingValues first.
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Assign values to our standard oscillation parameters:

glbDefineParams(true_values,theta12,theta13,theta23,deltacp,sdm,ldm);

Compute the simulated data with our standard parameters:

glbSetOscillationParameters(true_values);

glbSetRates();

Return the oscillation probabilities in vacuum and matter for the electron neutrino as initial
flavor:

int i;

fprintf(stream,"\nOscillation probabilities in vacuum: ");

for(i=1;i<4;i++) fprintf(stream,"1->%i: %g",i,

glbVacuumProbability(1,i,+1,50,3000));

fprintf(stream,"\nOscillation probabilities in matter: ");

for(i=1;i<4;i++) fprintf(stream,"1->%i: %g ",i,

glbProfileProbability(0,1,i,+1,50));

→ Output:

Oscillation probabilities in vacuum: 1->1: 0.999953 1->2: 2.69441e-05 1->3:
1.98019e-05
Oscillation probabilities in matter: 1->1: 0.999965 1->2: 2.02573e-05 1->3:
1.49021e-05

Now assign fit values, where we will test the fit value sin2 2θ13 = 0.0015:

glbCopyParams(true_values,fit_values);

glbSetOscParams(fit_values,asin(sqrt(0.0015))/2,GLB_THETA_13);

Compute χ2 with systematics only for all experiments and rules:

chi2 = glbChiSys(fit_values,GLB_ALL,GLB_ALL);

fprintf(stream,"chi2 with systematics only: %g\n\n",chi2);

→ Output:

chi2 with systematics only: 22.3984

This we would obtain from the first appearance channel only:

chi2 = glbChiSys(fit_values,0,0);

fprintf(stream,"This we would have from the CP-even appearance

channel only: %g\n\n",chi2);

→ Output:
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This we would have from the CP-even appearance channel only: 21.6223

The sum over all rules again gives:

chi2 = glbChiSys(fit_values,GLB_ALL,0)+ glbChiSys(fit_values,GLB_ALL,1)+

glbChiSys(fit_values,GLB_ALL,2)+ glbChiSys(fit_values,GLB_ALL,3);

fprintf(stream,"The sum over all rules gives again: %g\n\n",chi2);

→ Output:

The sum over all rules gives again: 22.3984

Let’s prepare the minimizers for taking into account correlations. Set errors for external
parameters, too: 10% for each of the solar parameters, and 5% for the matter density.

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetStartingValues(true_values);

glbSetInputErrors(input_errors);

Then we can calculate χ2 including the full multi-parameter correlation, and show where
GLoBES actually found the minimum (note that this takes somewhat longer than system-
atics only). This corresponds to a projection onto the sin2 2θ13-axis:

chi2 = glbChiTheta(fit_values,minimum,GLB_ALL);

fprintf(stream,"chi2 with correlations: %g \n",chi2);
fprintf(stream,"Position of minimum: theta12, theta13, theta23,

delta, sdm, ldm, rho\n");
glbPrintParams(stream,minimum);

fprintf(stream,"Note that s22theta13 is unchanged/kept fixed:

%g! \n\n", pow(sin(2*glbGetOscParams(minimum,GLB_THETA_13)),2));

→ Output:

chi2 with correlations: 2.1038
Position of minimum: theta12,theta13,theta23,delta,sdm,ldm,rho
0.542002 0.0193698 0.747915 1.77688 6.66156e-05 0.00200817
1.00434
Iterations: 1693
Note that s22theta13 is unchanged/kept fixed: 0.0015!

Instead of including the full correlation, we can take the correlation with every parameter
except from δCP, i.e., we keep (in addition to θ13) δCP fixed. This corresponds to projection
onto the sin2 2θ13-δCP-plane:

chi2 = glbChiThetaDelta(fit_values,minimum,GLB_ALL);

fprintf(stream,"chi2 with correlations other than with deltacp:

%g \n\n",chi2);
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→ Output:

chi2 with correlations other than with deltacp: 4.32831

Similarly, we can only take into account the correlation with δCP. For this, we need to
define our own (user-defined) projection, where only δCP is a free parameter:

glb_projection myprojection = glbAllocProjection();

glbDefineProjection(myprojection,GLB_FIXED, GLB_FIXED, GLB_FIXED,

GLB_FREE, GLB_FIXED, GLB_FIXED);

glbSetProjection(myprojection);

chi2 = glbChiNP(fit_values,minimum,GLB_ALL);

fprintf(stream,"chi2 with correlation only with deltacp:

%g \n\n",chi2);
glbFreeProjection(myprojection);

→ Output:

chi2 with correlation only with deltacp: 2.80651

We can also switch of the systematics and compute the statistics χ2 only:

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_OFF);

chi2 = glbChiSys(fit_values,GLB_ALL,GLB_ALL);

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_ON);

fprintf(stream,"chi2 with statistics only:

%g\n\n",chi2);

→ Output:

chi2 with statistics only: 39.143

Let us now locate the exact position1 of the sgn-degeneracy:

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,ldm/3);

glbDefineParams(starting_values,theta12,theta13,theta23,

deltacp,sdm,-ldm);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetStartingValues(starting_values);

glbSetInputErrors(input_errors);

chi2=glbChiAll(starting_values,minimum,GLB_ALL);

fprintf(stream,"chi2 at minimum: %g \n",chi2);
fprintf(stream,"Position of minimum:

theta12,theta13,theta23,delta,sdm,ldm,rho\n");
glbPrintParams(stream,minimum);

1For a exact definition of inverted hierarchy, see page 19.
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→ Output:

chi2 at minimum: 6.20025
Position of minimum: theta12,theta13,theta23,delta,sdm,ldm,rho
0.591812 0.0264717 0.72763 1.08709 8.0004e-05 -0.00206094
0.970685
Iterations: 1946

After testing these functions with only one experiment, let us now go to a two-experiment
setup with two different neutrino factory baselines. Since the GLoBES parameter vectors
depend on the number of experiments, we have to free them first:

glbFreeParams(true_values);

glbFreeParams(fit_values);

glbFreeParams(starting_values);

glbFreeParams(input_errors);

glbFreeParams(minimum);

Then we clear the experiment list and load the new experiments:

fprintf(stream,"\nNOW: TWO-EXPERIMENT SETUP

NuFact at 3000km+NuFact at 7500km\n\n");

glbClearExperimentList();

glbInitExperiment("NuFact.glb",&glb_experiment_list[0],

&glb_num_of_exps);

glbInitExperiment("NuFact.glb",&glb_experiment_list[0],

&glb_num_of_exps);

→ Output:

NOW: TWO-EXPERIMENT SETUP NuFact at 3000km+NuFact at 7500km

Then we need to change the baseline of the second experiment, where we set the density
to the average density of this baseline:

double* lengths;

double* densities;

glbAverageDensityProfile(7500,&lengths,&densities);

fprintf(stream,"Magic baseline length: %g,

Density: %g\n\n",lengths[0],densities[0]);
glbSetProfileDataInExperiment(1,1,lengths,densities);

free(lengths);

free(densities);
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→ Output:

Magic baseline length: 7500, Density: 4.25286

Now we can re-initialize our parameter vectors again:

true_values = glbAllocParams();

fit_values = glbAllocParams();

starting_values = glbAllocParams();

input_errors = glbAllocParams();

minimum = glbAllocParams();

glb_params minimum2 = glbAllocParams();

In addition, we repeat the procedure for the simulated rates and the fit parameter vector:

glbDefineParams(true_values,theta12,theta13,theta23,deltacp,sdm,ldm);

glbSetOscillationParameters(true_values);

glbSetRates();

glbCopyParams(true_values,fit_values);

glbSetOscParams(fit_values,asin(sqrt(0.0015))/2,GLB_THETA_13);

Here comes the χ2 with systematics only for all experiments and rules:

chi2 = glbChiSys(fit_values,GLB_ALL,GLB_ALL);

fprintf(stream,"chi2 with systematics for all exps:

%g\n",chi2);

→ Output:

chi2 with systematics for all exps: 31.0797

Compute χ2 for each experiment and compute the sum:

chi2 = glbChiSys(fit_values,0,GLB_ALL);

fprintf(stream,"chi2 with systematics for 3000km: %g\n",chi2);
chi2b = glbChiSys(fit_values,1,GLB_ALL);

fprintf(stream,"chi2 with systematics for 7500km: %g\n",chi2b);
fprintf(stream,"The two add again to:

%g\n\n",chi2+chi2b);

→ Output:

chi2 with systematics for 3000km: 22.3984
chi2 with systematics for 7500km: 8.68131
The two add again to: 31.0797
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Similarly, compute the χ2 with correlations for each experiment and their combination.
Compare it to the χ2 for all experiments: the sum of the individual results is not equal to
the χ2 of the combination anymore. Note that there are now two densities in the output
vectors.

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetStartingValues(true_values);

glbSetInputErrors(input_errors);

chi2 = glbChiTheta(fit_values,minimum,0);

fprintf(stream,"chi2 with correlations for 3000km: %g \n",chi2);
glbPrintParams(stream,minimum);

chi2b = glbChiTheta(fit_values,minimum,1);

fprintf(stream,"\nchi2 with correlations for 7500km:

%g \n",chi2b);
glbPrintParams(stream,minimum);

chi2sum = glbChiTheta(fit_values,minimum,GLB_ALL);

fprintf(stream,"\nchi2 with correlations for combination:

%g \n",chi2sum);
glbPrintParams(stream,minimum);

fprintf(stream,"\nThe sum of the two chi2s is %g,

whereas the total chi2 is %g !\n\n",chi2+chi2b,chi2sum);

→ Output:

chi2 with correlations for 3000km: 2.1038
0.542002 0.0193698 0.747915 1.77688 6.66156e-05 0.00200817
1.00434 1
Iterations: 1693

chi2 with correlations for 7500km: 1.08421
0.557356 0.0193698 0.771359 4.77751 7.00762e-05 0.00200105
1 1.01517
Iterations: 661

chi2 with correlations for combination: 3.90835
0.544432 0.0193698 0.770175 1.78502 6.61621e-05 0.00200303
1.00431 1.03679
Iterations: 1636

The sum of the two chi2s is 3.18801, whereas the total chi2 is 3.90835!

Now find the sgn(∆m2
31)-degeneracies for both individual experiments and test if they are

still there in the combination of the experiments.
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glbDefineParams(input_errors,theta12*0.1,theta13,theta23,

deltacp,sdm*0.1,ldm/3);

glbDefineParams(starting_values,theta12,theta13,theta23,

deltacp,sdm,-ldm);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetStartingValues(starting_values);

glbSetInputErrors(input_errors);

chi2=glbChiAll(starting_values,minimum,0);

fprintf(stream,"chi2 at minimum, L=3000km: %g \n",chi2);
glbPrintParams(stream,minimum);

chi2b=glbChiAll(starting_values,minimum2,1);

fprintf(stream,"\nchi2 at minimum, L=7500km: %g\n",chi2b);
glbPrintParams(stream,minimum2);

chi2=glbChiAll(minimum,minimum,GLB_ALL);

fprintf(stream,"\nchi2 for combination at minimum of Exp. 1:

%g \n",chi2);
glbPrintParams(stream,minimum);

chi2b=glbChiAll(minimum2,minimum2,GLB_ALL);

fprintf(stream,"\nchi2 for combination at minimum of Exp. 2:

%g \n",chi2b);
glbPrintParams(stream,minimum2);

→ Output:

chi2 at minimum, L=3000km: 6.71794
0.591497 0.0257396 0.729058 1.11537 7.98867e-05 -0.00206005
0.970499 1
Iterations: 2104

chi2 at minimum, L=7500km: 47.1013
0.590347 0.0018489 0.768372 0.984827 8.23415e-05 -0.00204588
1 0.780995
Iterations: 1270

chi2 for combination at minimum of Exp. 1: 70.6353
0.607988 0.0165985 0.767682 1.41422 8.44573e-05 -0.00204853
0.96147 1.1831
Iterations: 1549

chi2 for combination at minimum of Exp. 2: 70.6357
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0.608454 0.0165823 0.767757 1.41481 8.43864e-05 -0.00204853
0.961129 1.18304
Iterations: 1447

Finally, we have to free the parameter vectors again:

glbFreeParams(true_values);

glbFreeParams(fit_values);

glbFreeParams(starting_values);

glbFreeParams(input_errors);

glbFreeParams(minimum);

glbFreeParams(minimum2);
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Chapter 2

GLoBES basics

In this first chapter of the user’s manual, we assume that the GLoBES software is readily
installed on your computer system. For the installation, see Appendix 10.2 and the INSTALL
file in the software package. We demonstrate how to load pre-defined experiments and
introduce the basic concepts of GLoBES. We do not go into details of the programming
language, which means that standard parts of the program code common to all of the
examples in the following chapters are, in general, omitted. An example of a minimal
GLoBES program in C can be found on page 14. Furthermore, the files of the examples
in this part can be found in the example subdirectory of your GLoBES distribution. After
the installation of GLoBES, they can be compiled using the Makefile in the examples

directory. The Makefile has been correctly setup by the configure script to take into
account details of the installation on your system. Thus you’ve just to type make and
you’re done. 1 This Makefile very well serves as a template for your own applications.

We will in this part not go into details of the experiment definition. The pre-defined
experiment prototypes in the data subdirectory are summarized in Table 2.1. They cor-
respond (except from minor modifications) to the experiments in the respective references
in the table. These files are installed to the directory ${prefix}/share/globes which
usually defaults to /usr/local/share/globes. It is useful to add this path to the value
of GLB_PATH.

2.1 Initialization of GLoBES

Before one can use GLoBES, one has to initialize the GLoBES library :

Function 2.1 void glbInit(char *name) initializes the library libglobes and has to
be called in the beginning of each GLoBES program. It takes the name name of the program
as a string to initialize the error handling functions. In many cases, it is sufficient to use
the first argument from the command line as the program name (such as in example on
page 14).

1The data files (AEDL and supporting files) needed by the examples are already in place.
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Example: Using GLoBES with C

Here comes the C-code skeleton, which is (more or less) common to all of our GLoBES
examples:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#include <globes/globes.h> /* Include GLoBES library */

#include "myio.h" /* Include "housemade" I/O-routines */

/* If filename given, write to file; if empty, to screen: */
char MYFILE[]="testX.dat";

int main(int argc, char *argv[])
{

glbInit(argv[0]); /* Initialize GLoBES library */

glbInitExperiment("NuFact.glb",&glb_experiment_list[0],
&glb_num_of_exps); /* Initialize experiment NuFact.glb */

/* Initialize housemade output function */
InitOutput(MYFILE,"Format: ... ... ... \n");

/* Initialize parameter vector(s) */
glb_params true_values = glbAllocParams();
/* ... */

/* Assign: theta12,theta13,theta23,deltacp,dm2solar,dm2atm */
glbDefineParams(true_values,

asin(sqrt(0.8))/2,asin(sqrt(0.001))/2,M_PI/4,M_PI/2,7e-5,2e-3);

/* The simulated data are computed */
glbSetOscillationParameters(true_values);
glbSetRates();

/* ... CODE ... */

/* Free parameter vector(s) */
glbFreeParams(true_values);
/* ... */

exit(0);

}
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Experiment Filename Short description Ref.
Conventional beams:
MINOS MINOS.glb MINOS exp., 5 yr running time [3]
OPERA OPERA.glb OPERA exp., 5 yr running time [3]
ICARUS ICARUS.glb ICARUS exp., 5 yr running time [3]

First-generation superbeams:
T2K JHFSKnew.glb J-PARC to Super-K, 5 yr ν-running [4]

JHFSKantinew.glb J-PARC to Super-K, 5 yr ν̄-running [4]
JHFSKcomb.glb Same, but 1.25 yr ν- and 3.75 yr ν̄-running [4]

NOνA NUMI9.glb NuMI OA 9 km/712 km, 5 yr ν-running [4]
NUMI9anti.glb NuMI OA 9 km/712 km, 5 yr ν̄-running [4]
NUMI9comb.glb NuMI OA 9 km/712 km, 1.43 yr ν- and

3.57 yr ν̄-running
[4]

NUMI12.glb NuMI OA 12 km/712 km, 5 yr ν-running [4]
NUMI12anti.glb NuMI OA 12 km/712 km, 5 yr ν̄-running [4]
NUMI12comb.glb NuMI OA 12 km/712 km, 1.43 yr ν- and

3.57 yr ν̄-running
[4]

Superbeam upgrade:
J-PARC-HK JHFHKAll.glb J-PARC to Hyper-K, 2 yr ν- and 6 yr ν̄-

running
[5]

Neutrino factories:
NuFact-I NuFact1.glb Initial stage NF, 2×2.5 yr running time

(each pol.), mDet = 10 kt, PTg ' 0.75 MW
[5]

NuFact-II NuFact2.glb Advanced stage NF, 2×4 yr running time
(each pol.), mDet = 50 kt, PTg ' 4 MW

[5]

Reactor experiments:
Reactor-I Reactor1.glb Small reactor exp., L = 400 t GW yr [6]
Reactor-II Reactor2.glb Large reactor exp., L = 8 000 t GW yr [6]

β-Beams: In preparation

Table 2.1: Pre-defined experiment prototypes, their filenames (to be used in glbInitExperiment),
their short descriptions, and the references in which they are originally used and discussed (except from
minor modifications, such as a different implementation of the energy threshold function). Note that some
of these experiments are outdated in terms of integrated luminosities, baseline, fluxes, efficiencies, or other
factors. In any case these file are installed along with GLoBES.
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In principle, the GLoBES user interface can currently handle up to 32 of different long-
baseline experiments simultaneously, where the number of existing experiment definition
files can, of course, be unlimited. This means that their ∆χ2-values are added after the
minimization over the systematics parameters, and before any minimization over the os-
cillation parameters. Note that each experiment assumes a specific matter density profile,
which means that it makes sense to simulate different operation modes within one exper-
iment definition, and physically different baselines in different definitions. For details of
the rate computation and simulation techniques, we refer at this place to Part II. Though
the simplest case of simulating one experiment may be most often used, using more than
one experiments are useful in many cases. For example, combinations of experiments can
be tested for complementarity and competitiveness by equal means within one program.
In general, many GLoBES functions take the experiment number as a parameter, which
runs from 0 to glb_num_of_exps-1 in the order of their initialization in the program.2 In
addition, using the parameter value GLB_ALL as experiment number initiates a combined
analysis of all loaded experiments.

In general GLB_ALL can be used in many cases where there is an argument selecting
‘i out of N ’, e.g. the 1st experiment out of 5, or the 5th rule of 20. In those cases using
GLB_ALL is equivalent to calling the corresponding function for all i in N and ‘add’ the
effect of each invocation, like in

for (i=0;i<N;i++) result += some_function(i);

is the same as
result = some_function(GLB_ALL);

Here the meaning of ‘add’ is, that whatever the desired result of calling some_function

is, this result is obtained for each i in N , e.g. setting the baseline in all experiments to a
certain value or or compute the χ2 for each experiment and return the total result. There
are however some functions where the action performed or the result is so complex that is
not possible or sensible to perform this for all i in N . Calling these functions with GLB_ALL

as argument will in any case result in an exit status indicating failure and the function will
produce an error message3.

For storing the experiments, GLoBES uses the initially empty list of experiments
glb_experiment_list. To add a pre-defined experiment to this list, one can use the
function glbInitExperiment:

Function 2.2 int glbInitExperiment(char *inf, glb_exp *in, int *counter)

adds a single experiment with the filename inf to the list of currently loaded experiments.
The counter is a pointer to the variable containing the number of experiments, and the
experiment in points to the beginning of the experiment list. The function returns zero if
it was successful.

Normally, a typical call of glbInitExperiment is

2Note that the global variable glb_num_of_exps must not be modified by the user.
3if the verbosity level is set accordingly
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Quantities Examples Units
Angles θ13, θ12, θ23, δCP Radians
Mass squared differences ∆m2

21, ∆m2
31 eV2

Matter densities ρi g/cm3

Baseline lengths Li km
Energies Eν GeV
Fiducial masses mDet t (reactor exp.) or kt (accelerator exp.),

depends on experiment definition
Time intervals trun yr
Source powers PSource Useful parent particle decays/yr

(Neutrino factory, β-Beam),
GW thermal power (reactor exps.),
or MW target power (superbeams);
depends on flux definition

Cross sections/E σCC/E 10−38 cm2/GeV2

Table 2.2: Quantities used in GLoBES, examples of these quantities, and their standard units in the
application software.

glbInitExperiment("NuFact.glb",&glb_experiment_list[0],

&glb_num_of_exps);

In this case, the experiment in the file NuFact.glb is added to the internal global list
of experiments, and the experiment counter is increased. The experiment then has the
number glb_num_of_exps-1. The elements of the experiment list have the type glb_exp,
which the user will not need to access directly in most cases. The experiment definition
files, which usually end with .glb, and any supporting files, are first of all searched in the
current directory, and then in the path given in the environment variable GLB_PATH.

