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(Inverse) Compton Scattering
1 Overview

e Compton Scattering, polarised and unpolarised light

e Differential cross-section do /dS2 and total cross-section o
e Compton kinematics es(¢;, 0)

e Thomson (e5 ~ ¢;) and Klein-Nishina regime

e Inverse Compton scattering

e Fnergy change in Inverse Compton scattering



2 Thomson Scattering of Polarized Radiation by an electron

Consider radiation from a free electron in response to incident linearly polarised
electromagnetic wave.

Force on charge (neglecting magnetic force for v < ¢):

F = mf: e By€e sinwyt
with € denoting E-field direction.

With dipole moment d = e
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Power of radiating dipole (cf. Larmor’s formula, lecture 4):
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and by intergration over solid angle (Larmor’s formula):
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Time-averaged power: Averaging d? = em—go sin® wot over time ¢, with < sin® wot >=
e
T=2r
T Jo O sin®wot dt = 1/2 gives:
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(Note: ©:= angle between d and !)



Incident (time-averaged) radiation flux on electron (with |S| = L EZ sin® wt):
- c
<|S| >= —E;
5= 53

Differential cross-section do for scattering into df2, is defined as

dP - do cEido
— =< |S] > =
ds? dS? 1 df)
4172 .2
. dP _ e¢"Ejsin“©
do et :
— = — 481112@:: rgsin® ©
ds polarized mgc
with classical electron radius
o2
o _ ~13
Ty 1= 5 = 2.82 x 10777 cm
MeC

Visualization: do gives area presented by electron to a photon that is going to
be scattered in direction df).



Total cross-section ¢ by integrating over solid angle, or immediately from
P=<|S|>0 = o=P/<|S|>

where P = (¢*E2)/(3m2c®) = E¥rde/3 and < |S| >= cE?/(87), giving:

0O =—Try=:07
30

with Thomson cross-section op:

or = 6.652 x 107%°  cm?

Note:

1. op applies only to non-relativistic regime; for higher energies, Klein-Nishina
cross-section oy must be used (see later)

2. Scattered radiation is linearly polarised in direction of incident polarisation
vector, €, and direction of scattering, n.

3. Single particle (time-averaged) Thomson power P = o7 < |S| >= opc (E2/87) =
orcU,,q with radiation energy density U,,q = Eg /81 =time-averaged energy
density in incident wave.



3 Thomson Scattering of Unpolarized Radiation

Unpolarised radiation: can have E-field in any direction = independent superpo-
sition of two linearly polarized beams with perpendicular axes.

To scatter non-polarised radiation propagating in direction k into direction n,
need to average two scatterings through angle © and 7 /2:

do 1 [do(©) do(m/2)
ds 2\ da |, pol
2 2

S
= %(sm? O+1) = %0(0082 0+1)=

unpol
BUT
167
where § = /(k,n). Forward-backward symmetry (6 — 7+ 6)!
Total cross-section, integrated over (2, is again o = o7.
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4 Thomson Optical Depth

=Probability for a photon to experience Thomson scattering while traversing
region containing free electrons with density n,

T = /neaT ds

For 7p < 1 source optically-thin to Thomson scattering, for 7 > 1 optically-thick.

Example - Thomson scattering in black hole accretion flows:
Ion density