A list of pre-defined experiment prototypes, their filenames, their short descriptions,
and the references of their definitions can be found in Table 2.1. If the program cannot
find these files, or some of them are syntactically not correct, it will break at this place.

One can also remove all experiments from the evaluation list at running time:

Function 2.3 void glbClearExperimentList() removes all experiments from the inter-
nal list and resets all counters.

Note that changing the number of experiments requires a new initialization of all parame-
ters of the types glb_params and glb_projection if the number of experiments changes,
since these parameter structures internally carry lists for the matter densities of all experi-
ments. Similarly, once should never call glbAlloc... before the experiment initialization.
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2.2 Units in GLoBES and the integrated luminosity

While interacting with the user interface of GLoBES, parameters are transferred to and from
the GLoBES library. In GLoBES, one set of units for each type of quantity is used in order
to avoid confusion about the definition of individual parameters. Table 2.2 summarizes
the units of the most important quantities. In principle, the event rates are proportional
to the product of source power × target mass × running time, which we call “integrated
luminosity”. Since especially the definition of the source power depends on the experiment
type, the quantities of the three luminosity components are not unique and depend on the
experiment definition. Usually, one uses detector masses in kilotons for beam experiments,
and detector masses in tons for reactor experiments. Running times are normally given
in years, where it is often assumed that the experiment runs 100% of the year. Thus, for
shorter running periods, the running times need to be renormalized. Source powers are
usually useful parent particle decays per year (neutrino factories, β-beams), target power
in mega watts (superbeams), or thermal reactor power in giga watts (reactor experiments).
Since the pre-defined experiments in Table 2.1 are given for specific luminosities, it is useful
to read out and change these parameters of the individual experiments:

Function 2.4 void glbSetSourcePower(int exp, int fluxno, double power) sets
the source power of experiment number exp and flux number fluxno to power. The defi-
nition of the source power depends on the experiment type as described above.

Function 2.5 double glbGetSourcePower(int exp, int fluxno) returns the source
power of experiment number exp and flux number fluxno.

Function 2.6 void glbSetRunningTime(int exp, int fluxno, double time) sets
the running time of experiment number exp and flux number fluxno to time years.

Function 2.7 double glbGetRunningTime(int exp, int fluxno) returns the running
time of experiment number exp and flux number fluxno.

Function 2.8 void glbSetTargetMass(int exp, double mass) sets the fiducial detec-
tor mass of experiment number exp to mass tons or kilotons (depending on the experiment
definition).

Function 2.9 double glbGetTargetMass(int exp) returns the fiducial detector mass of
experiment number exp.

Thus, these functions also demonstrate how to use the assigned experiment number and
others. These numbers run from 0 to the number of experiments-1, fluxes-1, etc., where the
individual elements are numbered in the order of their appearance. Note that the source
power and running time are quantities defined together with the neutrino flux, whereas the
target mass scales the whole experiment. Thus, if one has, for instance, a neutrino and an
antineutrino running mode, one can scale them independently.
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2.3 Handling oscillation parameter vectors

Before we can set the simulated event rates or access any oscillation parameters, we need
to become familiar with the concept GLoBES uses for oscillation parameters. In order to
transfer sets of oscillation parameter vectors (θ12, θ13, θ23, δCP, ∆m2

21, ∆m2
31), the parameter

type glb_params is used. In general, this type is often transferred to and from GLoBES
functions. Therefore, the memory for these vectors has to be reserved (allocated) before
they can be used, and it has to be returned (freed) afterwards. GLoBES functions usually
use the pointers of the type glb_params for the input or output to the functions. As an
input parameter, the pointer has to be created and point towards a valid parameter struc-
ture, where the oscillation parameters are read from. As an output parameter, the pointer
has to be created, too, and point towards a structure which will contain the return values
will be written to. This parameter transfer concept seems to be very sophisticated, but, as
we will see in the next chapters, it hides a lot of complicated parameter mappings which
otherwise need to be done by the user. For example, not only the oscillation parameters
are stored in the pointer structure, but also information on the matter densities of all of the
initialized experiments. Since GLoBES treats the matter density as a free parameter known
with some external precision to include matter density uncertainties, the minimizers also
use fit values and external errors for the matter densities of all loaded experiments. More
precisely, the matter density profile of each experiment i is multiplied by a scaling factor
ρ̂i, which is stored in the density information of glb_params. Each of these scaling factors
has 1.0 as pre-defined value. Since it is in most cases not necessary to change this value, the
user does not need to take care of it. For a constant matter density, it is simply the ratio of
the matter density and the average matter density specified in the experiment definition,
i.e., ρ̂i ≡ ρi/ρ̄i. For a matter density profile, it acts as an overall normalization factor: The
matter density in each layer is multiplied by this factor. In most cases one wants to take
a scaling factor of 1.0 here, which simply means taking the matter density profile as it is
given in the experiment definition. For the treatment of correlations, however, an external
precision of the scaling factor might be used to include the correlations with the matter
density uncertainty. Note that the glb_params structures must not be initialized before
all experiments are loaded, since the number of matter densities can only be determined
after the experiments are initialized. Similarly, any change in the number of experiments
requires that the parameter structures be re-initialized, i.e., freed and allocated again.

Note: Inverting the mass hierarchy is not precisely the same than to change from
∆m2

31 → −∆m2
31. In this case the absolute value of ∆m2

32 changes also, which introduces
a new frequency to the problem. Therefore, if we assume normal hierarchy whenever
∆m2

31 > 0, the corresponding point in parameters space for inverted hierarchy is given
by ∆m2

31 → −∆m2
31 + ∆m2

21, because with this defintion the absolute value of ∆m2
32 is

unchanged and no new frequency is introduced.

Another piece of information will be returned from the minimizers (cf., Chapter 4)
and transferred into the glb_params structure is the number of iterations used for the
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minimization, which is proportional to the running time of the minimizer. In general, the
user does not need to access the elements in glb_params directly. A number of functions
is provided to handle these parameter structures:

Function 2.10 glb_params glbAllocParams() allocates the memory space needed for a
parameter vector and returns a pointer to it.

Function 2.11 void glbFreeParams(glb_params stale) frees the memory needed for
a parameter vector stale and sets the pointer to NULL.

Function 2.12 glb_params glbDefineParams(glb_params in, double theta12,

double theta13,double theta23, double delta, double dms, double dma) assigns
the complete set of oscillation parameters to the vector in, which has to be allocated before.
The return value is the pointer to in if the assignment was successful, and NULL otherwise.

Function 2.13 glb_params glbCopyParams(const glb_params source, glb_params

dest) copies the vector source to the vector destination. The return value is NULL if
the assignment was not successful.

Function 2.14 void glbPrintParams(FILE *stream, const glb_params in) prints
the parameters in in to the file stream. The oscillation parameters, all density values,
and the number of iterations are printed as pretty output. Use stdout for stream if you
want to print to the screen.

In addition to these basic functions, there are functions to access the individual parameters
within the parameter vectors:

Function 2.15 glb_params glbSetOscParams(glb_params in, double osc, int

which) sets the oscillation parameter which in the structure in to the value osc. If the
assignment was unsuccessful, the function returns NULL.

Function 2.16 double glbGetOscParams(glb_params in, int which) returns the
value of the oscillation parameter which in the structure in.

In both of these functions, the parameter which runs from 0 to 5, where the parameters in
GLoBES always have the order θ12, θ13, θ23, δCP, ∆m2

21, ∆m2
31. Alternatively to the number,

the constants GLB_THETA_12, GLB_THETA_13, GLB_THETA_23, GLB_DELTA_CP, GLB_DM_SOL,
or GLB_DM_ATM can be used.

Similarly, the density parameters or number of iterations (returned by the minimizers)
can be accessed:

Function 2.17 glb_params glbSetDensityParams(glb_params in, double dens,

int which) sets the density parameter which in the structure in to the value dens. If the
assignment was unsuccessful, the function returns NULL. If GLB_ALL is used for which, the
density parameters of all experiments will be set accordingly.
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Function 2.18 double glbGetDensityParams(glb_params in, int which) returns
the value of the density parameter which in the structure in.

Function 2.19 glb_params glbSetIteration(glb_params in, int iter) sets the
number of iterations in the structure in to the value iter. If the assignment was
unsuccessful, the function returns NULL.

Function 2.20 int glbGetIteration(glb_params in) returns the value of the number
of iterations in the structure in.

In total, the parameter vector handling in a program normally has the following order:

glbInitExperiment(...);

/* ... more initializations ... */

glb_params vector1 = glbAllocParams();

/* ... more vectors allocated ... */

/* Program code: assign and use vectors */

glbFreeParams(vector1);

/* ... more vectors freed ... */

/* ... end of program or glbClearExperimentList ... */

2.4 Computing the simulated data

Compared to existing experiments, which use real data, future experiments use simulated
data. Thus, the true parameter values and their results in form of the reference event rate
vectors are simulated. After setting the true parameter values, the fit parameter values
can be varied in order to obtain information on the measurement performance for the
given set of true parameter values. Therefore, it is often useful to show the results of a
future measurement as function of the true parameter values for which the reference rate
vectors are computed – at least within the currently allowed ranges. The true parame-
ter values for the vacuum neutrino oscillation parameters have to be set by the function
glbSetOscillationParameters and the reference rate vector, i.e. the data, has to be
computed by a call to glbSetRates. This has to be done before any evaluation function is
used and after the experiments have been initialized and also the experiment parameters
have been adjusted which could change the rates (such as baseline or target mass). This
means that after any change of an experiment parameter, glbSetRates has to be called.
Matter effects are automatically included as specified in the experiment definition. We
have the following functions to assign and read out the vacuum oscillation parameters:
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Function 2.21 int glbSetOscillationParameters(const glb_params in) sets the
vacuum oscillation parameters to the ones in the vector in.

Function 2.22 int glbGetOscillationParameters(glb_params out) returns the vac-
uum oscillation parameters in the vector out. The result of the function is 0 if the call was
successful.

The reference rate vector is then computed with:

Function 2.23 void glbSetRates() computes the reference rate vector for the neutrino
oscillation parameters set by glbSetOscillationParameters.

A complete example for a minimal GLoBES program can be found on Page 14.

2.5 Version control

In order to keep track of the used version of GLoBES, the software provides a number of
functions to check the GLoBES and experiment versions. It is up to the user to implement
mechanisms into the program and AEDL files to check whether

• The program should only run with this specific version of GLoBES

• The program can only run with a minimum version of GLoBES

• The program can only run up to a certain GLoBES version.

The same holds for AEDL files: For example, some features may not be supported by earlier
versions of GLoBES anymore. The program can then check the version of the AEDL file
and break if it is too old.

The functions in GLoBES for version control are:

Function 2.24 int glbTestReleaseVersion(const char *version) returns 0 if the
version string of the format “X.Y.Z” is exactly the used GLoBES version, 1 if it is older,
and −1 if it is newer.

Function 2.25 int glbTestLibraryVersion(const char *version) returns 0 if the
version string of the format “X.Y.Z” is exactly the used GLoBES version, 1 if it is older,
and −1 if it is newer. Note that the library and GLoBES versions are not the same.

Function 2.26 const char* glbVersionOfExperiment(int experiment) returns the
version string of the experiment number experiment. The version string is allocated within
the experiment structure, which means that it cannot be altered and must not be freed by
the user.
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Chapter 3

Calculating χ2 with systematics only

Calculating a χ2-value with or without systematics, but no correlations and degeneracies,
is the simplest and fastest possibility to obtain high-level information on an experiment. In
general, GLoBES uses the six independent oscillation parameters θ12, θ13, θ23, δCP, ∆m2

21,
∆m2

31, as well as the matter density scaling factor ρ̂ of each experiment. Thus, there are six
plus the number of experiments parameters determining the rate vectors. Using the matter
density scaling factors in addition to the oscillation parameters will allow the simulation
of the correlations with matter density uncertainties: In this approach, the matter density
profile normalization ρ̂ can be treated as parameter to be measured by the experiment,
where an external precision given by observations is imposed (typically up to 5%). For
this section, it is important to keep in mind that there are more parameters than just the
oscillation parameters determining the simple χ2. However, as we have described in the last
section, the mechanism for the matter density scaling factors is hidden in the definition of
glb_params: Each of the scaling factors is initially set to 1.0. Therefore, for the calculation
of χ2 with systematics only, we do not have to care about the matter density scaling factors.

Keeping all oscillation parameters and matter density scaling factors fixed, one can use
the following functions to obtain the total χ2 of all specified oscillation channels including
systematics:

Function 3.1 double glbChiSys(const glb_params in,int exp, int rule) returns
the χ2 for the (fixed) oscillation parameters in, the experiment number exp, and the rule
number rule. For all experiments or rules, use GLB_ALL as parameter value.

Note that the result of glbChiSys for all experiments or rules corresponds to the sum of
all of the individual glbChiSys calls. This equality will not hold for the minimizers in the
next sections anymore. An example how to use glbChiSys can be found on page 24.

The treatment of systematics in GLoBES is performed by the so-call pull method with
the help of auxiliary systematics parameters. They are taken completely uncorrelated
among different rules, and treated with simple Gaußian statistics. In general, a rule is a
set of signal and background event rates coming from different oscillation channels, where
the event rates of all rule contributions are added. For more details of the rule concept,
see Part II of this manual, and for the treatment of systematics, see Sec. 9.6.
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Example: Correlation between sin2 2θ13 and δCP

A typical and fast application for glbChiSys is the visualization of two-parameter
correlations using systematics only. For example, to calculate the two-parameter cor-
relation between sin2 2θ13 and δCP at a neutrino factory, one can use the following code
excerpt from example1.c:

/* Initialize parameter vector(s) and compute simulated data */

glbDefineParams(true_values,theta12,theta13,theta23,deltacp,sdm,ldm);

glbDefineParams(test_values,theta12,theta13,theta23,deltacp,sdm,ldm);

glbSetOscillationParameters(true_values); glbSetRates();

/* Iteration over all values to be computed */

double x,y,res;

for(x=-4.0;x<-2.0+0.01;x=x+2.0/50)

for(y=0.0;y<200.0+0.01;y=y+200.0/50)

{

/* Set parameters in vector of test values */

glbSetOscParams(test_values,asin(sqrt(pow(10,x)))/2,GLB_THETA_13);

glbSetOscParams(test_values,y*M_PI/180.0,GLB_DELTA_CP);

/* Compute Chi2 for all loaded experiments and all rules */

res=glbChiSys(test_values,GLB_ALL,GLB_ALL);

AddToOutput(x,y,res);

}

The resulting data can then be plotted as a contour plot (2 d.o.f.):
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One example for a systematics parameter the signal normalization error, i.e., an error
to the overall normalization of the signal. For illustration, we assume that the signal event
rate in the ith bin s0

i of one oscillation channel is altered by the overall normalization
auxiliary parameter of this channel, i.e.,

si = si(ns) = s0
i · (1 + ns), (3.1)

where ns is the signal normalization parameter. The total number of events in the ith bin
xi also includes the background event rates bi, i.e., xi = si + bi, which may have their
own systematics parameters. In order to implement an overall signal normalization error
σns , the χ2, which includes all event rates xi of all bins, is minimized over the auxiliary
parameter ns:

χ̂2 = min
ns

(
χ2(ns, . . .) +

(ns)
2

σ2
ns

)
. (3.2)

This minimization is done independently for all auxiliary parameters of the rule. The total
χ2 for the considered experiment is finally obtained by repeating this procedure for all
rules and adding their χ2-values. In general, the situation is more complicated because of
the usage of many systematical errors. More details about systematics parameters and the
definition of signal, background, and oscillation channels can be found in Sec. 9.6, too.

The systematics minimization of an experiment can be easily switched on and off with
glbSwitchSystematics, i.e., one can also compute the χ2 with statistics only. In addition,
several options for systematics are available, such as only using total event rates without
spectral information. For details, we refer to Chapter 7.
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Chapter 4

Calculating χ2-projections: how one
can include correlations

This chapter deals with the rather complicated issue of n-parameter correlations. It is
one of the greatest strengths of this software to include the full n-parameter correlation
in the high-dimensional parameter space with reasonable effort. Of course, calculating χ2-
projections is somewhat more complicated than using systematics only. Therefore, we use
a simple step by step introduction to the problem.

4.1 Introduction

In principle, the precision of an individual parameter measurement including correlations
in the χ2-approach can be obtained as the projection of the n-dimensional fit manifold onto
the respective axis. Similarly, one can project the fit manifold onto a plane, such as the
sin2 2θ13-δCP-plane, if one wants to show the allowed region in this plane with all the other
parameter correlations included. In practice, this projection is very difficult: a grid-based
method would need (Ngrid)

n function calls of glbChiSys to calculate the projection onto
one dimension including the full n-parameter correlation, where Ngrid is the number of
points in each direction of the lattice. For example, taking only Ngrid = 20 and n = 7 (six
oscillation parameters and matter density) would mean more than one billion function calls
of glbChiSys. One can easily imagine that these would be too many for any reasonable
application.

The solution to this problem is using a n-dimensional, local minimizer for the projection
instead of a grid-based method, where we will illustrate this minimization process later.
It turns out that such a minimizer can include a full 6-parameter correlation with of the
order of 1 000 function calls of glbChiSys. For the minimization we use a derivative free
method due to Powell in a modified [7] version1.

1Not needing derivatives is highly desired since the event rate depends in a non-linear way on the
oscillation parameters, thus there is no easy analytical way to obtain derivatives of the χ2 function.
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Thus, for each point on the projection axis/plane, one can obtain a result within about
10 to 30 seconds on a modern computer, which means that the complete measurement
precision for one fixed true parameter set can be obtained in as much as 10 to 15 minutes.
One can easily imagine that such a minimizer makes more sophisticated applications pos-
sible with the help of overnight calculations, such as showing the dependencies on the true
parameter values.

This approach also has one major disadvantage: There is no such thing as a global
minimization algorithm or even an algorithm which guarantees to find all local minima
of a function. In practice this means using a local minimizer, one may end up in an
unwanted local minimum and not in the investigated (possibly global) one or one may
miss a local minimum which affects the results2. The only way out of this dilemma is to
use some heuristic approach, i.e. although one can not guarantee anything one can use
schemes which work in most cases and announce their failure loudly. In order to use such
a heuristic some (analytical or numerical) knowledge on the topology of the fit manifold
is necessary. With this knowledge it is possible to obtain an approximate position for
each local minimum and thus to start the local minimizer close enough to the investigated
minimum. Fortunately, this can be done quite straightforward in most cases, since the
structure of the neutrino oscillation formulas does not cause very complicated topologies of
the fit manifolds. Especially the simulation of reactor experiments and conventional beams
or superbeams is rather simple with purely numerical approaches. Neutrino factories have,
especially for small values of θ13, a much more complicated topology. In this case, results
of the many analytical discussions of this issue can be used. This means that one can
implicitly use the analytical knowledge to obtain better predictions for the location of a
minimum. One can easily imagine that the used methods then also depend on the region
of the parameter space. In this manual, we only use examples with a neutrino factory,
since some of these complications can be illustrated there. Albeit the methods described
here are neither complete nor will they work everywhere in the parameter space. It is in
any case up to the user to make sure that the results are what he/she thinks.

Some more words of warning with respect to results obtained by projecting the χ2: The
results obtained this way are always only a upper bound on the value of the projected χ2

function, i.e. an undiscovered minimum decreases the value of the the projected χ2 function.
If the value of the χ2 function in the missed minimum is larger than the previously found
ones it will not influence the value of the projected value. Thus, one can only run the
danger to obtain a too optimistic solution if one does not find the other local minima
appearing below the chosen confidence level. Thus, with this approach and proper usage,
it should not possible to produce a too pessimistic solution. However, if one is not careful
enough to locate all local minima, one can easily produce too optimistic solutions. This
danger can be summarized as follows:

Too pessimistic result < Real result︸ ︷︷ ︸
Located by careful usage

≤ GLoBES result < Too optimisitic result

2NB – Implementing a grid-based method which guarantee to find all local minima is not straightforward
either, to say the least.
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In many cases, the fit manifold is restricted by the knowledge from earlier experiments.
For example, the knowledge on the solar parameters will in most cases be supplied by the
solar neutrino experiments. If the external precision of a parameter is at the time of the
measurement better than the one of the experiment itself, one usually will use this external,
better knowledge and impose a corresponding constraint on this parameter. This external
knowledge may reduce the extension of the n-dimensional fit manifold in the respective
direction. In the most extreme case, keeping all parameters but the measured one fixed in
the analysis is equivalent to the assumption that all parameters are determined externally
with infinitively high precisions. As this is a quite strong assumption, one should always
check the consequences of relaxing it and using realistic errors. Only if such a test has
demonstrated that the impact of the uncertainty on a given fit parameter is negligible it
can be assumed as fixed safely. The inclusion of external input in GLoBES is done by
the use of Gaußian priors: We assume that an external measurement has determined the
measured parameter to be at the central value (which we call starting value) with a 1σ
Gaußian error (which we call input error). The explicit definition of these priors will be
shown in the next section.

4.2 The treatment of external input

It is one of the strengths of the GLoBES software to use external input in order to reduce
the extension of the fit manifold with the knowledge from external (earlier) measurements.
The treatment of external input is done by the addition of Gaußian so-called priors to the
systematics-minimized χ2-function. For example, for the matter density, one obtains as
the final projected χ2

F after minimization over the matter density scaling factor ρ̂

χ2
F = min

ρ

(
χ2(ρ̂) +

(ρ̂− ρ̂0)2

σ2
ρ̂

)
. (4.1)

This example is a very simple one, since in fact the minimization is simultaneously per-
formed over all priors and free oscillation parameters. In Eq. (4.1), ρ̂0 is the starting value
of the prior, and σρ̂ the 1σ absolute (half width) input error. Thus, it is assumed that an
external measurement has determined the matter density with a precision (input error) σρ̂

at the central value ρ̂0. Usually, the starting value is fixed at the best-fit value, and the
input error to the 1σ half width of the external measurement. For the matter density, ρ̂0

is usually set to 1.0 corresponding to the actual matter density profile such as given by the
experiment definition file, and σρ̂ to the relative matter density uncertainty (e.g., 0.05 for
5% uncertainty).

In principle, one can set the priors for the matter density and all oscillation parameters.
For example, if the disappearance channels of the experiment determine the leading oscil-
lation parameters with unprecedented precisions, one can omit the respective input errors.
In GLoBES, a value of 0 corresponds3 to neglecting the prior. If, however, earlier external

3to be precise, a value for the error in between −10−12 and +10−12
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measurements provide better information, one can set their absolute precisions with the
input errors. The starting values are usually chosen to be the best-fit values of this exter-
nal experiments, such as for the input from solar experiments. In some cases, it may be
necessary to adjust them, such as for artificial constraints to the oscillation parameters. In
other cases, minor modifications of the starting values can cause a faster convergence of
the algorithm. For example, for the investigation of the opposite-sign solution, one can use
the prior to constrain ∆m2

31 in order to force the minimizer not to fall into the (unwanted)
true-sign solution. In this case, the starting value of ∆m2

31 would be set to ρ0
∆m2

31
= −∆m2

31,

and a σ∆m2
31

of the order of ∆m2
31 would be imposed. For the algorithm, it would then be

rather difficult to converge into the unwanted true-sign solution. However, note that one
should in this case check that the actually determined value for ∆m2

31 after minimization
is close enough to the guessed value −∆m2

31 in order to avoid significant artifical contribu-
tions of the priors to the final χ2. Alternatively one could re-run the minimizer with the
position of the previously found minimum as starting position but now with switching off
the constraint on ∆m2

31.
In order to set the starting values and input errors, two function have to be called before

the usage of any minimizer:

Function 4.1 int glbSetStartingValues(const glb_params in) sets the starting val-
ues for all of the following minimizer calls to in.

Function 4.2 int glbSetInputErrors(const glb_params in) sets the input errors for
all of the following minimizer calls to in. An input error of 0 corresponds to not taking
into account the respective prior.

Accordingly, there are functions to return the actually set starting values and input errors:

Function 4.3 int glbGetStartingValues(glb_params out) writes the currently set
starting values to out.

Function 4.4 int glbGetInputErrors(glb_params out) writes the currently set input
errors to out.

All functions take or return as many matter density parameters as there are initialized
experiments. In addition, they return −1 if the operation was not successful.

Eventually, a typical initialization of the external input with 10% external precisions
for the solar parameters4, and 5% matter density uncertainties for all experiments looks
like this:

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetStartingValues(true_values);

glbSetInputErrors(input_errors);

4In fact, accelerator-based long-baseline experiments are primarily sensitive to the product sin 2θ12 ·
∆m2

21, which means that these errors effectively add up to an error of this product of about 15%.
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In this example, the starting values are set to the true (simulated) values. Remember that
initially the matter density scaling factors are all 1.0, which means that they do not need
to be adjusted for the starting values.

Though the priors are an elegant way to treat external input, there are also some
complications with priors. The following hints are for the more advanced GLoBES user:

1. The priors are only added once to the final χ2, no matter how many experiments
there are simulated. This is already one reason (besides the minimization) why the
sum of all projected χ2’s of the individual experiments cannot correspond to the χ2

of the combination of all experiments.

2. Priors are not used for parameters which are not minimized over, i.e., kept fixed.
This will be important together with arbitrary projections using glbChiNP. A more
subtile consequence is the comparison of fit manifold sections and projections for the
solutions where the absolute minimum χ2 is larger than zero, i.e., degeneracies other
than the true solution. In this case, the sections and projections are not comparable if
not corrected by the prior contributions, where the correction can be obtained as the
χ2-difference at the minimum. For example, projecting the sgn(∆m2

31)-degeneracy
onto the θ13-δCP-plane and comparing it with the section (all other parameters fixed),
the section region would in many cases be larger than the projection region if the
priors are not added to the section. At the true solution, this problem usually does
not occur because the prior contributions are close to zero.

3. Currently, GLoBES only supports Gaußian priors for the individual oscillation pa-
rameters. Especially for the solar parameters, this is only an approximation, since
they are imposed on θ12 and not on sin 2θ12, sin 2θ12 ·∆m2

21, or sin θ12. Later versions
of GLoBES may include more alternatives.

4.3 Projection onto the sin2 2θ13- or δCP-axis

The projection onto the sin2 2θ13- (or δCP-) axis is performed by fixing sin2 2θ13 (or δCP)
and minimizing the χ2-function over all free fit parameters and the matter densities. We
illustrate this method at the example of the projection of the two-dimensional manifold in
the sin2 2θ13-δCP-plane onto the sin2 2θ13-axis in Fig. 4.1. In this figure, the left-hand plot
shows the correlation in the sin2 2θ13-δCP-plane computed with glbChiSys. The right-hand
plot illustrates the projection of this two-dimensional manifold onto the sin2 2θ13 axis by
minimizing χ2 over δCP. In this simple example, the minimization is done along the vertical
gray lines in the left hand plot. The obtained minima are located on the thick gray curve,
which means the the right-hand plot represents the χ2-value along this curve. In fact, one
can easily see that one obtains the correct projected 3σ errors in this example (cf., arrows).
This figure illustrates the projection of a two-parameter correlation. In general, the full
n-parameter correlation is treated similarly by the simultaneous (local) minimization over
all free fit parameters.
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Example: Projection of two- and n-dimensional manifold onto sin2 2θ13-axis

This example demonstrates how to project the fit manifold onto the sin2 2θ13-axis, i.e.,
how one can include correlations. We compute two sets of data: one for keeping all pa-
rameters but δCP fixed (two-parameter correlation), and one for keeping all parameters
free (multi-parameter correlation). However, we impose external precisions for the solar
parameters and the matter density. The following code excerpt is from example2.c:

/* Set starting values and input errors for all projections */

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,0);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetStartingValues(true_values);

glbSetInputErrors(input_errors);

/* Define my own two-parameter projection for glbChiNP: Only deltacp is free! */

glbDefineProjection(th13_projection,GLB_FIXED,GLB_FIXED,GLB_FIXED,GLB_FREE,GLB_FIXED,GLB_FIXED);

glbSetProjection(th13_projection);

/* Iteration over all values to be computed */

double x,res1,res2;

for(x=-4;x<-2.0+0.001;x=x+2.0/50)

{

/* Set fit value of stheta */

glbSetOscParams(test_values,asin(sqrt(pow(10,x)))/2,1);

/* Guess fit value for deltacp in order to safely find minimum */

glbSetOscParams(test_values,200.0/2*(x+4)*M_PI/180,3);

/* Compute Chi2 for user-defined two-parameter correlation */

res1=glbChiNP(test_values,NULL,GLB_ALL);

/* Compute Chi2 for full correlation: minimize over all but theta13 */

res2=glbChiTheta(test_values,NULL,GLB_ALL);

AddToOutput(x,res1,res2);

}

The two lists of data then represent the sin2 2θ13 precisions with two-parameter corre-
lations (gray-shaded) and multi-parameter correlations (arrows):
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(Same parameters as on page 24 and in Fig. 4.1, but 1 d.o.f.)
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Figure 4.1: Left plot: The correlation between sin2 2θ13 and δCP as calculated in the example on
page 24, but for 1 d.o.f. only. Right plot: The χ2-value of the projection onto the sin2 2θ13-axis as function
of sin2 2θ13. The projection onto the sin2 2θ13-axis is obtained by finding the minimum χ2-value for each
fixed value of sin2 2θ13 in the left-hand plot, i.e., along the gray vertical lines. The thick gray curve marks
the position of these minima in the left-hand plot. The arrows mark the obtained fit ranges for sin2 2θ13

at the 3σ confidence level (1 d.o.f.), i.e., the precision of sin2 2θ13.

The following functions are some of the simplest minimizers provided by GLoBES:

Function 4.5 double glbChiTheta(const glb_params in, glb_params out, int

exp) returns the projected χ2 onto the θ13-axis for the experiment exp. For the simulation
of all initialized experiments, use GLB_ALL for exp. The values in in are the guessed fit
values for the minimizer (all parameters other than θ13) and the fixed fit value of θ13. The
actually determined parameters at the minimum are returned in out, where θ13 is still at
its fixed value. If out is set to NULL, this information will not be returned.

Function 4.6 double glbChiDelta(const glb_params in, glb_params out, int

exp) returns the projected χ2 onto the δCP-axis for the experiment exp. For the simulation
of all initialized experiments, use GLB_ALL for exp. The values in in are the guessed fit
values for the minimizer (all parameters other than δCP) and the fixed fit value of δCP.
The actually determined parameters at the minimum are returned in out, where δCP is
still at its fixed value. If out is set to NULL, this information will not be returned.

All of the minimization functions have a similar parameter structure: The fixed fit
parameter value and the guessed starting point of the minimizer, i.e., the guessed position
of the minimum, are transferred in the list in. Part of this list are the matter density
scaling factors of all experiments, which are also minimized over. The minimizer is then
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started at the guessed point and runs into the local minimum, where the fit parameter
of the projection axis is fixed. For the true solution, it is usually sufficient to start the
minimizer at the true parameter values. However, the convergence speed might be better by
starting it slightly off this point. In addition, there are problems in many cases with more
complicated topologies, which means that better guesses for the position of the minimum
are needed. The position of the minimum is then returned in out together with the
number of iterations used for the minimization. It is very often useful to print the output
of the minimization with glbPrintParams in order to check that the minimum is the
appropriate one. For example, if the minimizer ends up in the wrong-sign solution in
∆m2

31, priors can be used to force it into the tested minimum. In addition, the number
of iterations used allows an optimization of the convergence speed. Note that before any
minimization, glbSetStartingValues and glbSetInputErrors have to be used at least
once. In addition, note that the resulting χ2 of glbChiTheta (or glbChiDelta) for the
combination of more than one experiment is not equal to the sum of the individual χ2-
values anymore. This has two reasons: First, the topology of the fit manifold is altered
by the addition of χ2-values of different experiments. Thus, after the minimization, the
position of the minimum can be different to the ones of the individual experiments. Second,
the priors for the external knowledge on the parameters are only added once – independent
of the number of experiments.

The output of the minimizer in out carries as many matter density scaling factors
as there are experiments. Either one (for the simulation of one experiment) or all (for
the simulation of all experiments) are different from 1.0 if matter density uncertainties are
present, since each experiment may face other matter density conditions. The minimizers of
individual experiments “know” which experiment they are currently treating, which means
that they only returned the matter density scaling factor of the appropriate experiment.
For example, calculating glbChiTheta for the last experiment number, the last density
value will be returned. This approach turns out to be extremely useful together with the
simulation of more than one experiment. One can, for instance, locate the degeneracies
of all individual experiments. In order to test if these degeneracies are still present in
the combination of all experiments (which has a very different topology), one can test the
combination of experiments with the output out from the individual experiments. In this
case, even the correct matter density scaling factor output is used.

The example on page 32 demonstrates how one can obtain Fig. 4.1 (right) with keeping
all parameters but δCP fixed, as well as how one can include the full n-parameter correlation
with external input. It also demonstrates how these two compare to each other. One
can easily read off this example that there is a substantial impact of the correlation with
oscillation parameters other than δCP. Note that it uses the function glbChiNP for arbitrary
projections from the next section for the minimization over δCP. In addition, there is one
interesting feature in guessing the oscillation parameters in this example: In order to avoid
falling into the wrong minimum, the fit value of δCP is guessed from Fig. 4.1 (left). This
quite sophisticated “guessing” is typical for neutrino factories because of the (δCP, θ13)-
degeneracy, whereas it is for superbeams often sufficient to use the true values. A strong
indication for a wrong guessing are discontinuous jumps in the projected χ2-function, where
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the minimizer jumps from one minimum to another. In such cases, the starting point of
the minimizer has to be adjusted to help it find the true minimum.

Other examples for projections onto a parameter axis while keeping exactly one param-
eter fixed are glbChiTheta23, glbChiDm, and glbChiDms, which can be found in Table 1.1
on page 4.

4.4 Projection onto any hyperplane

In general, one can show the measurement result in any k-dimensional hyperplane, where
k is smaller than the dimension of the parameter space n, and thus the dimension of the
fit manifold. In this case, k parameters are fixed and n − k parameters are minimized
over. One such example is the projection of the fit manifold onto the sin2 2θ13-δCP-plane,
i.e., k = 2 here. In this case, the two parameters sin2 2θ13 and δCP are kept fixed, and the
others are minimized over. The corresponding function is

Function 4.7 double glbChiThetaDelta(const glb_params in, glb_params out,

int exp) returns the projected χ2 onto the θ13-δCP-plane for the experiment exp. For
the simulation of all initialized experiments, use GLB_ALL for exp. The values in in are
the guessed fit values for the minimizer (all parameters other than θ13 and δCP) and the
fixed fit values of θ13 and δCP. The actually determined parameters at the minimum are
returned in out, where θ13 and δCP are still at their fixed values. If out is set to NULL,
this information will not be returned.

This function works analogously to the ones in the last section. They can, for example, be
used to obtain a figure similar to Fig. 4.1, left. The example on page 32 illustrates then
the difference between the projections of the “eggs” within the sin2 2θ13-δCP-plane onto the
θ13-axis. Though the running time for one call of these functions is somewhat shorter than
the one for the sin2 2θ13- or δCP-projections, one has to compute a two-dimensional array
for such a figure (instead of a one-dimensional list). Therefore, the overall computational
effort is much higher, i.e., in the order of hours. In many cases, it is therefore convenient
to run glbChiSys first to obtain a picture of the manifold and to adjust the parameter
ranges. Then, one can run glbChiThetaDelta for a complete evaluation of the problem
including correlations.

In principle, one can also use three- or more-dimensional projections. In addition, one
may want to use a different set of parameters for single- or two-parameter projections.
The very flexible function glbChiNP is designed for this purpose. However, because of its
flexibility, it involves more sophistication.

In order to define arbitrary projections, we introduce the vector glb_projection, which
is very similar to the oscillation parameter vector glb_params. Normally, the user does
not need to access this type directly: A set of function similar to the ones for glb_params
is provided. The purpose of glb_projection is to tell GLoBES what parameters are fixed,
and what are minimized over. Thus, in comparison to glb_params, it does not take values
for the parameters, but flags GLB_FIXED or GLB_FREE. For example, the projection onto
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Function Purpose Parameters → Result
glbAllocProjection Allocate projection vector ()

glbFreeProjection Free projection vector stale (glb_projection stale)

glbDefineProjection Assign projection vector in (glb_projection in, int

theta12, int theta13,

int theta23, int delta,

int dms, int dma)

glbCopyProjection Copy vector source to dest (const glb_projection

source, glb_projection

dest)

glbPrintProjection Print vector in to file stream (FILE* stream, const

glb_projection in)

glbSetProjectionFlag Set flag for oscillation parame-
ter which in vector in to value
flag.

(glb_projection in, int

flag, int which)

glbGetProjectionFlag Return flag for oscillation pa-
rameter which in vector in.

(const glb_projection

in, int which)→ int flag
glbSetDensity-

ProjectionFlag

Set flag for density parameter
which in vector in to value
flag.

(glb_projection in, int

flag, int which)

glbGetDensity-

ProjectionFlag

Return flag for density param-
eter which in vector in.

(const glb_projection

in, int which)→ int flag

Table 4.1: Different functions handling the glb_projection type. Flags are either GLB_FIXED or
GLB_FREE. The (un-shown) return values of the Set- and Define- functions point either to the assigned
vector if successful, or they are NULL if unsuccessful.

the θ13-axis glbChiTheta is nothing else than a special case of glbChiNP with θ13 fixed and
all the other parameters free. Similar to glb_params, the type glb_projection has to be
allocated first, and freed later. The access functions for glb_projection are summarized
in Table 4.1. Since the complete set is very similar to the one for glb_params, we do not
go into greater details here.

As soon as we have defined a projection, we can assign it:

Function 4.8 int glbSetProjection(const glb_projection in) sets the projection
to in. The return value is 0 if successful, and −1 if unsuccessful.

Similarly, the currently assigned projection can be returned with:

Function 4.9 int glbGetProjection(glb_projection out) writes the currently set
projection to out. The return value is 0 if successful, and −1 if unsuccessful.

After setting the starting values, input errors, and the projection, we can run the minimizer:

Function 4.10 double glbChiNP(const glb_params in, glb_params out, int

exp) returns the projected χ2 onto the hyperplane specified by glbSetProjection for the
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experiment exp. For the simulation of all initialized experiments, use GLB_ALL for exp.
The values in in are the guessed fit values for the minimizer (all free parameters) and the
fit values on the hyperplane (all fixed parameters). The actually determined parameters
at the minimum are returned in out, where the fixed parameters are still at their input
values. If out is set to NULL, this information will not be returned.

As an example, the projection sequence for a minimization over δCP only looks like this:

glb_projection th13_projection = glbAllocProjection();

glbDefineProjection(th13_projection,GLB_FIXED,GLB_FIXED,GLB_FIXED,

GLB_FREE,GLB_FIXED,GLB_FIXED);

glbSetProjection(th13_projection);

res1=glbChiNP(test_values,NULL,GLB_ALL);

glbFreeProjection(th13_projection);

In this case, only the correlation with δCP is taken into account. Note that in the example
on page 32 this projection is compared with the result including the full multi-parameter
correlation.
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Chapter 5

Locating degenerate solutions

In the last chapter, we introduced the projection of any set of k parameters onto any
n−k dimensional hyperplane, which was performed by the minimization over the k free fit
parameters. Similarly, one can minimize over all n parameters to find the local minimum
close to any starting point. This approach is very useful for the exact numerical location of a
degeneracy if its approximate position is known. For the determination of the approximate
position, one can use analytical approaches or an educated guess. Though the usage of
the all-parameter minimizers is quite simple, one should keep in mind that they are local
minimizers. Therefore, one may need a very sophisticated application software to find all
degenerate solutions.

The function to perform the all-parameter minimization is glbChiAll:

Function 5.1 double glbChiAll(const glb_params in, glb_params out, int

exp) returns the minimized χ2 over all parameters for the experiment exp. For the
simulation of all initialized experiments, use GLB_ALL for exp. The values in in are the
guessed fit values for the minimizer. The actually determined parameters at the minimum
are returned in out. If out is set to NULL, this information will not be returned.

This function takes the suspected position of the local minimum and returns its actual
position in out, as well as the χ2-value at the minimum as return value. Thus, the return
value can be immediately used to judge whether the located degeneracy appears at the
chosen confidence level.

The example on page 40 illustrates how to locate the sgn(∆m2
31)-degeneracy and show

the corresponding degenerate solution in the sin2 2θ13-δCP-plane together with the original
solution. In this case, the position of the degeneracy can be easily guessed to be at the true
parameter values but with inverted1 ∆m2

31. The minimizer then runs off the plane of these
parameters into the local minimum. It is very important to take into account the position
of the degeneracy off this plane, since the actual χ2 in the minimum is probably lower than
in the plane. Thus, the degeneracy may not even appear at the chosen confidence level
in the plane, but it does appear at the real minimum. The two sections through the fit

1For a exact definition of inverted hierarchy, see page 19.
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Example: Finding the sgn(∆m2
31)-degeneracy

In many cases, one can find the exact position of the sgn(∆m2
31)-degeneracy with

glbChiAll, where one starts the local minimizer at the suspected position and let it run
into the minimum. The following code excerpt corresponds to finding the degenerate
solution for the example on page 24, and it is from example3.c:

/* Set starting vales to suspected position at opposite sign of ldm */

glbDefineParams(starting_values,theta12,theta13,theta23,deltacp,sdm,-ldm);

/* Set input errors for external input, where some information on ldm

is imposed in order to avoid falling into the right-sign solution */

glbDefineParams(input_errors,theta12*0.1,0,0,0,sdm*0.1,ldm/3);

glbSetDensityParams(input_errors,0.05,GLB_ALL);

glbSetStartingValues(starting_values);

glbSetInputErrors(input_errors);

/* Localize degenerate solution by minimization over all parameters

*/

double CL=glbChiAll(starting_values,deg_pos,GLB_ALL);

/* Now: CL is the chi2 of the deg. solution and deg_pos the position */

Using ent_pos to obtain a section of the degeneracy in the sin2 2θ13-δCP-plane (cf.,
example3.c), one can plot it as a contour plot in addition to the original solution (2
d.o.f., gray curves):
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manifold shown in the figure on page 40 therefore do not appear at the same oscillation
parameter values (except from the ones shown in the figure).2

For the more advanced reader, a number of tricks can be useful for the numerical
localization of degenerate solutions:

Minimum χ2 larger than threshold. If a located degeneracy has a minimum χ2 larger
than the corresponding confidence level threshold for the discussed quantity of in-
terest, the degeneracy can be immediately ignored. This saves a lot of computation
time.

Locating degeneracies in more complicated topologies. For more complicated
topologies, such as for neutrino factories, it is often useful to use multi-step location
procedures or analytical knowledge. For example, for a numerical procedure, one
may first of all switch off the systematics and keep sin2 2θ13 or δCP fixed, i.e., use
glbChiTheta, where sin2 2θ13 or δCP is fixed at the best-fit value. The result can
then be used as a starting point for glbChiAll for the individual experiments with
the systematics switched on again.

Forcing the minimizer into the targeted solution. In addition to switching off the
systematics, it can be useful to reduce the input errors during some steps of the
localization process in order to make the minimizer not to run away too much from
the targeted solution. The example on page 40 illustrates this with the input error
for ∆m2

31: Since the guessed starting point might be quite far away from the real
degeneracy, the algorithm may in some cases find the original solution instead of the
degeneracy (which can be immediately seen from the output vector). The input error
for ∆m2

31 gives the algorithm a “bias” against the original solution. However, note
that the input error must not be too small in order to avoid a significant contribution
of the prior to the final χ2. Alternatively, one could once again run glbChiAll with
the located minimum as in vector, and ∆m2

31 kept free.

Finding degeneracies with multiple experiments. For multiple experiments, it
turns out to be useful to locate the degeneracies for individual experiments first.
Then, all of the found degeneracies below the threshold can be tested for the combi-
nation of all experiments.

Finally, note that any degenerate solution below the confidence level threshold which can
not be located makes the result appear better than it actually is. Thus, one should be
careful with the determination of the degenerate solutions in order to find all of them.

2The discussed figure on page 40 is produced by glbChiSys and thus only represents a section through
the fit manifold. For the projection including correlations, one may rather want to use glbChiThetaDelta.
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Chapter 6

Obtaining low-level information

In this chapter, we discuss possibilities to obtain low-level information in GLoBES, i.e.,
about oscillation probabilities, rates, and other information lower than on the χ2-level.

6.1 Oscillation probabilities

GLoBES can compute the probabilities in vacuum with the following function:

Function 6.1 double glbVacuumProbability(int l, int m, int panti,double E,

double L) returns the neutrino oscillation probability νl → νm for the energy E and the
baseline L in vacuum. The parameter panti is +1 for neutrinos and −1 for antineutrinos.

In addition, the oscillation probabilities in matter can be obtained with:

Function 6.2 double glbProfileProbability(int exp, int l, int m, int

panti,double E) returns the neutrino oscillation probability νl → νm for the en-
ergy E in matter, where the matter density profile is the one of experiment exp. The
parameter panti is +1 for neutrinos and −1 for antineutrinos. The matter density profile
including baseline is the one from the last evaluated experiment.

6.2 AEDL names

Since in AEDL rules, cross section, fluxes etc. carry a ‘name’ by which they can be refered
to and in C they cary only an integer as index it is sometimes difficult to figure out the
correct correspondence. Therefore the information about this correspondence obtained
during parsing is stored and can be accessed within C by these two functions.

Function 6.3 int glbNameToValue(int exp, const char* context, const char

*name) Converts an AEDL name given as argument name into the corresponding C index.
The variable context describes wether this name belongs to a rule, channel, flux, energy
or cross type environment. exp is the number of the experiment and can not be GLB_ALL.
It returns either the index in case of success or -1 in case the name was not found.
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Function 6.4 const char *glbValueToName(int exp,const char* context, int

value) Converts a C index given as argument value into the corresponding AEDL name.
The variable context describes wether the index belongs to a rule, channel, flux, energy
or cross type environment. exp is the number of the experiment and can not be GLB_ALL.
It returns either the name in case of success or NULL in case the name was not found.
The returned string must not be modified.

6.3 Event rates

One can also return event rates in GLoBES, but this feature requires some knowledge about
the experiment definition. In fact, many of these functions are very advanced, which means
that the reader who wants to use them should be familiar with Secs. 9.4 and Sec. 9.6 of
the AEDL manual.

GLoBES currently supports rule-based and channel-based event rate functions, where
the information is in written into a file or returned in a list. The rule-based functions are:

Function 6.5 int glbShowRuleRates(FILE* stream, int exp, int rule, int

pos, int effi, int bgi, int coeffi, int signal) prints the binned rule rates as
list with energy and event rate to the file stream (either an open file, or stdout). A
specific experiment exp and a specific rule rule have to be chosen, as well as the signal
or background rate signal (either GLB_SIG or GLB_BG). The position pos refers to the
component within the signal or background, and can also be GLB_ALL. The function
may return the rates with (GLB_W_COEFF) or without (GLB_WO_COEFF) overall efficiency
coefficient, as it is specified by coeffi. In addition, it may contain the post-smearing
efficiencies (set effi to GLB_W_EFF or GLB_WO_EFF), and the post-smearing backgrounds
(set bgi to GLB_W_BG or GLB_WO_BG). The pre-smearing efficiencies and backgrounds
cannot be accessed at the rule level. The return value is 0 if successful, and −1 if
unsuccessful.

Function 6.6 double glbTotalRuleRate(int exp, int rule, int pos, int effi,

int bgi, int coeffi, int signal) returns the total rates with the same parameters as
glbShowRuleRates.

The function glbTotalRuleRate is especially useful if one wants to draw bi-rate graphs
with total event rates, or look for the (δCP, θ13)-degeneracy by the intersection of neutrino
and antineutrino constant event rate curves. In order to obtain information on the structure
of the rules, a number of additional functions are provided:

Function 6.7 int glbGetNumberOfRules(int exp) returns the number of rules in ex-
periment exp.

Function 6.8 int glbGetLengthOfRule(int exp, int rule, int signal) returns
the length of rule rule in experiment exp. The parameter signal can be either GLB_SIG

for the number of signal components or GLB_BG for the number of background components.
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Function 6.9 double glbGetNormalizationInRule(int exp, int rule, int

signal) returns the normalization (normalization or background center) in rule rule

of the experiment exp. The parameter signal refers to signal (GLB_SIG) or background
(GLB_BG).

Function 6.10 int glbGetChannelInRule(int exp, int rule, int pos, int

signal) returns the channel number in rule rule at the position pos of the experi-
ment exp. The parameter signal refers to signal (GLB_SIG) or background (GLB_BG).

Function 6.11 double glbGetCoefficientInRule(int exp, int rule, int pos,

int signal) returns the coefficient of the component pos in rule rule of the experiment
exp. The parameter signal refers to signal (GLB_SIG) or background (GLB_BG).

In addition, GLoBES has channel-based rate functions:

Function 6.12 int glbShowChannelRates(FILE *stream, int exp, int channel,

int smearing, int effi, int bgi) prints the binned channel rates as list with energy
and event rate to the file stream (either an open file, or stdout). A specific experiment
exp and a specific channel channel have to be chosen. The function may return the rates
before (GLB_PRE) or after (GLB_POST) the energy smearing, as it is specified by smearing.
In addition, it may contain the pre- and post-smearing efficiencies (set effi to GLB_W_EFF

or GLB_WO_EFF), and the pre- and post-smearing backgrounds (set bgi to GLB_W_BG or
GLB_WO_BG). Note that the post-smearing efficiencies and backgrounds cannot be taken
into account if the rates are returned before the energy smearing. The return value is 0 if
successful, and −1 if unsuccessful.

Function 6.13 int glbGetChannelRates(double** data, size_t* length, int

exp, int channel, int smearing) writes the binned raw channel rates to the list data
and the length of this list to length. A specific experiment exp and a specific channel
channel have to be chosen. The function may return the rates before (smearing is
GLB_PRE) or after (smearing is GLB_POST) the energy smearing, where no user-defined
data (pre-/post-smearing efficiencies or backgrounds) are taken into account. The return
value is −1 if unsuccessful.

Function 6.14 int glbGetUserData(double** data, size_t* length, int exp,

int channel, int smearing, int bgeff) writes the binned user-defined backgrounds
or efficiencies to the list data and the length of this list to length. A specific experiment
exp and a specific channel channel have to be chosen. The function may return the pre-
(smearing is GLB_PRE) or post- (smearing is GLB_POST) smearing backgrounds (bgeff is
GLB_BG) or efficiencies (bgeff is GLB_EFF). The return value is −1 if unsuccessful.

Since GLoBES reserves the memory for the lists returned in these functions, which it al-
locates on an internal stack, one has to reset the stack at the end of the rates access
with
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Function 6.15 void glbResetRateStack() resets the rate stack used for the lists re-
turned from glbGetChannelRates or glbGetUserData.

A code excerpt to show the channel rates may look like this:

double* rates;

size_t length;

glbGetChannelRates(&rates,&length,0,0,GLB_PRE);

int i;

for(i=0;i<length;i++) printf("%g \n",rates[i]);
glbResetRateStack();

Finally, one can find the number of channels of an experiment:

Function 6.16 int glbGetNumberOfChannels(int exp) returns the number of channels
of experiment exp.

6.4 Fluxes and cross sections

Another piece of low-level information, which can be returned by GLoBES, are the numbers
from the loaded fluxes and cross sections. The following functions interpolate on the loaded
fluxes and cross sections, i.e., any value in the allowed energy range can be given as input:

Function 6.17 double glbFlux(int exp, int ident, double E, double

distance, int l, int anti) returns the flux of flux number ident of the experi-
ment exp for the flavor νl and polarity anti (+1: neutrinos, −1: antineutrinos) at the
energy E and distance distance.

Function 6.18 double glbXSection(int exp, int ident, double E, int l, int

anti) returns the cross section of experiment exp, cross section number ident for the
flavor νl and polarity anti (+1: neutrinos, −1: antineutinos) at the energy E.
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Chapter 7

Changing experiment parameters at
running time

Many of the parameters in experiment definitions can be changed at running time. For
example, we have introduced in Sec. 2.2 possibilities to change the integrated luminosity,
which consists of source power, running time, and target mass. In this chapter, we discuss
more sophisticated experiment changes. However, since GLoBES computes a lot of infor-
mation only once when an experiment is loaded, many parameters can not be changed at
running time. For example, the energy resolution function or the number of bins are used
to compute the smearing matrix already at the initialization of the experiment, which saves
a lot of computation time for most applications. In Sec. 7.3, we introduce a mechanism
how one can even change these AEDL parameters during running time.

7.1 Baseline and matter density profile

In order to change the baseline of an experiment, it is important to keep in mind that each
experiment has a profile type defined in the AEDL file (average density, PREM profile with
a given number of steps, or arbitrary profile). One can check the currently used profile
type with

Function 7.1 int glbGetProfileType(int exp) returns the matter density profile type
of experiment exp.

For each profile type, one can easily change the baseline with
glbSetBaselineInExperiment, where the average density or the PREM profile are
re-computed, or the steps in the arbitrary profile are re-scaled. If this behaviour is not the
desired one, one has to use glbSetProfilDataInExperiment as explained below.

Function 7.2 int glbSetBaselineInExperiment(int exp, double baseline) sets
the baseline length in experiment exp to baseline. The function returns −1 if it was not
successful.
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Note that glbSetBaselineInExperiment does not change the profile type in the experi-
ment. The counterpart of this function is:

Function 7.3 double glbGetBaselineInExperiment(int exp) returns the baseline
length currently used for experiment exp.

One can not change the profile type of an experiment manually during running time.
However, one can change the matter density profile, where the profile type is automatically
changed to 3, i.e. arbitrary matter density profile. In addition, a number of functions are
provided to compute possible matter density profiles (average density, PREM profile). In
general, a matter density profile in GLoBES with N layers is represented by a list of lengths

Lengths = (x1, x2, . . . , xN) (7.1)

and a list of densities

Densities = (ρ1, ρ2, . . . , ρN), (7.2)

where the baseline is given by

L =
N∑

i=1

xi. (7.3)

In C, lists are represented as pointers to the first element:

double* lengths;

double* densities;

Many of the GLoBES baseline functions take and return such lists as parameters, and are
therefore more sophisticated to handle. In general, any function returning lists allocates
the memory for them. It is then up to the user to free this memory! In addition, they
normally provide the length of the lists N by means of an additinal argument which is a
pointer to size_t. Normally, it is enough to declare a variable of the type size_t and to
give its address to the function. The following functions return matter density profiles:

Function 7.4 int glbLoadProfileData(const char* filename, size_t *layers,

double **lengths, double **densities) loads a density file from the file filename. It
returns the number of layers layers, the list of lengths lengths, and the list of densities
densities.

The file should contain in each line a length and density for one layer, which are separated
by an empty space.

Function 7.5 int glbStaceyProfile(double baseline, size_t layers, double

**lengths, double **densities) creates a PREM/Stacey matter density profile with a
number of layers steps for the baseline baseline. The list of lengths lengths and the
list of densities densities are returned.
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Function 7.6 glbAverageDensityProfile(double baseline, double **lengths,

double **densities) creates a average matter density profile from the PREM/Stacey
profile with one step for the baseline baseline. The list of lengths lengths and the list of
densities densities are returned.

The average matter density ρ̄(L) for a matter density profile ρ(x) along the baseline L
baseline is defined as

ρ̄(L) =
1

L

L∫
0

ρ(x)dx =
1

L

L∫
0

ρ̃ (d(x)) dx , (7.4)

where ρ̃(d) is the PREM matter density as function of the distance d to the Earth’s core,
and d(x) =

√
x2 + R2 − 2xR cos θ is the purely geometrical relationship between d and x

with the Earth radius R and the nadir angle cos θ = L/(2R).

Function 7.7 int glbGetProfileDataInExperiment(int exp,size_t *layers,

double** lengths, double** densities) returns the matter density profile currently
used for experiment exp. The number of layers layers, the list of lengths lengths, and
the list of densities densities are returned.

All these functions return −1 if they were not successful.
The counterpart of these functions to assign a specific matter density profile to an

experiment is

Function 7.8 int glbSetProfileDataInExperiment(int exp, size_t

layers,const double* lengths, const double* densities) sets the matter density
of experiment exp to an arbitrary profile with layers steps. The density layers are
specified by the lists lengths and densities. The function returns −1 if it was not
successful.

Note that this function requires that the memory space for the lists be reserved already.
Finally, let us take a look at two examples. This example changes the baseline length

to 7 500 km, where the average matter density is manually computed:

double* lengths;

double* densities;

glbAverageDensityProfile(7500,&lengths,&densities);

glbSetProfileDataInExperiment(0,1,lengths,densities);

free(lengths);

free(densities);

In the second example, we change the baseline to a PREM profile with 100 matter density
steps and print them:
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double* lengths;

double* densities;

glbStaceyProfile(7500,100,&lengths,&densities);

int i;

for(i=0;i<100;i++) printf("%g %g \n",lengths[i],densities[i]);
glbSetProfileDataInExperiment(0,100,lengths,densities);

free(lengths);

free(densities);

7.2 Systematics

Changing the systematics at running time can be useful to investigate the impact factors
affecting the measurement. In GLoBES, the systematics is defined rule-based, i.e., each rule
has its own systematics. In addition, AEDL requires that it has to be defined in each rule
what “Systematics on” and “Systematics off” means. Therefore, it is usually very simple to
switch the systematics on and off:

Function 7.9 int glbSwitchSystematics(int exp, int rule, int on_off)

switches the systematics in experiment exp and rule rule on (on_off is GLB_ON)
or off (on_off is GLB_OFF). For the experiment or rule index, one can also use GLB_ALL.

In the example on page 51, the application of glbSwitchSystematics is demonstrated to
show the impact of systematics, correlations, and degeneracies.

The error dimension (for the definition, see Sec. 9.6) can also be accessed directly with

Function 7.10 int glbSetErrorDim(int exp, int rule, int on_off, int value)

sets the error dimension for systematics on (on_off is GLB_ON) or off (on_off is GLB_OFF)
of experiment exp and rule rule to the value value. The function returns −1 if not
successful.

Function 7.11 int glbGetErrorDim(int exp, int rule, int on_off) returns the
error dimension for systematics on (on_off is GLB_ON) or off (on_off is GLB_OFF) of
experiment exp and rule rule.

Except from the general treatment of systematics, one can read out and write the
signal and background errors, as well as the background centers. For the definitions of
these quantities, see Sec. 9.6.

Function 7.12 int glbSetSignalErrors(int exp, int rule, double norm,

double tilt) sets the signal errors of experiment exp and rule rule to norm (nor-
malization error) and tilt (tilt/calibration error).
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Example: The impact of systematics, correlations, and degeneracies

Here it is demonstrated how one can successively include systematics, correlations, and
degeneracies at the example of the sin2 2θ13-sensitivity limit. An important part of this
example is how two switch the systematics off, i.e., how to obtain the sensitivity limit
from statistics only. Since this example is very advanced, we only show the respective
function of the code:

/* Calculate chi2 with statistics only */

double CalcNoSystematics(double theldm,double thex)

{

/* Switch systematics off for all exps and all rules */

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_OFF);

/* Calculate Chi2-list as if systematics were on */

double res=CalcSystematics(theldm,thex);

/* Switch systematics on for all exps and all rules */

glbSwitchSystematics(GLB_ALL,GLB_ALL,GLB_ON);

return res;

}

The complete code can be found as example4.c with the software, which consists of
many of the applications from the earlier examples. In addition, it uses a little trick:
It avoids falling into the wrong solution with glbChiTheta by using the fit value of δCP

from the step before as prediction of the position of the current calculation.
The returned lists of data from the example represent χ2 as function of the fit value
of sin2 2θ13. The intersections of these curves with the line χ2 = 9 give the sin2 2θ13

sensitivity limits at the 3σ confidence level, where we do not include the sgn(∆m2
31)-

and (δCP, θ13)-degeneracies in the sensitivity limit with correlations only (green bar):
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Function 7.13 int glbGetSignalErrors(int exp, int rule, double* norm,

double* tilt) writes the signal errors of experiment exp and rule rule to norm

(normalization error) and tilt (tilt/calibration error).

Function 7.14 int glbSetBGErrors(int exp, int rule, double norm, double

tilt) sets the background errors of experiment exp and rule rule to norm (normalization
error) and tilt (tilt/calibration error).

Function 7.15 int glbGetBGErrors(int exp, int rule, double* norm, double*

tilt) writes the background errors of experiment exp and rule rule to norm (normalization
error) and tilt (tilt/calibration error).

Function 7.16 int glbSetBGCenters(int exp, int rule, double norm, double

tilt) sets the background centers of experiment exp and rule rule to norm (normalization
center) and tilt (tilt/calibration center).

Function 7.17 int glbGetBGCenters(int exp, int rule, double* norm, double*

tilt) writes the background centers of experiment exp and rule rule to norm (normaliza-
tion center) and tilt (tilt/calibration center).

As usual, all these functions return −1 if they were not successful.

7.3 External parameters in AEDL files

Using external parameters in AEDL files is a very powerful feature to change experiment
parameters at running time which require that the experiment be re-initialized. For exam-
ple, one can change the energy resolution function or the number of energy bins. However,
in some cases there might be complications, such that the number of pre- or post-smearing
efficiencies does not correspond to the number of energy bins anymore. Therefore, this
feature needs to be used with care.

In order to use external parameters in AEDL files, one simply introduces them. For
example, an energy resolution function

energy(#EnergyResolution1)<

type = 1

@sigma_e = { myres ,0,0 }

>

might be defined in AEDL, where the energy resolution is proportional to myres × energy.
In order to use the user-defined variable, one has to assign it with

glbDefineAEDLVariable before the experiment is initialized with glbInitExperiment:

Function 7.18 void glbDefineAEDLVariable(const char* name, double value)

assigns the value value to the AEDL variable name.
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In our energy resolution example, one could now loop over the energy resolution such as
with

int i;

for(i=5;i<20;i++)

{

glbClearExperimentList();

glbDefineAEDLVariable("myres",0.01*i);

glbInitExperiment(...);

/* do something */

}

Note that one does not have do re-initialize the oscillation parameter vectors every time
within the loop as long as the number of experiments does not change.

In order to clear the external variable stack if one is excessively using it, one can use

Function 7.19 void glbClearAEDLVariables() clears the AEDL variable list.

This function is called automatically upon exit of the program.

7.4 Algorithm parameters: Filter functions

The oscillation frequency filters to filter fast oscillations can also be accessed by the user
interface. For details of the filter functions, we refer to Sec. 9.5 of the AEDL manual.

In particular, there are a number of functions:

Function 7.20 int glbSetFilterState(int on_off) sets the currently used filter state
to on (GLB_ON) or off (GLB_OFF).

Function 7.21 int glbGetFilterState() returns the currently used filter state.

Function 7.22 int glbSetFilterStateInExperiment(int exp, int on_off) sets the
filter state in experiment exp to on (GLB_ON) or off (GLB_OFF).

Function 7.23 int glbGetFilterStateInExperiment(int exp) returns the filter state
of experiment exp.

Analogously, the filter value can be accessed:

Function 7.24 int glbSetFilter(double filter) sets the currently used filter to the
value filter.

Function 7.25 double glbGetFilter() returns the currently used filter value.
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Function 7.26 int glbSetFilterInExperiment(int exp, double filter) sets the
filter in experiment exp to the value value.

Function 7.27 double glbGetFilterInExperiment(int exp) returns the filter value of
experiment exp.

The return value of all Set- functions is −1 if they were not successful.
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Part II

The Abstract Experiment Definition
Language – AEDL
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Chapter 8

Getting started

Here the general concept of the AEDL is described and illustrated by an example. In
addition, a short introduction to the syntax of the AEDL is given.

8.1 General concept of the experiment simulation

The goal of AEDL is to describe a large number of complex and very different experiments
by a limited number of parameters. It allows a representation of very different setups within
one data structure, and thus implements universal rate and χ2 computation methods. For
experiment simulations, usually a new piece of code is written and compiled for each
different experiment. In many cases, even parameter changes, such as the number of bins,
require the recompilation of the source code. However, such a technique soon reaches
its limits when the simulated experiments are rather complex, or more than one type
of experiment is studied simultaneously. Furthermore, it is very difficult to verify the
correctness of the obtained results, since every time a new piece of code is added to deal
with a new experiment type, new errors will be introduced.

Thus, a general and flexible experiment description language is needed. The description
of a neutrino experiment can be split into three parts: Source, oscillation, and detection.
The neutrino sources within GLoBES are assumed to be stationary point sources, where
each experiment has only one source. This restricts the classes of neutrino sources which
can be studied with GLoBES:

• Experiments using many point-like sources can only be approximated. One example
are reactor experiments using many distant reactor blocks.

• Geometrical effects of a source distribution, such as in the sun or the atmosphere,
can not be described.

• Sources with a physically significant time dependency can not be studied, such as
supernovæ. It is, however, possible to study beams with bunch structure, since
the time dependence of the neutrino source is physically only important to suppress
backgrounds.
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The description of the neutrino oscillation physics is, at least numerically, relatively
simple. We use the evolution operator method [8] to compute the neutrino oscillation
probabilities and divide the matter density profile into layers of constant matter density.
For each of these layers, the Hamiltonian in matter is diagonalized in order to propagate
the neutrino transition amplitudes. Finally, the transition probability is obtained by the
absolute square of the total neutrino transition amplitudes. Depending on the precision of
the studied experiment, this approach turns out to be precise enough in Earth matter even
if only a small number matter density steps is used. Since we allow an uncertainty of the
matter density profile, it is, in fact, in most cases sufficient to consider only one density
step with the average matter density together with a matter density uncertainty [9]. Note
that this approach may not be applicable to quickly varying extraterrestrial matter density
profiles.

While it is comparatively simple to define a general neutrino source and to compute
the oscillation physics, the general properties of a detector simulation are much more
complicated. The basic assumption in building an abstract detector description is linearity,
i.e., that two neutrino events do not interfere with each other. Furthermore it is assumed
that all information on the oscillation physics is given by the reconstructed flavor and energy
of a neutrino event. The term “reconstructed” implies that the well-defined energy of the
incident neutrino, which can not be directly observed, translates via secondary particles
and the detection properties into a distribution of possible energy values. This process is
illustrated in Fig. 8.1 for the energy variable. The same, in principle, applies to the nature

True Energy

Detector

Reconstructed Energy

Figure 8.1: A detector maps a true parameter value onto a distribution of reconstructed parameter values.
This is illustrated here for there energy.

of the neutrino flavor. However, in this case only discrete values are applicable. Note
that the reconstructed neutrino energy and the neutrino flavor are the only observables in
GLoBES.

This picture can also be formulated in a more mathematical way. Let us define x as the
true parameter value and x′ as the reconstructed parameter value. Similarly, f(x) is the
distribution of true parameters values and p(x′) is the distribution of reconstructed param-
eter values. Then the detector function D(x, x′), which describes the mapping performed
by the detector, is given by

p(x′) =

∫
dx f(x) ·D(x, x′) . (8.1)

Obviously Eq. (8.1) only describes the detector properly if the linearity condition is ful-
filled. Within this model, a detector is completely specified by a set of D(E, E ′) for the
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Figure 8.2: General concept of a “channel”.

energy variable E, and a set D(F, F ′) for the flavor variable F . In general, D(E, E ′, F )
also depends on the incident neutrino flavor F , as well as D(F, F ′, E) depends on the in-
cident neutrino energy E. These sets of mapping functions usually are obtained from a
full detector simulation and can be obtained by using as input distribution f(x) a delta
distribution δ(x− x0).

In order to implement a experiment definition including various sources of systematical
errors, we use several abstraction levels. The first level is the so-called “channel”, which
is the link between the oscillation physics and the detection properties for a specfific os-
cillation pattern (cf., Fig. 8.2). A channel specifies the mapping of a specific neutrino
flavor produced by the source onto a reconstructed neutrino flavor. For example, a muon
neutrino oscillates into an electron neutrino and subsequently interacts via quasi-elastic
charged current scattering. The measured energy and direction of the secondary electron
in the detector then allows to reconstruct the neutrino energy. The connection from the
source flux of the muon neutrino, via the probability to appear as a electron neutrino, to
its detection properties (such as cross sections and energy smearing) is encapsulated into
the channel.

The channels are the building blocks for the so-called “rules”. In general, a rule consists
of one or more “signal” and “background” oscillation channels, which are normalized with
efficiencies (cf., Fig. 8.3). The event numbers from these channels are added before the
∆χ2-value is calculated.1 In addition, each rule implements an independent systematics,
such as signal and background normalization errors. Eventually, each rule gives a ∆χ2-

1Note that in this manual, the χ2 and ∆χ2 are equal, since for simulated data ∆χ2 = 0 at the best-fit
point. Thus, we are using χ2 and ∆χ2 as equal quantities.
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Figure 8.3: General concept of a “rule”.

value, and the total ∆χ2 of one experiment is obtained by adding the ∆χ2’s of all rules (cf.,
Fig. 8.4). An example for a rule could look like this: We want to detect electron neutrino
appearance (“signal”), where the overall efficiency for quasi-elastics electron neutrino events
is 0.4. There is a fraction of 0.01 of all neutral current events which are mis-identified as
quasi-elastic electron neutrino events (“background”). The neutral current fraction is only
known within 10% (“background uncertainty”) and there is an energy scale uncertainty of
100 MeV (“energy calibration error”). All this systematics is independent of the other rules.
Thus, a rule connects the event rates to the calculation of a ∆χ2 which properly includes
systematical errors. The resulting ∆χ2 is then the starting point for the oscillation physics
analysis. Note again that

• Within each rule the event numbers are added.

• Within each rule the systematics is treated independently from the other rules.

• For each rule the ∆χ2 is computed; the ∆χ2’s from all rules are added.

Of course, an abstract experiment definition language can not simulate all possible
types of experiments. As we have seen, there are several assumptions for source and detec-
tor. However, it turns out that GLoBES can be applied to a large number of experiment
types, such as conventional beams, superbeams, neutrino factories, β-Beams, and reactor
experiments.
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Figure 8.4: General concept of an “experiment”.

8.2 A simple example for AEDL

Experiments are in GLoBES defined by the Abstract Experiment Definition Language
(AEDL). The experiment definition is written into a text file using the AEDL syntax.
Currently, a number of pre-defined experiment definition files are provided with GLoBES,
which have to be modified manually in order to define new experiments. The application
software then uses this text file to initialize the experiment, where other secondary files
might read for source fluxes, cross sections etc.. In this section, we show the definition
of a very simple neutrino factory in AEDL, where we do not go into details. In the next
chapter, we will discuss each of the individual steps in detail.

The first line of every experiment definition file has to be

!%GLoBES

in order not to confuse it with some other file format. First, we instruct GLoBES to use
the built-in source flux for a neutrino factory originating from stored µ+’s. This achieved
by setting the @builtin variable to 1. Next, we specify the muon energy to be 50 GeV by
the @parent_energy variable. We assume that there will be 5.33 · 1020 useful muon decays
per year and that this luminosity is available for 8 years, i.e., a total number of 4.264 · 1021

muons is stored:

/* beam */

flux(#mu_plus)<

@builtin = 1

@parent_energy = 50.0

@stored_muons = 5.33e+20

@time = 8.0

>
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Note that we tell GLoBES that we want to refer to this neutrino source later as as #mu_plus.
Let us now define a very simple detector with a target mass of 50 kt and 20 energy bins
between 4 GeV and 50 GeV:

$target_mass = 50

$bins = 20

$emin = 4.0

$emax = 50.0

Then we specify the file which contains the cross sections we want to use:

/* cross section */

cross(#CC)<

@cross_file = "XCC.dat"

>

The command cross tells the parser that a cross section environment begins. It has the
name #CC, which can later be used to refer to this specific environment, and thus to the
file XCC.dat. Note that each name begins with a leading #. Of course, the baseline and
matter profile have to be specified, too, where we use an arbitrary matter density profile
here:

/* baseline */

$profiletype = 3

$densitytab = {3.5}

$lengthtab = {3000.0}

The curly brackets used for the definition of $densitytab and $lengthtab refer to a list of
numbers. Here, the lists contain only one element, because we only use one density layer:
We initialize a baseline length of 3000 km with a constant matter density of 3.5 g/cm3. As
another ingredient, we have to define the energy resolution function:

/* energy resolution */

energy(#MINOS)<

@type = 1

@sigma_e = {0.15,0.0,0.0}

>

The energy command starts the energy environment, which has the name #MINOS here.
Out of several possibilities, it uses algorithm one, the simplest and fastest one. The actual
energy resolution is specified by the energy resolution variable, which is a list of three
elements. Each element is one parameter of the general resolution function as defined in
Eq. 9.12. Now we have all pieces to be able to define the appearance and the corresponding
disappearance channel of a neutrino factory: νe → νµ and ν̄µ → ν̄µ (µ+ stored).
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/* channels */

channel(#appearance)<

@channel = #mu_plus: +: electron: muon: #CC: #MINOS

>

channel(#disappearance)<

@channel = #mu_plus: -: muon: muon: #CC: #MINOS

>

The first element is the name of the flux, which we have defined above. The second
element “±” determines whether neutrinos or anti-neutrinos are taken from the flux table
(two different polarities allowed). The third position defines the initial flavor, and the forth
position the final flavor, followed by the name of the cross section and energy resolution
function as defined before. The last step is to encapsulate the channels into a rule:

/* rules */

rule(#rule1)<

@signal = 0.45 @ #appearance

@signalerror = 0.001 : 0.0001

@background = 1.0e-05 @ #disappearance

@backgroundcenter = 1 : 0.0

@backgrounderror = 0.05 : 0.0001

@errordim_sys_on = 0

@errordim_sys_off = 2

@energy_window = 4.0 : 50.0

>

The @signal refers to the “signal” in our experiment. We use the above defined channel
named #appearance with an constant overall efficiency of 0.45. The signal error variable
has two components: The first one is the normalization error of the signal, here 0.1%. The
second one refers to the energy calibration error of the signal, which is defined in Sec. 9.5.
The background variable specifies the composition of the beam background. In this (sim-
plified) case, we use the fraction 1 · 10−5 of the channel named #disappearance, i.e., the
muon neutrinos with a mis-identified charge. The background center variable allows to
rescale the total background contribution from all background components simultaneously.
It is only useful if there is more than one background component, otherwise it is usually 1.
The background error variable is defined such as the signal error variable, i.e. we have a 5%
background uncertainty and a very small energy calibration error. The “error dimension
variable” @errordim_sys_X selects how the systematical errors are treated (cf., Table 9.2).

The here defined experiment represents a first simplified version of a neutrino factory
experiment. It still lacks the correct energy dependence of the efficiencies, the antineutrino
disappearance channel, and the channels and rules for the symmetric operation with µ−

stored. However, it may serve as a simple, introductory example. In the next chapter, we
will demonstrate that the AEDL is much more powerful than illustrated here.
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8.3 Introduction to the syntax of AEDL

We now give a short introduction to the syntax of AEDL. The first eight characters have
to be %!GLoBES in order to avoid parsing megabytes of chunk and producing thousands of
error messages. Comments can be used such as in C:

/* This starts a comment

and here the comment ends */

There are pre-defined variables which all start with $. Their range is also checked. For
example, $bins can be only between 0 and 500.2 If one uses a float quantity where an int

is expected, the float will be converted to an int in the same way as in C. For example,
we have scalar variables

$bins = 10

$baseline = 1200.0

and simple lists

$densitytab={1.0,2.2343,3.3432}

Since there are often groups of data which we want to refer to later, environments can be
used. This is illustrated with the channel definition part:

channel(#ch1)<

. . .
>

The first part is the type of environment, which is channel here. There are the following
types of environment in AEDL:

flux

cross

channel

energy

rule

Besides the environment type, there is a user-defined name beginning with # in the above
example: #ch1. It can be used later to refer to the channel defined in <. . .>. Those names
are so-called “automatic variables” and have to start with #. Note that these names have
to be unique and can only be refered to after their definition. However, similar to C, one
can give a declaration without definition before:

channel(#ch2)<>

2The upper limit is only there for safety reasons, the memory is allocated dynamically.
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Now one can refer to the name #ch2, while the actual channel definition comes later. The
internal representation of this automatic variable is a number, which obtains its value
from a counter for each type of environment. For example, for channel the counter is
numofchannels. The counter keeps track of how many different names there are for one
type of environment, which means that it counts the number of channels, rules, energy
resolution functions etc.. Thus, the automatic variables are numbered in the order of their
definition, and the number can later be used to refer to them in the C code (from 0 to
numof...−1). In order to facilitate the the mapping from names in AEDL to indices in C
there are two functions glbNameToValue and glbValueToName which make this transition
(see Sec. 6.2, page 43).

Within each environment type, there are several variables beginning with @, which can
only be used within the appropriate type of environment. In many cases, they have a
special syntax, such as @channel.

If you want to have several experiments in one file, separate the different experiments
by

#NEXT#

This command resets the counters for channels, rules, fluxes, cross section and energy res-
olution environments. All variables have their scope limited by either %!GLoBES, #NEXT#

or EOF. This allows a consistent treatment of various experiments in one file.
As another feature of AEDL one can use include files with the include command.

Includes can be nested up to MAX_INCLUSION_DEPTH, which is currently set to 10. Error
reporting works for nested includes, too. The included file is not required to begin with
%!GLoBES to facilitate cut and paste:

include "./file_1"

With this include mechanism, one can use constructions such as

include "NuFact.gls"

#NEXT#

include "JHFHK.gls"

in order to initialize a combined analysis of the experiments defined in the files NuFact.gls
and JHFHK.gls. Note that one has to use quotation marks for filenames in AEDL. Even
if one uses the automatic variable #CC in both experiments, but the cross section data are
different (for example, because of different target nuclei), the correct cross section data will
be applied to each of the experiments. Note that, alternatively, one can also load both files
successively by two separate calls of glbInitExperiment.

Furthermore, one can define constants such as

Pi = 3.141

These constants can not only be defined within one AEDL file, but also by the calling C
program, which allows to use a simple but powerful variable substitution mechanism as
described in Sec. 7.3.

In addition, some simple algebraic manipulations are possible, such as
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Pi+1

Pi^2

sin(Pi/2)

The following mathematical functions from <math.h> are available: sin, cos, tan, asin,
acos, atan, log, log10, exp, sqrt.

These functions can be used everywhere, where otherwise only a scalar number would
appear. However, they can not be applied to lists, such as sin({1,2,3}) will not work.

Finally, note that a line feed character \n is necessary at the end of the input – alter-
natively you can put a comment at the end.



67

Chapter 9

Experiment definition with AEDL

In this chapter, we give a detailed definition of the AEDL features. We also show the
underlying mathematical concepts, where applicable. We do not exactly follow the separa-
tion of source, oscillation, and detection properties, since most issues more or less involve
the detection. Instead, we illustrate many of the features of the GLoBES simulation suc-
cessively in the logical order of their definition, and demonstrate how they translate into
AEDL .

9.1 Source properties and integrated luminosity

As we have disussed before, GLoBES can only deal with point sources. Thus, it is not
possible to study effects from the finite size of the neutrino production region, such as in
the sun or in reactor experiments with many neutrino sources (e.g., KamLAND). Therefore,
a neutrino source in GLoBES can, in general, be characterized by the flux spectrum for each
neutrino flavor, the CP sign (neutrinos or antineutrinos), and the total luminosity of the
source.

Before we come to the definition of the source properties, let us discuss the total inte-
grated luminosity of the experiment. In GLoBES, the total number of events is in general
proportional to the product of

Fid. detector mass [kt/t]× Running time [yr]×
{

Source power [MW/GW]
Useful muon decays [yr−1]

. (9.1)

Thus, the source power corresponds to either the amount of energy produced per time
frame in the target (such as for nuclear reactors or sources based on pion decay), or the
useful muon decays per time frame (neutrino factories). In addition, the definition of the
source power makes only sense together with the flux normalization, the running time,
and fiducial detector mass in order to define the total integrated luminosity. Therefore,
one can, in principle, use arbitrary units for these components as long as their product
gives the wanted neutrino flux. However, it is recommended to use normalizations such
that the source power units are MW for a proton-based beam, and GWthermal for a reactor
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experiment. Correspondingly, the detector mass units should be kilotons for a proton-based
beam, and tons for a reactor experiment. In any case it is a good idea to document the
choices made by the user by corresponding comments in AEDL.

The quantity which can be used to scale the overall integrated luminosity of an exper-
iment, is the fiducial detector mass. For example,

$target_mass = 50.0

defines a 50 kt detector for a neutrino factory.
There are two principal ways to initialize a neutrino flux: Either one can use a built-in

source, or one can provide a file. In both cases, a flux is defined by the environment flux,
such as

flux(#name)<

. . .
@time = 8.0

>

with a running time of 8 years. Note that the running time is used within the flux envi-
ronment. This feature can be used to load the neutrino and antineutrino fluxes separately,
in order to combine them with different running times within one experiment. The name
of the flux #name will later be refered to in the channel definitions.

For a built-in neutrino source, one has to specify which built-in spectrum has to be
used, as well as its parameters. The software will then automatically calculate the neutrino
spectrum. Note that in this case, there is no degree of freedom in the choice of the source
units. Currently, two built-in fluxes are available: µ+-decay (@builtin = 1) and µ−-decay
(@builtin = 2). In these cases, the muon energy (enery of the parent particle) has to be
specified together with the number of useful decays per year. Thus, an example to set up
a neutrino factory flux is

flux(#mu_plus)<

@builtin = 1

@parent_energy = 50.0

@stored_muons = 5.33e+20

@time = 8.0

>

For a user-defined flux, one has to give it the file name:

flux(#user)<

@flux_file = "user_file_1.dat"

@time = 2.0

@power = 4.0

@norm = 1e+8

>
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In this case, the @norm variable is an overall normalization which defines a conversion factor
from the fluxes in the file to the units in GLoBES. In general, there are many ways to give
the source power of a neutrino source, such as neutrinos per proton on target per area per
time frame. Right now, each flux has its own normalization factor, which is not always
straightfoward to calculate. Often, one has to take into account many things, such as the
number of target particles per unit mass. In addition, the fluxes will be rescaled by 1/L2,
which means that the normalization must contain a factor L2

0. Here L0 is the distance from
the source for which the flux is given to the actual neutrino production region. At the end,
it is left to the user to ensure that the numbers in the flux file give, after the multiplication
with @norm, the proper numbers of produced neutrinos corresponding to the chosen target
power @power. Usually this adjustment of @norm is performed by comparison with known
energy spectra for a specific experiment.

The software assumes that the given flux file has seven columns and 501 lines with
equidistant energies. The format is:

E Φνe Φνµ Φντ Φν̄e Φν̄µ Φν̄τ

In order to access fluxes at arbitrary energies, linear interpolation is used by the software.
In general, it is advisable to provide the flux between $sampling_min and $sampling_max

(cf., Sec. 9.5), since these values are used by the software. However, if the energy leaves
the range of values given in the file, zero is returned. The the columns for the fluxes for
unused flavours have to be filled all the same,e.g. with zeros.

The flux files accept one-line comments, which start with # and end with the linefeed
character ‘\n’, they are not counted as a line and their content is discarded. This comments
are useful to provide meta information about the fluxes like units or the origin of the
information. This is also the default method to point the user to the references he/she
should to cite when using a particular flux.

9.2 Baseline and matter density profile

The baseline and matter density profile determine, besides energy and involved flavors,
the neutrino oscillation physics at the experiment description level. All of the neutrino
oscillation parameters are defined at running time.

The baseline is given by

$baseline = 3000.0

Note that baseline lengths are always assumed to be in kilometers.
Furthermore, the matter density profile along the baseline has to be specified. The

simplest matter density profile is a constant matter density profile with the average matter
density from the PREM [2] onion shell model of the earth :

$profiletype=1
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$profiletype Additional variables Description
1 $baseline Average density (constant)
2 $baseline, $densitysteps PREM profile with given number of

equidistant steps
3 $lengthtab, $densitytab Arbitrary profile (table of layer thick-

nesses, table of densities)

Table 9.1: Different matter density profiles which can be used with GLoBES.

If your using this option please cite reference [2].
For a better approximation of the realistic earth matter density profile, one can use an

arbitrary number of equidistant steps of the PREM profile:

$profiletype=2

$densitysteps=20

Note that the value of $densitysteps is time-critical, since the computation time of oscil-
lation probabilities is directly proportional to the number of layers. As a third possibility,
one can specify the matter density profile manually with a list of thicknesses and densi-
ties of the matter density layers. This example uses two density steps with two different
densities:

$profiletype=3

$densitytab={2.8, 3.5}

$lengthtab={1000.0, 2000.0}

It is important that both lists have the same length and that the thicknesses given in
$lengthtab add up to the length of the baseline, which does not have to be explicitely
specified anymore. In addition, matter densities are always given in g/cm3. This approach
can also be used for a constant matter density profile with a specific matter density:

$profiletype=3

$densitytab={3.5}

$lengthtab={3000.0}

The possible options for matter density profiles are summarized in Table 9.1.

9.3 Cross sections

Cross sections will later be used as part of the channel definition (see Sec. 9.4). Similar to
the source fluxes, they are provided by the user as a data file:

cross(#name)<

@cross_file ="user_file_1.dat"

>
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This cross section can later be refered to by #name.

Cross sections are in GLoBES given as differential cross section per energy:

σ̂(E) = σ(E)/E

[
10−38 cm2

GeV2

]
(9.2)

The software assumes that the cross section files are text files with seven columns and 1001
lines of the form

log10E σ̂νe σ̂νµ σ̂ντ σ̂ν̄e σ̂ν̄µ σ̂ν̄τ

Here the logarithms of the energy values have to be equidistant. For arbitrary energies,
linear interpolation is used. If the energy leaves the range of values given in the file, 0.0 will
be assumed. In general, it is advisable to provide the cross sections in the range between
$sampling_min and $sampling_max (cf., Sec. 9.5). Unused cross sections have to be filled
with zeros, and can not be just omitted.

Like the flux files, the cross section files accept one-line comments, which start with #

and end with the linefeed character ‘\n’, they are not counted as a line and their content is
discarded. This comments are useful to provide meta information about the cross sections
like units or the origin of the information. This is also the default method to point the
user to the references he/she should to cite when using a particular cross section.

9.4 Oscillation channels

Channels in GLoBES represent an intermediate level between the pure oscillation physics
given by the oscillation probability Pαβ, and the total event rates composed of signal and
background. A channel describes the path from one initial neutrino flavor in the source
to the event rates in the detector for one specific interaction type (IT) and final flavor.
Therefore, a channel contains the description of the initial neutrino flavor, its CP eigenvalue
(neutrino or antineutrino)1, the detected neutrino flavor, the interaction cross sections for
the chosen interaction type, and the energy resolution function of the detector.

Before we come to the definition of the channel in AEDL, we introduce the general
concept for the calculation of event rates. The first step is to compute the number of
events for each IT in the detector for each initial and final neutrino flavor and energy bin.
The second step is to include the detector effects coming from the insufficient knowledge
in the event reconstruction. These two steps combined lead to the differential event rate
spectrum for each initial and final flavor and IT as seen by the detector, which we call the
“channel”. In this section, we focus on the first step, i.e., we discuss the definition of the
energy resolution function in the next section, since this is a rather comprehensive issue.

1Currently GLoBES does not support lepton number violating transitions, i.e. no transitions from
neutrino to antineutrino (or vice versa) are considered.
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The differential event rate for each channel is given by

dnIT
β

dE ′ = N

∞∫
0

∞∫
0

dE dÊ Φα(E)︸ ︷︷ ︸
Production

×

1

L2
P(α→β)(E, L, ρ; θ23, θ12, θ13, ∆m2

31, ∆m2
21, δCP)︸ ︷︷ ︸

Propagation

×

σIT
f (E)kIT

f (E − Ê)︸ ︷︷ ︸
Interaction

×

Tf (Ê)Vf (Ê − E ′)︸ ︷︷ ︸
Detection

, (9.3)

where α is the initial flavor of the neutrino, β is the final flavor, Φα(E) is the flux of the
initial flavor at the source, L is the baseline length, N is a normalization factor, and ρ is
the matter density. The energies in this formula are given as follows:

• E is the incident neutrino energy, i.e., the actual energy of the incoming neutrino
(which is not directly accessible to the experiment)

• Ê is the energy of the secondary particle

• E ′ is the reconstructed neutrino energy, i.e., the measured neutrino energy as ob-
tained from the experiment

The interaction term is composed of two factors, which are the total cross section σIT
β (E)

for the flavor f and the interaction type IT, and the energy distribution of the secondary
particle kIT

β (E− Ê). The detector properties are modeled by the threshold function Tβ(Ê),
coming from the the limited resolution or the cuts in the analysis, and the energy resolution
function Vβ(Ê − E ′) of the secondary particle.

Since it is a lot of effort to solve this double integral numerically, we split up the two
integrations. First, we evaluate the integral over Ê, where the only terms containing Ê are
kIT

β (E − Ê), Tβ(Ê), and Vβ(Ê − E ′). We define:

RIT
β (E, E ′) εIT

β (E ′) ≡
∞∫

0

dÊ Tβ(Ê) kIT
β (E − Ê) Vβ(Ê − E ′) . (9.4)

Thus, RIT
β (E, E ′) describes the energy response of the detector, i.e., a neutrino with a (true)

energy E is reconstructed with an energy between E ′ and E ′ + dE ′ with a probability
RIT

β (E, E ′)dE ′. The function R(E, E ′) is also often called “energy resolution function”.
Actually, its internal representation in the software is a smearing matrix. The function
εIT
β (E ′) will later be refered to as “post-smearing efficiencies”, since it will allow us to

define cuts and threshold functions after the smearing is performed, i.e., as function of E ′.
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The detailed definition and initialization of the energy resolution function is described in
Sec. 9.5.

Eventually, we can write down the number of events per bin i and channel c as

nc
i =

∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′ dnIT
β

dE ′ (E
′) (9.5)

where ∆Ei is the bin size of the ith energy bin. This means that one has to solve the
integral

nc
i = N/L2

∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′

∞∫
0

dE Φc(E) P c(E) σc(E) Rc(E, E ′) εc(E ′) . (9.6)

Note that the events are binned according to their reconstructed energy.
A simple channel definition in GLoBES consists of the flux, the CP-sign of the ini-

tial state, the initial flavor, the final flavor, the cross sections, and the energy resolution
function. In order to refer to flux, cross sections, and energy resolution functions, they
have to be defined before with their #name in the respective environments. Thus, a simple
definition of a channel is

channel(#channel_1)<

@channel = #flux : +: muon: muon: #cross: #energy

>

It is also possible to define a channel as no-oscillation by using the prefix NOSC_ in either
the initial flavour or the final flavour, like this

channel(#channel_1)<

@channel = #flux : +: NOSC_muon: muon: #cross: #energy

>

In this case all diagonal probabilities Pαα are unity, and all off-diagonal probablities Pαβ

are zero. This is, for instance, useful for neutral current events, since these do not depend
on any oscillation parameters2. The channels marked as NOSC_ are already computed by
glbSetRates and do not have to be recomputed in the subsequent fit (which calls the
undocumented function glbSetNewRates). Therefore this feature can be used to speed
up the rate computation considerably, especially in cases where a large set of channels
exist which are only used for the computation of backgrounds. Usually it is an excellent
approximation to treat backgrounds as if they were not affected by oscillations3.

Note that the energy environment will be described in the next section. In addition,
one can define pre- and post-smearing effects together with the channels, which will also
be introduced together with the energy resolution function in the next section.

2At least in the absence of sterile neutrinos
3In case, the backgrounds have a sizeable dependence on the oscillation parameters they carry infor-

mation on the oscillation parameters and are therefore more like a signal.
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9.5 Energy resolution function

The definition and implementation of the energy resolution function is rather sophisticated
in GLoBES. In particular, the choice of the proper parameters depends on the experiment
and the frequencies of the involved neutrino oscillations. This choice also greatly influences
the speed of the calculation.

In this section, we first discuss the principles of the energy smearing, where it is as-
sumed that the reader is familiar with Sec. 9.4. Then we introduce an automatic energy
smearing algorithm, which is fairly simple to understand and applicable to most beam-
based experiments. In most cases, the reader may want to continue to the next section
after reading these two subsections. In the third subsection, we describe a more elaborate
(and slower) smearing algorithm, which can be used together with rather fast neutrino os-
cillations compared to the bin size, such as for (solar) reactor experiments to avoid aliasing
effects. Eventually, we show how one can use a manual smearing matrix instead of using
one of the implemented algorithms.

9.5.1 Introduction and principles

The energy resolution function Rc(E, E ′) has been already introduced in Sec. 9.4, where
a definition has been given in Eq. (9.4). Instead of using Eq. (9.4) directly, we apply a
slightly different definition of the post-smearing efficiencies ε(E ′). In general, ε(E ′) has
to be determined by means of a Monte Carlo simulation of the experiment. This usually
involves a binning of the simulated events in the reconstructed energy E ′. Therefore, one
simplify Eq. (9.6) by∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′ Rc(E, E ′) εc(E ′) ' ε̂c
i ·
∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′ Rc(E, E ′) . (9.7)

Here the ε̂c
i are the binned “post-smearing” efficiencies, which will be set within the corre-

sponding channel environment (see below). From Eq. (9.6) it is obvious that the integra-
tion with respect to the reconstructed energy E ′ can be performed independently of the
oscillation parameters. We define the “bin kernel” Kc

i for the ith bin as

Kc
i (E) ≡

∫ Ei+∆Ei/2

Ei−∆Ei/2

dE ′ Rc(E, E ′) . (9.8)

With this definition, Eq. (9.6) can be re-written as

nc
i = N/L2 ε̂c

i

∞∫
0

dE Φc(E) P c(E) σc(E) Kc
i (E)︸ ︷︷ ︸

f(E)

. (9.9)

There is no principle reason why one should not evaluate this integral directly by the
usual numerical methods. However, it turns out that this is very slow in many cases.
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Figure 9.1: The different evaluation levels for the energy smearing in GLoBES.

Therefore, we will introduce two different approximation schemes for different applications
in the next two subsections. In either case, the integrand in Eq. (9.9) has to be evaluated
at fixed “sampling points”. These sampling points have to directly or indirectly be defined
by the user.

Before we come to the calculation algorithms, it is useful to understand the general
evaluation algorithm. As it is illustrated in Fig. 9.1, GLoBES uses several levels with
respect to the energy ranges:

Sampling point level This level is used internally to evaluate the integrand in Eq. (9.9)
at all sampling points. The energy scale is the actual incident neutrino energy E.
For a manual definition of the sampling points, use

$sampling_points = 20

$sampling_min = 4.0

$sampling_max = 50.0

for equidistant sampling points. If no values are given for these vari-
ables they are assumed to be equal to their corresponding counter part
at bin level, i.e. $sampling_points = $bins, $sampling_min = $emin and
$sampling_max = $emax.

Arbitrarily spaced sampling points can be specified with $sampling_stepsize

$sampling_stepsize={1.0,2.0,3.0,4.0,5.0,...}
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The choice of the sampling point configuration strongly depends on the experiment
and required accuracy. Ideally the integrand of Eq. 9.9 is zero outside the sampling
range, if this cannot be achieved it is usually sufficient that the sampling range is by
about three times the energy resolution4 larger than the bin range. The spacing of
the sampling points should be somewhat smaller (a factor ' 2 usually is more than
ebough) than the finest details of the integrand.

Bin level This level is determined by the experiment and its analysis. Note that energy
bin sizes much smaller than the energy resolution will not improve the results. The
energy bin range and the number of energy bins do always have to be specified. For
the case of large values of the integrand in Eq. (9.9) at the energy range limits, it is
recommended to exceed the analysis energy window by about three times the energy
calibration error in order to avoid cutoff effects.

In order to define a range between Emin and Emax divided by a certain number of
equidistant bins, use

$emin = 4.0

$emax = 50.0

$bins = 20

For arbitrary bins, use Emin and Emax and the size of each bin ∆Ei:

$emin = 4.0

$emax = 50.0

$binsize = { 15.0 , 5.0 , 20.0, 6.0 }

The number of bins will be automatically computed by GLoBES. Note that the bin
sizes have to add up to the energy range $emax-$emin.

The choices at bin level are mainly determined by optimizing the performance of the
experiment.

Analysis level On the analysis level, an energy window can be defined within each rule.
For details, see next chapter.

In general, the energy smearing happens between the sampling point and bin levels,
which means that the energy smearing matrix will have $sampling_points columns and
$bins rows.

As illustrated in the figure, an interesting feature in combination with the chan-
nels are pre- and post-smearing effects. Pre-smearing effects are taken into ac-
count on the sampling point level, and post-smearing effects on the bin level. Ex-
amples for these effects are energy dependent efficiencies and (non-beam) back-
grounds. Efficiencies are multiplicative factors, whereas backgrounds are added to

4evaluated at $emin and $emax respectively
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the event rates. These components can be introduced before or after the inte-
gration in Eq. (9.9) is done. If they are introduced before, we call them
@pre_smearing_efficiencies or @pre_smearing_background. If they are introduced af-
ter, we call them @post_smearing_efficiencies or @post_smearing_background. Note
that pre-smearing components are always a function of the incident neutrino energy E.
Thus, there have to be as many elements as there are sampling points. Examples for pre-
smearing quantities are non-beam backgrounds, such as from geophysical neutrinos. The
post-smearing components are always a function of the reconstructed neutrino energy E ′,
such as the post-smearing efficiencies εIT

β (E ′) in Eq. (9.4). Examples for post-smearing
efficiencies are cuts and detection threshold functions. All post-smearing components have
to have as many elements as there are energy bins. Efficiencies are multiplicative and their
default value is 1, whereas backgrounds are additive and their default value is 0. Thus, a
more elaborate channel can be defined as

channel(#channel_1)<

@channel = #flux : +: muon: muon: #cross: #energy

@pre_smearing_background = {1,2,3,4,5,6,7,8,9,10}

@post_smearing_efficiencies = {0.1,0.2,0.3,0.4,0.5}

>

This experiment uses 10 sampling points and 5 bins.
In the following subsections we will define the energy resolution function. All energy

resolution functions are defined within an energy environment and can be refered to by
#name.

energy(#name)<

. . .
>

The individual parameters of the environment will be defined below and depend on the
algorithm used.

9.5.2 Bin-based automatic energy smearing

This algorithm is the simplest of the built-in algorithms for the evaluation of Eq. (9.9). It
is applicable to most of the experiments which can be simulated with GLoBES.

The key idea is to use a “flat” model, i.e. the integrand of Eq. 9.9 is well approximated
by being piecewise constant in each sampling step. This is a good approximation as long
as

• No details are lost, i.e. the spacing of sampling points is smaller than the energy
resolution.

• The edges are treated correctly.

• The neutrino oscillations are slow on a scale of the smapling point distance.



78 CHAPTER 9. Experiment definition with AEDL

In this case, Eq. (9.9) is reduced to

nc
i = N/L2

N∑
j=1

Φc(Ej) P c(Ej) σc(Ej) Kc
i (Ej) ∆Ej . (9.10)

The advantages of this algorithm are obvious: All factors independent of the oscillation
parameters have to be only evaluated once at values of E which are known in advance,
which means that they can be put into a look-up table. In addition, the probability has
to be only evaluated at previously known values of the energy, which makes it possible to
compute the transition amplitudes for all channels simultaneously. One assumption is that
all involved factors are piece-wise constant, i.e., they hardly change within each bin. This
assumption seems to be very restrictive, which is however not quite correct. First of all, if
one analyzes simulated data (which are simulated with the same algorithm), the errors will
cancel between the simulated and fitted data. Second, and more important, this algorithm
is just a very basic integration routine5 and converges to the true result for decreasing step
size. Thus if the number of sampling points is large enough this algorithm is very accurate.
This algorithm is selected by

@type = 1

within the #energy environment. The computation of the bin kernel Kc
i is performed

by GLoBES. Thus, it requires that the number of bins $bins and the minimum energy
$emin and maximum energy $emax are given in case of equidistant bins. As far as the
parameterization for the energy resolution function Rc(E, E ′) in Eq. (9.8) is concerned, the
algorithm uses a Gaußian

Rc(E, E ′) =
1

σ(E)
√

2π
e
− (E−E′)2

2σ2(E) . (9.11)

There are several energy resolution functions available, where by default #standard is
used:

@sigma_function = #standard

The energy resolution function #standard is defined by

σ(E) = α · E + β ·
√

E + γ , (9.12)

where the parameters α, β and γ are provided by the user:

@sigma_e = {0.15, 0.0, 0.0}

5It is planed for to have something like a Gauß-Kronrod scheme as an alternative here.
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Currently, another possible choice for @sigma_function is #inverse_beta, which only
uses the parameter α. It is defined by

σ(E) =

{
α ·
√

1000
−1√

x− 8 · 10−4 , for x > 1.8 · 10−3

α · 10−3 , for x ≤ 1.8 · 10−3
(9.13)

The somewhat complicated form is due to the fact that inverse β-decay has a neutrino
threshold of 1.8 MeV and that a neutrino at threshold already produces ' 1 MeV visible
energy in the detector (for more details see e.g. [6]).

In the actual implementation of the algorithm, the sum in Eq. (9.10) is only computed
for the Ej’s where K(Ej) is above a certain threshold, which is by default 10−7. This
threshold is defined at the compiling time.

Eventually, a complete energy resolution definition of this algorithm is, for example,

energy(#name)<

@type = 1

@sigma_function = #standard

@sigma_e = {0.15 ,0.0 ,0.0}

>

9.5.3 Low-pass filter

In order to ensure that fast oscillating probabilities do not lead to aliasing, it is possible
to impose a low-pass filter already during the calculation of the probabilities itself. This
filter is implemented has a highly experimental feature called “filter”. The calculation of
oscillation probabilities is, in principle, a computation of phase differences. Restricting the
maximum admissible size of those phase differences effectively filters the high frequency
component of the oscillation probability. This idea is implemented according to

Pαβ(E) =
∑
ij

UαjU
∗
βjU

∗
αiUβie

−iΦij × e−Φ2
ij/σf (E)2 , (9.14)

where Φij := ∆m2
ijL/2E is the usual phase difference and the last term is a Gaußian filter

with width σf (E). Choosing σf (E) := σ0
f ·E ensures that this filter behaves approximately

such as an energy resolution function with constant width σe =
√

2/σ0
f , i.e.∫

dẼ P (Ẽ)
1

σe

√
2π

e
− (E−Ẽ)2

2σ2
e . (9.15)

The relationship between Eqs. 9.14 and 9.15 is not obvious and connected to the properties
of Pαβ: see Refs. [10, 11]. This feature works only for vacuum and constant densities and
is controlled by the filer state variable. In addition, σe is set by the filter value variable:

$filter_state = 1

$filter_value = 2.0
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would switch the filter feature on and set the width to 2.0 GeV. The setting of
$filter_state is ignored whenever a density profile with more than one layer is used.

With a type 1 (@type = 1) energy resolution function, σe adds on to the energy reso-
lution function of the detector σc(E) such as

σeff(E)2 ' σ2
e + σc(E)2 . (9.16)

Sometimes this behavior is unwanted, and therefore one can try to ’subtract’ the filtering
from the energy resolution function by splitting the energy resolution function σ(E)eff in
two parts by

σeff(E)2 = σc(E)2 − σ2
e︸ ︷︷ ︸

σ̃2
c (E)

+σ2
e , (9.17)

where the truncated energy resolution function σ̃c(E) is used instead of σc(E) in computing
the smearing data. Thus one obtains as effective energy resolution

σeff(E)2 ' σc(E)2 . (9.18)

This scheme is used by choosing as type for the energy resolution

@type = 2

9.5.4 Manual energy smearing

In some cases, one may use the output of a detector Monte Carlo simulation directly.
Then one can use ”manual” energy smearing instead of the automatic energy smearing
algorithms.

The energy smearing matrix Kij has $bins rows and $sampling_points columns,
which are numbered from 0 to $bins−1 or $sampling_points−1. It is equivalent to the
bin- and sampling-point-based kernel in Eq. (9.8):

Kij = Kc
i (E)|E=Ej

, (9.19)

where Ej is the energy of the jth sampling point. In general, many of the entries in this
matrix are zero, which means that it is convenient to evaluate the integrand in Eq. (9.9)
only at positions where Kij is non-zero. The corresponding “sampling range” range of non-
zero matrix entries in Kij for the ith energy bin is defined to run from column ki

l (“lower
index”) to column ki

u (“upper index”). An example for a smearing matrix is

Kij =



a00 a01 a02 a03

a10 a11 a12 a13 a14

a21 a22 a23 a24 a25

a32 a33 a34 a35 a36

a43 a44 a45 a46 a47

↑ . . . ↑
ki

l ki
u


︸ ︷︷ ︸

$sampling points columns

← $bins rows , (9.20)
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where the unshown entries are zero. Thus, the values of Kij have to be specified between
ki

l and ki
u in the form {ki

l , k
i
u, Ki ki

l
, Kiki

l+1, . . . , Kiki
u
}:

energy(#name)<

@energy = {0,2, 0.8634265, 0.0682827, 4e-06}:

{0,4, 0.1507103, 0.6965592, 0.1507103, 0.00101, 1e-07}:

. . .
{40,42, 0.1507103, 0.6965592, 0.1507103};

>

The last line has to be terminated by a semicolon ‘;’. Note that the sum of all entries
in each column should be equal to unity, since all of the incoming neutrinos should be
assigned to energy bins. In many practical cases, however, the definition of the energy
smearing can lead to sums smaller than unity, such as in the case of truncated Gaußian
distributions. The sum of entries in each row is not defined, since the events might be
unevently distributed into the energy bins according to the energy resolution function.

9.6 Rules and the treatment of systematics

The set of rules for an experiment is the final link between the event rate computation and
the statistical analysis. The information in the rules specifies how the χ2 is computed based
upon the raw event rates given by the channels and possible systematical errors. Therefore a
rule has two parts: The first part describes how signal and background events are composed
out of the channels, and the second part specifies which systematical errors are considered,
as well as their values. For a rule, the splitting in signal and background is useful for the
treatment of systematics, as we will se later. Each rule will lead to a ∆χ2-value, which
means that all ∆χ2’s of the different rules will be added for the whole experiment. Within
each rule, the event rates are added, and the systematics is considered to be independent of
the other rules. Thus, it is convenient to combine the above defined channels for different
oscillation patterns and interaction types into one logical construction, which is the rule.
For example, a superbeam usually has two rules: One for the νe-appearance rates, and one
for the νµ-disappearance rates. In each case, contributions of several interaction types, as
well as from the νe-contamination of the beam will lead to a number of contributing signal
and background event channels.

For each rule, the signal event rate si in the ith bin can be composed out of one or
more channels by

si = αcs1 · ncs1
i + αcs2 · ncs2

i + . . . (9.21)

where the α’s are overall normalization factors/efficiencies determined by the properties
of the detector. Note that bin-based (energy-dependent) efficiencies can be defined with
the post-smearing efficiencies in the last section. In addition, note that in most cases, it
makes sense to have only one signal channel and to assign all sorts of perturbations to the
background. Similarly, the background event rate bi in the ith bin can be composed out of
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one or more channels

bi = βcb1
· ncb1

i + βcb2
· ncb2

i + . . . , (9.22)

where the channels can be any combination of the ones in the signal rate and additional
ones. The background normalization factors very often have a specific meaning. For
example, they may correspond to a fraction of mis-identified events (charge or flavor mis-
identification). These basic building blocks of each rule are, within the rule environment,
for example defined by

@signal = 0.5 @ #channel_1

@background = 0.001 @ #channel_2 : 0.005 @ #channel_3

For the analysis of the systematical errors, the so called “pull method” is used [12]6. For
the pull method, k systematical errors are included by introducing k additional variables
ζk, which are the so-called “nuisance parameters”. The nuisance parameters describe the
dependence of the event rates on the various sources of systematical errors, such as an
error on the total normalization is included by multiplying the expected number of events
in each bin by a factor (1 + ζ1). The variation of ζ1 is in the fit constrained by adding
a penalty p1 to the χ2-function. In case of a Gaußian distributed systematical error, this
penalty is given by

pi =
(ζi − ζ0

i )2

σ2
ζi

, (9.23)

where ζ0
i denotes the mean and σζi

the standard deviation of the corresponding nuisance
parameter. We further on also refer to the mean as the “central value”, and to the standard
deviation as the“error”. The latter corresponds to the actual systematical uncertainty. The
resulting χ2 is then minimized with respect to all nuisance parameters ζi, which leads to
χ2

pull

χ2
pull(λ) := min

{ζi}

(
χ2(λ, ζ1, . . . , ζk) +

k∑
j=1

pj(ζj)

)
. (9.24)

Here λ refers to the oscillation parameters including the matter density ρ. One advantage
of the pull method is that whenever the number N of data points is much larger than k,
it is numerically easier to compute χ2

pull than to invert the N ×N covariance matrix. For
the experiments considered here, N is typically 20 and k ∼ 4, which means that the pull
method is numerically much faster. Moreover, it is more flexible and allows the inclusion of
systematical errors also for a Poissonian χ2-function. In Ref. [12], it has been demonstrated
that the pull method and the covariance based approach are equivalent for a Gaußian and
linear model. In general, there is a separate (χ2

pull)
r for each rule r, i.e., pair of signal

and background spectra, with a separate set of nuisance parameters ζα
i . Thus, χ2

pull is the
sum of all individual (χ2

pull)
r’s. By the minimization, the dependence on the k nuisance

parameters has been eliminated from χ2
pull.

6In fact the pull method was employed already in Ref. [5] before Ref. [12] appeared.



9.6 Rules and the treatment of systematics 83

Now we can introduce the different systematical errors. The two most important and
most easily parameterized systematical errors are the normalization and an energy calibra-
tion errors. These errors are assumed to be independent between the signal events and the
background events, which means that this systematics treatment defines the grouping into
signal or background. The implementation of the normalization error is straightforward:

si(a) := a · si (9.25)

with an analogous definition for the background events. Here, a is the“nuisance”parameter,
which will be minimized over later.

For the parameterization of an energy calibration error, two possibilities are imple-
mented. The first one (method “T”) is somewhat simpler, whereas the second one (method
“C”) is more accurate, but it requires a careful choice of parameters. The first option
(method “T”) is

si(a, b) ≡ si(a) + b · si E
′
i/(E

′
max − E ′

min), (9.26)

where E ′
min and E ′

max correspond to $emin and $emax, and E ′
i is the mean (reconstructed)

energy of the ith bin. It is often refered to as a “tilt” of the spectrum, since it describes a
linear distortion of the event rate spectrum. Note that this definition of a tilt makes only
sense in combination with a large enough normalization error, since the tilt also affects the
normalization. The second option (method “C”) is closer to an actual energy calibration
error, which means that one should test this option whenever one suspects a large impact
of this systematical error. It is based upon replacing the events in the ith bin by the ones
at the energy (1 + b) ·E ′

i. If this target energy does not exactly hit a (discrete) bin energy
Ek, linear interpolation is used. We use the following approximation:

si(a, b) = (1 + b) · [(sk+1(a)− sk(a)) · (δ − k) + sk(a)] , (9.27)

δ = b · (i + t0 + 1/2) + i ,

k = div(δ, 1) ,

t0 = E ′
min/∆E0 .

Here ∆E0 is the bin width ($emax-$emin)/$bins and “div” refers to the integer part of the
division. Note that the factor (1 + b) in the first equation comes from a renormalization
of the bin width, since also the bin width is altered by the replacement of the energies.
Furthermore, special care has to be payed to the limits k < 1 or k + 1 > Nbins, since there
sk or sk+1 may not have been calculated. By default, it is assumed that sk is zero in those
cases. However, if the event rates are still large at the limits, errors will be introduced
leading to a wrong estimate of the impact of the calibration error. In this case, one should
truncate the analysis range by a few bins at the boundaries and therefore ensure in this
way that only those si are used whose index k is within the range 0, . . . , Nbins − 1 (cf.,
Fig. 9.1). Thus, it is possible to constrain the analysis energy range with each rule to an
energy window:

@energy_window = 4.0 : 50.0
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The default energy window is given between the minimal and maximal reconstructed en-
ergy. To be on the save side, reduce analysis window compared to the bin range on each
side by about three times the energy calibration error.

Eventually, the total event rate xi in a bin i is given by

xi(a, b, c, d) = si(a, b) + bi(c, d) , (9.28)

and is thus a function of four parameters. The four parameters a, b, c, d have been intro-
duced in order to describe systematical uncertainties and are the nuisance parameters. Each
of the four parameters has a central value and systematical error. The central values for all
of the four parameters have to be always defined. They are called signal normalization (a),
signal tilt/calibration (b), background normalization (c) and background tilt/calibration
(d). The default values are

a = 1 , b = 0 , c = not assigned , d = 0 . (9.29)

Thus, for the background normalization c, the value has to be specified in either case.
The values for the normalization and the values of tilt/calibration are always regarded as
a pairs, i.e., they are given in the form normalization : tilt. The errors are treated
in the same way. For example, we have

@signalerror = 0.001 : 0.01

@backgroundcenter = 0.1 : 0.0

@backgrounderror = 0.001 : 0.01

There is no @signalcenter in this definition, since by default the central value for the
signal normalization is 1 and the central value for the tilt/calibration is 0.

The user has the possibility to choose the set {ζi} of nuisance parameters which are
minimized over. This choice is specified with the error dimension variable, and the different
possibilities are shown in Table 9.2. Since the error dimension defines the treatement of
systematics it is useful to have define a matched pair of error dimensions for each rule, where
on value describes how the event rate is computed for no systematics and the other one is
with systematics (see also Sec. 7.2). The error dimensions for the case of no systematics
is set for each rule by the value of @errordim_sys_off, whereas the error dimension for
systematics on is given by @errordim_sys_on . Thus, for example, the complete error
dimension definition could look like

@errordim_sys_off = 2

@errordim_sys_on = 0

It is foreseen to add the possiblity to extend the set of error dimensions or the set of possible
systematical errors in one of the next versions of GLoBES.

Eventually, a rule looks like
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Error dimension a b c d Tilt/Calibration Remarks

0 + + + + T Systematics with tilt
2 - - - - - No systematics
4 + + + + T Total rates
7 ∞ - ∞ - - Spectrum only
8 - - - - - Total rates, No systematics
9 + + + + C Systematics with calibration

Table 9.2: Possible values of the error dimensions variable in GLoBES and their meaning. If a parameter
is designated with +, it will be marginalized over, and therefore the corresponding error needs to have a
non-zero value. If the cases with “total rates” in the remarks, the summation over the bins is performed
before computing the χ2, i.e., no spectral information is used. The error dimension 7 “spectrum only”
leaves the normalization free (σa = σc = ∞), and therefore only the spectral information is used. As a
consequence, the settings for the normalization error will be ignored (designated with the symbol ∞).

rule(#rule_1)<

@signal = 0.5 @ #channel_1

@background = 0.001 @ #channel_2 : 0.005 @ #channel_3

@signalerror = 0.001 : 0.01

@backgroundcenter = 0.1 : 0.0

@backgrounderror = 0.001 : 0.01

@errordim_sys_off = 2

@errordim_sys_on = 0

@energy_window = 4.0 : 50.0

>

9.7 Version control in AEDL files

In order to avoid problems which come from different versions of GLoBES and AEDL files,
it is possible to use in each AEDL file a version number. For example, it may correspond
to the minimum version number of the GLoBES package with which it works. Set the
$version by

$version="1.8.1"

This information can be accessed by the versioning functions as described in Sec. 2.5.
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Chapter 10

Testing & debugging of AEDL files

AEDL is a powerful language to describe a variety of different experiments. This chapter
demonstrates how to test an AEDL file in order to check if it really describes a given
experiment. For this application, the GLoBES package contains the program globes. It
can either be regarded as an AEDL debugger, or as a simple command-line oriented tool to
convert the rather abstract AEDL experiment description into more accessible event rates.

10.1 Basic usage of the globes binary

The globes binary is installed together with the library, but into the directory
$prefix/bin/. In order to use the globes utility, this directory has to be in the path
of the shell used to call the program.1

As an argument, globes takes a .glb-file. While parsing it, it prints any warnings and
errors which have occured during reading the file. Then it uses the experiment description
in the file to compute the event rates at a certain point in parameter space. Finally, it
displays the result based on the options used to call globes. The options of globes follow
the GNU standard. Thus, there is a --help option to display all other options together
with short descriptions.

Calling globes without any options and with a .glb-file as argument produces an event
summary at rule level. In this case, the full experiment description in the file is taken into
account, i.e., all efficiencies, backgrounds, and energy resolution effects. Thus, the returned
event rates are the ones which will be actually used to compute the χ2 later. By default,
the oscillation parameters used to calculate the transition probability are

sin2 2θ12 = 0.8 ∆m2
21 = 7 · 10−5 eV2 ,

sin2 2θ23 = 1.0 ∆m2
31 = 3 · 10−3 eV2 ,

δ = 0 sin2 2θ13 = 0.1 . (10.1)

1This is automatically the case if no options are given to configure, and make install was executed
with root-privilege, i.e., a standard installation was done.
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Of course, it is possible to change these default values either by using the option -p on a
call by call basis, or by setting the environment variable GLB_CENTRAL_VALUES:

globes -p’0.55,0,0.785,0,0.0008,0.0025’

globes --parameters=’0.55,0,0.785,0,0.0008,0.0025’

For example, GLB_CENTRAL_VALUES can be defined within the shell session or in the shell
profile:

export GLB_CENTRAL_VALUES=’0.55,0,0.785,0,0.0008,0.0025’

Furthermore it is possible to switch off oscillations with the -N option and to switch them
on again with -O (the default). The effect of -N is the same as to use NOSC_ in all oscillation
channels. Thi feature is useful if one wants to normalize an expriment flux if the number
of un-oscillated events is given.

The AEDL parser and interpreter have basically three levels of messages to the user:
Warnings, errors and fatal errors. Fatal errors are always reported and lead to a program
exit with status ’1’. Usually only errors and no warnings are reported. The verbosity level
can be chosen by the -v option, where -v1 is default, i.e., only errors and fatal errors
are reported. The level -v0 corresponds to reporting fatal errors only, and -v2 will print
warnings in addition to fatal errors. It is recommended to test any new .glb-file with -v2

to check the warnings at least once, and to decide whether there is a problem to be fixed.
With -v3 all files read by globes are displayed together with their path, and with -v4

all files which have been attempted to be read are shown. These two setting are useful to
clarify path resolution issues and shadowing of file names.

10.2 Testing AEDL files

In the process of defining a new experiment, the default output of globes at rule level is
the final step. However, in order to arrive at this level it is often necessary to review the
intermediate steps in the event rate calculation. The globes utility offers many possibilities
to do this based on the rate access functions as described in Sec. 6.3.

By default, globes returns total rates corresponding to the -t option. This can be
changed to to a full spectrum by using -s. The spectral rates are shown in a table where
the first column always gives the central energy of the corresponding bin or the sampling
point.

If there is more than one experiment in a file, i.e., there is at least one #NEXT# command,
only the event rates for one experiment will be shown. This experiment can be chosen with
the -e option, which takes as a mandatory argument the number of the experiment (starting
with zero). The default is -e0.

Channel level

As a first step, one may want to check if each channel produces the anticipated output.
Channel rates are returned if the -c option is used. This option takes as an optional



10.2 Testing AEDL files 89

argument the channel number (starting at zero). If no argument is given all channels are
displayed. By default, the sum of the event rates in each channel is shown. Each column
has as first line the same channel name as in the file.

It is also possible to switch off one detector effect after the other. First, one can switch
off the post-smearing efficiencies (-f) and the post-smearing backgrounds (-g). Next,
one can switch off the energy resolution function with (-b) and view the rates before
smearing. If the -s option is also used, the number of lines in the output will be given by
$sampling_points. Another effect of the -b option is that the post-smearing efficiencies
and backgrounds are no longer taken into account. Therefore, the -g and -f options now
apply to the pre-smearing efficiencies and the pre-smearing backgrounds. Thus,

globes -c -b -g -f FILE

produces the raw event rate corresponding to the convolution of flux, probability, and cross
section, which is neglecting all detector effects.

Rule level

The next logical step after checking the channel rates is to investigate the rule rates. The
rule rates are returned with the option -r. This option takes as an optional argument the
rule number (starting at zero). If no argument is given, all rules will be displayed. By
default, the sum of the event rates in each rule is shown, as well as for each component
within the rule. Each rule is preceeded by a line with the same rule name as in the file.

It is also possible for rules to switch off one detector effect after the other – with the
limitation that rules only make sense after the energy resolution function has been applied
to each channel. Therefore, it is not possible to use -b together with -r, or to switch
off any pre-smearing efficiencies or backgrounds. One can, however, switch off the post-
smearing efficiencies (-f) and the post-smearing backgrounds (-g) for each channel. Since
the definition of a rule also contains so-called “coefficients”, it is possible to switch them
off with -i. This options also deactivates any setting of @backgroundcenter.

Output

The default output stream is stdout. The output can be re-directed to a file using the -o

option, which takes as mandatory argument the file name. The default output format aims
at maximal readability for a human eye. In many cases however, the output of globes is
produced as input for other programs. There are some features to adjust the output format.
Usually one would like to omit the channel and rule names by using simple printing -S

instead of pretty printing -P.
There are special options for certain special formats: -m produces Mathematica2 list

output, which can be directly visualized by MultipleListPlot. The option -u uses the
same principal formatting as -m, but it allows to specify the left, middle, and right delimiters
in constructing the list, such as

2Mathematica is a trademark of Wolfram Inc.
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left

left 1 middle 2 middle 3 right

middle

left

left 1 middle 2 middle 3 right

right

This is, with left = ’{’, middle = ’,’ and right = ’}’, equivalent to the list
{{1, 2, 3}, {1, 2, 3}}. The delimiters can be set by -L, -M and -R as in the following example:

globes -Su -R$’\n’ --Middle=" " -L" " ...

Here $’\n’ is the escape sequence in the shell for ANSI C-like characters, such as linefeed
’\n’. The above example produces a a two column file such as

1.0 0.12
1.2 0.14
1.3 0.18
...

where the first column is the central energy of the bin or the sampling point, and the
second column gives the event rate. Usually, the output is a concatenation of many such
two columns tables, where each rule part or channel part has its own table. Thus one can,
by using -u and user-defined delimiters, construct many different output formats.

AEDL external variable substitution

Some .glb-files use external AEDL variables in order to allow special purpose studies (such
as the energy resolution-dependence). If the external variables are not explicitely specified,
they are interpreted by the parser as zeros. Thus, it is impossible to properly parse any
files with globes which contain such undefined variables. Hence, there is the possibility to
define AEDL variables by using the define option -D. A call such as

globes -DBASELINE=3000 ...

would define the AEDL variable BASELINE to be 3000.
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GLoBES installation

The installation of GLoBES is highly automated and there should not be any problems on
a decently up-to-date GNU/Linux system. The installation has, however, only been tested
on a limited number of platforms. The current version has been tested for SuSE, Red Hat,
Fedora Core and a 64bit version of SuSE. It should also compile and work on Mac OS.
We would appreciate to know your experiences with the installation on different platforms.
Please send an e-mail to <globes@ph.tum.de>.

Prerequisites for the installation of GLoBES

Besides the usual things such as a working libc, you need to have

gcc The GNU compiler collection
gcc.gnu.org

GSL The GNU Scientific Library
www.gnu.org/software/gsl/

The library libglobes should in principle compile with any ANSI C/C++ compiler, but
the globes binary uses the argp facility of glibc to parse its command line options.
However, on platforms where argp is lacking GLoBES has replacement code, thus it should
also work there.

All those libraries are also available as rpm’s from the various distributors of
GNU/Linux, see their web sites for downloads. Chances are that gcc and GSL are already
part of your installation. For building GLoBES from source, however, not only working
libaries for above packages are needed but also the headers, especially for GSL. Depending
on your installation, eg. on RedHat/Fedora, of GSL this may require to additionally install
a rpm-package named gsl-devel. If GSL has been installed from the tar-ball as provided
by gnu.org no problems should occur. Furthmore you need a working make to build and
install GLoBES.

Installation Instructions

GLoBES follows the standard GNU installation procedure. To compile GLoBES you will
need gcc. After unpacking the distribution the Makefiles can be prepared using the con-
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figure command,

./configure

You can then build the library by typing,

make

A shared version of the library will be compiled by default.
The library can be installed using the command,

make install

The default install directory prefix is /usr/local. Consult the ”Further Information”
section below for instructions on installing the library in another location or changing
other default compilation options.

The install target also will install a program with name globes to $prefix/bin and
the files in the data directory of the tar-ball to $prefix/share/globes.

If you are not using make install you will find the static libary at
source/.lib/libglobes.a which you can copy to any destination. However keep in
mind that the linking command will be somewhat different, i.e. you have to specify all
the dynamically linked objects besides libglobes.

The default install directory prefix is /usr/local. Consult the ”Further Information”
section below for instructions on installing the library in another location or changing other
default compilation options.

Moreover a config-script called globes-config will be installed. This script displays
all information necessary to link any program with GLoBES. For building static libaries
and linking against them see the corresponding section of this file.

Basic Installation

The configure shell script attempts to guess correct values for various system-dependent
variables used during compilation. It uses these values to create a Makefile in each
directory of the package. Finally, it creates a shell script config.status that you can
run in the future to recreate the current configuration, a file config.cache that saves the
results of its tests to speed up reconfiguring, and a file config.log containing compiler
output (useful mainly for debugging configure).

If you need to do unusual things to compile the package, please try to figure out
how configure could check whether to do them, and mail diffs or instructions to
globes@ph.tum.de so they can be considered for the next release. If at some point
config.cache contains results you don’t want to keep, you may remove or edit it.

The file configure.in is used to create configure by a program called autoconf. You
only need configure.in if you want to change it or regenerate configure using a newer
version of autoconf.

The simplest way to compile this package is:
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1. cd to the directory containing the package’s source code and type ./configure to
configure the package for your system. If you’re using csh on an old version of System
V, you might need to type sh ./configure instead to prevent csh from trying to
execute configure itself.

Running configure takes awhile. While running, it prints some messages telling
which features it is checking for. It also prints a reminder for things to do after
installation.

2. Type make to compile the package.

3. Type make install to install the programs and any data files and documentation.

4. You can remove the program binaries and object files from the source code directory
by typing make clean. To also remove the files that configure created (so you
can compile the package for a different kind of computer), type make distclean.
There is also a make maintainer-clean target, but that is intended mainly for the
package’s developers. If you use it, you may have to get all sorts of other programs
in order to regenerate files that came with the distribution.

5. Since you’ve installed a library don’t forget to run ldconfig !

Installation without root privilege

Install GLoBES to a directory of your choice GLB_DIR. This is done by

configure --prefix=GLB_DIR

and then follow the usual installation guide. The only remaining problem is that you
have to tell the compiler where to find the header files, and the linker where to find the
library. Furthermore you have to make sure that the shared object files are found during
execution. Running configure also produces a Makefile in the examples subdirectory
which can serve as a template for the compilation and linking process, since all necessary
flags are correctly filled in.

Another solution is to set the environment variable LD_RUN_PATH during linking to
GLB_DIR/lib . Best thing is to add this to your shell dot-file (e.g. .bashrc). Then you
can use: A typical compiler command like

gcc -c my_program.c -IGLB_DIR/include/

and a typical linker command like

g++ my_program.o -lglobes -LGLB_DIR/lib/ -o my_executable

More information on this issue can be obtained by having a look into the mentioned
Makefile in examples.
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CAVEAT It is in principle possible to have many installations on one machine. Especially the
situation of having an installation by root and by a user at the same time might
occur. However, it is strictly warned against this possibility, since it is extremely
likely to create some versioning problem at some time!

LAPACK & BLAS requirements

GLoBES uses one single routine out of LAPACK (www.netlib.org/lapack/) named zgeev

to diagonalize the oscillation Hamiltonian in matter. Since LAPACK is not part of the
standard installation of many distributions and we need only one function, GLoBES comes
with a convenience version of the required routines, which are taken from LAPACK and
BLAS (www.netlib.org/blas) and have been translated to C with f2c. In case your
system has a working installation of BLAS/LAPACK GLoBES will use it. However, if your
system is lacking BLAS/ LAPACK the convenience version will be compiled and linked
into GLoBES. If for some reason BLAS/LAPACK is installed on the system and one still
wishes to use the convience version use --enable-lapack-convenience. Using Fortran
code which has been translated to C with f2c requires a run-time library called libf2c

(on some systems it is called libg2c). The configury of GLoBES detects the presence of
either of the two and takes care of it. If none of the two is present, a convience library is
used. If for some reason libf2c is installed on the system and one still wishes to use the
convience version use --enable-libf2c-convenience.

GSL requirements

Sometimes the GNU scientific library is not available or is installed in a non-standard
location. This situation can arise in an installation without root privileges. In this case
one can specify --with-gsl-prefix=path_to_gsl as option to the configure script. If
one wants to use a shared version of libgsl then one has to make sure that the linker
finds the library at run-time. This can be achieved by setting the environment variable
LD_LIBRARY_PATH correctly, i.e. (in bash)

export LD_LIBRARY_PATH=path_to_gsl

You also can use a static version of GSL by either building GLoBES with
LDFLAG=-all-static or by configuring GSL with --disable-shared. In both cases no
further actions like setting any environment variables is necessary.

Distributions

Fedora Core 3

FC3 is shipped with a non working version of LAPACK. Thus to make GLoBES work on
FC3, configure GLoBES with --enable-lapack-convenience, which replaces the defunct
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LAPACK with GLoBES’ own version thereof. You can diagnose a non-working LAPACK
by compiling one of the examples in the examples directory and trying to run it. It will
hang forever in the function glbSetRates().

RedHat – all versions

The standard rpm-based installation of GSL does not provide any header files for GSL,
which are however needed to compile GLoBES. You have to install an additional rpm-
package called gsl-devel. Altnernatively you can install GSL from a tar-ball and use the
verb’–with-gsl-prefix’ option to the configure script of GLoBES.

Advanced topics

Building and Using static versions of GLoBES

In certain circumstances it may be useful to use a static version of libglobes or any of the
binaries, e.g. when running on a cluster.

The configure script accepts the option --disable-shared, in which case only static
objects are built, i.e. only a static version of libglobes. In case your system does not support
shared libraries the configure script recognizes this. If you give no options to configure,
both shared and static versions are built and will be installed. All binaries, however, will
use dynamic linking. If you want to build static binaries, use LDFLAGS=-all-static for
building them.

Sometimes it is convenient, eg. for debugging purposes, to have a statically linked ver-
sion of a program using GLoBES which is easiest achieved by just linking with libglobes.a.
If you need a completely statically linked version, please, have a look at the Makefile in
the examples directory.

make example-static

produces a statically linked program that should in principle run on most Linuxes. It
should be straightforward to adapt this example to your needs.

All these options rely on libtool and a working gcc installation. It seems that gcc 3.x

is broken in subtle way which makes it necessary to add a symbolic link in the gcc library
directory. The diagnostic for this requirement is that building static programs fails with the
error message cannot find -lgcc_s. In those cases, find libgcc.a and add a symbolic
link in the same directory where you found it (this requires probably root privileges)

ln -s libgcc.a libgcc_s.a

If you can not write to this directory just use the following work around. Add the same
link as above to the directory where you installed GLoBES into

cd prefix/lib ln -s path_to_libgcc.a/libgcc.a libgcc_s.a
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and then change back into the examples directory and type

make LDFLAGS=-Lprefix/lib example-static

and you are done.
If you don’t have libtool on your system either, then you just can use the libtool script

in the GLoBES tar-ball instead. Make sure it is in a place where it is found by make.

Compilers and Options

Some systems require unusual options for compilation or linking that the configure script
does not know about. You can give configure initial values for variables by setting them
in the environment. Using a Bourne-compatible shell, you can do that on the command
line like this

CC=c89 CFLAGS=-O2 LIBS=-lposix ./configure

Or on systems that have the ‘env’ program, you can do it like this

env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the same time, by
placing the object files for each architecture in their own directory. To do this, you must
use a version of make that supports the VPATH variable, such as GNU make. ‘cd’ to the
directory where you want the object files and executables to go and run the configure

script. configure automatically checks for the source code in the directory that configure
is in and in ‘..’.

If you have to use a make that does not supports the VPATH variable, you have to
compile the package for one architecture at a time in the source code directory. After you
have installed the package for one architecture, use ‘make distclean’ before reconfiguring
for another architecture.

Installation Names

By default, make install will install the package’s files in /usr/local/bin,
/usr/local/include, etc. You can specify an installation prefix other than /usr/local

by giving configure the option --prefix=PATH.

Specifying the System Type

There may be some features configure can not figure out automatically, but needs to
determine by the type of host the package will run on. Usually configure can figure that
out, but if it prints a message saying it can not guess the host type, give it the --host=TYPE
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option. TYPE can either be a short name for the system type, such as ‘sun4’, or a canonical
name with three fields: CPU-COMPANY-SYSTEM

See the file config.sub for the possible values of each field.
If you are building compiler tools for cross-compiling, you can also use the

--target=TYPE option to select the type of system they will produce code for, and the
--build=TYPE option to select the type of system on which you are compiling the package.

Sharing Defaults

If you want to set default values for configure scripts to share, you can create a
site shell script called config.site that gives default values for variables like CC,
cache_file, and prefix. configure looks for PREFIX/share/config.site if it exists,
then PREFIX/etc/config.site if it exists. Or, you can set the CONFIG_SITE environment
variable to the location of the site script. A warning: not all configure scripts look for a
site script.
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The GNU General Public License

Version 2, June 1991
Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Terms and Conditions For Copying, Distribution
and Modification
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0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee
is addressed as “you”.
Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.
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3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient au-
tomatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipi-
ents’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
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Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and “any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution con-
ditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

No Warranty

11. Because the program is licensed free of charge, there is no warranty for the
program, to the extent permitted by applicable law. Except when otherwise stated
in writing the copyright holders and/or other parties provide the program “as
is” without warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with
you. Should the program prove defective, you assume the cost of all necessary
servicing, repair or correction.

12. In no event unless required by applicable law or agreed to in writing will any
copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to
use the program (including but not limited to loss of data or data being rendered
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inaccurate or losses sustained by you or third parties or a failure of the program
to operate with any other programs), even if such holder or other party has been
advised of the possibility of such damages.

End of Terms and Conditions
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
”free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein.
The ”Document”, below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as ”you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.
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The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document straightfor-
wardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo in-
put format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in formats
which do not have any title page as such, ”Title Page”means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as ”Acknowledgements”, ”Dedications”,
”Endorsements”, or ”History”.) To ”Preserve the Title” of such a section when you modify the
Document means that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY
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If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2

and 3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at least
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled ”History” in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.
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J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the ”History” section. You may omit a network location for
a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name
of the original author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various original docu-
ments, forming one section Entitled ”History”; likewise combine any sections Entitled ”Acknowledgements”,
and any sections Entitled ”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS
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You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single copy that
is included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an ”aggregate” if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document

under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in addition
to the original versions of these Invariant Sections. You may include a translation of this License, and all
the license notices in the Document, and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of this License or a notice or disclaimer,
the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for

under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.
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API functions

_exp, 17
_experiment_list, 16
_num_of_exps, 4, 16
_params, 4, 17, 19, 23
_projection, 17, 35, 36

AllocParams, 20
AllocProjection, 36
AverageDensityProfile, 49

ChiAll, 4, 39, 40
ChiDelta, 4, 33
ChiDm, 4, 35
ChiDms, 4, 35
ChiNP, 4, 31, 34–36
ChiSys, 4, 23, 24
ChiTheta, 4, 33
ChiTheta23, 4, 35
ChiThetaDelta, 4, 35
ClearAEDLVariables, 53
ClearExperimentList, 17
CopyParams, 20
CopyProjection, 36

DefineAEDLVariable, 52
DefineParams, 20
DefineProjection, 36

Flux, 46
FreeProjection, 36

GetBaselineInExperiment, 48
GetBGCenters, 52
GetBGErrors, 52
GetChannelInRule, 45
GetChannelRates, 45
GetCoefficientInRule, 45
GetDensityParams, 21
GetDensityProjectionFlag, 36
GetErrorDim, 50
GetFilter, 53

GetFilterInExperiment, 54
GetFilterState, 53
GetFilterStateInExperiment, 53
GetInputErrors, 30
GetIteration, 21
GetLengthOfRule, 44
GetNormalizationInRule, 45
GetNumberOfChannels, 46
GetNumberOfRules, 44
GetOscillationParameters, 22
GetOscParams, 20
GetProfileDataInExperiment, 49
GetProfileType, 47
GetProjection, 36
GetProjectionFlag, 36
GetRunningTime, 18
GetSignalErrors, 52
GetSourcePower, 18
GetStartingValues, 30
GetTargetMass, 18
GetUserData, 45

Init, 13
InitExperiment, 15, 16, 52, 65

LoadProfileData, 48

NameToValue, 43, 65

PrintParams, 20, 34
PrintProjection, 36
ProfileProbability, 43

ResetRateStack, 46

SetBaselineInExperiment, 47
SetBGCenters, 52
SetBGErrors, 52
SetDensityParams, 20
SetDensityProjectionFlag, 36
SetErrorDim, 50
SetFilter, 53
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SetFilterInExperiment, 54
SetFilterState, 53
SetFilterStateInExperiment, 53
SetInputErrors, 4, 30, 34
SetIteration, 21
SetNewRates, 73
SetOscillationParameters, 21, 22
SetOscParams, 20
SetProfileDataInExperiment, 49
SetProjection, 4, 36
SetProjectionFlag, 36
SetRates, 21, 22, 73
SetRates(), 97
SetRunningTime, 18
SetSignalErrors, 50
SetSourcePower, 18
SetStartingValues, 4, 30, 34
SetTargetMass, 18
ShowChannelRates, 45
ShowRuleRates, 44
StaceyProfile, 48
SwitchSystematics, 25, 50

TestLibraryVersion, 22
TestReleaseVersion, 22
TotalRuleRate, 44

VacuumProbability, 43
ValueToName, 44, 65
VersionOfExperiment, 22

XSection, 46
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API constants & macros

GLB_ALL, 4, 16, 23, 50

GLB_BG, 44, 45

GLB_DELTA_CP, 20

GLB_DM_ATM, 20

GLB_DM_SOL, 20

GLB_EFF, 45

GLB_FIXED, 35, 36

GLB_FREE, 35, 36

GLB_OFF, 50, 53

GLB_ON, 50, 53

GLB_POST, 45

GLB_PRE, 45

GLB_SIG, 44, 45

GLB_THETA_12, 20

GLB_THETA_13, 20

GLB_THETA_23, 20

GLB_WO_BG, 44, 45

GLB_WO_COEFF, 44

GLB_WO_EFF, 44, 45

GLB_W_BG, 44, 45

GLB_W_COEFF, 44

GLB_W_EFF, 44, 45

GLB_ALL, 16
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AEDL reference

channel, 71–73
NOSC_, 73
@post_smearing_background, 77
@post_smearing_efficiencies, 77
@pre_smearing_background, 77
@pre_smearing_efficiencies, 77

cross, 70
@cross_file, 70, 71

energy, 74–81
@energy, 81
#inverse_beta, 79
@sigma_function, 78
#standard, 78
@type, 80
@type, 78

flux, 68
@builtin, 68
@flux_file, 68, 69
@norm, 68
@parent_energy, 68
@power, 68
@stored_muons, 68
@time, 68

rule, 81–85
@background, 82
@backgroundcenter, 84
@backgrounderror, 84
@energy_window, 83
@errordim, 85
@errordim_sys_off, 84
@errordim_sys_on, 84
@signal, 82
@signalerror, 84

acos, 66
asin, 66
atan, 66

$baseline, 69
$bins, 76

$binsize, 76

cos, 66

$densitysteps, 69
$densitytab, 69

$emax, 76
$emin, 76
exp, 66

$filter_state, 79
$filter_value, 79

include, 65

$lengthtab, 69
log, 66
log10, 66

#NEXT#, 65

$profiletype, 69

$sampling_max, 75
$sampling_min, 75
$sampling_points, 75
$sampling_stepsize, 75
sin, 66
sqrt, 66

tan, 66
$target_mass, 68

$version, 85
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Index

Advanced tricks, 31, 41
AEDL, 54–85

external parameters, 52, 65
names, 43

Aliasing, 79
Auxiliary parameter, 25

Background
centers, 50
errors, 50

Bar plots, 51
Baseline, 69

change, 47
Bin, 73
Build process, see Compilation

C-Code, 14
Channel, 59, 71
Compilation

of application programs, 13
Correlation

and ∆χ2, 27
multi-parameter, 27, 32
two-parameter, 24, 32

Cross section, 46, 70
file, 71

comments in, 71

Degeneracies, 39–41
and ∆χ2, 39
multiple solutions, 39
sgn(∆m2

31)-degeneracy, 40
Detector mass, 18

Energy
resolution, 72, 74–81
resolution function, 78
window, 83

Environment variables
GLB_CENTRAL_VALUES, 88
GLB_PATH, 17

Error dimension, 50, 84
Event rates, 44
Examples, 13
Experiment

delete, 17
list, 16

clear, 17
number of, 16

Experiment files (table), 15
Experiment initialization, 16
Experiment parameters, 47
External information, 29

input errors, 29, 30
precision, 30
priors, 29, 31
starting values, 29, 30

External input, see External information

File names, 65
Filter, 79

functions, 53
Flux, 46

file, 69
comments in, 69

GLB_ALL, 16
GLB_CENTRAL_VALUES, 88
glb-files, 15
glb-files

installation, 13, 94
GLB_PATH, 17
globes, 87

channel rates, 88
errors, 88
oscillation parameters, 87
output, 89
rule rates, 89
spectral rates, 88
total rates, 88
variable substitution, 90
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verbosity, 88
warnings, 88

GLoBES tour, 3

Initialization, 13
GLoBES library, 13
experiments, 16
libglobes, 13

Installation, 13, 93–99
prerequisites, 93
w/o root privilege, 95

Integrated luminosity, 18

libglobes, 13, 87
Low-level information, 43

Mass hierarchy, 19, 40
Matter density

scaling factor, 23
change profile, 47
of the earth, 69
profile, 19
scaling factor, 19, 29, 34
uncertainty, 23

Minimization
all-parameter, 39

Minimizer, 27, 31
iterations, 21
priors, 31

Oscillation
parameter vectors, 19
probabilities, 43
switching off, 73

Parameter vector handling, 21
Path resolution, 17
PREM, see Matter density
Program, 14
Projection

θ13-δCP-plane, 35
definition, 36
axis, 31
hyperplane, 35

of manifold, 27, 32
type, 36

Pull method, 23

Reference rate vector, 21
Referencing

cross section data, 71
data in GLoBES, III
flux data, 69
matter profile data, 70

Rule, 59, 81
Running time, 18

Set oscillation parameters, 21
Signal

errors, 50
Simulated data, 21
Smear matrix, 72
Source power, 18
Standard functions (table), 4
Systematics, 23, 50

χ2, 23
on/off, 50, 51

True values, 21

Units in GLoBES (table), 17

Version control, 22, 85


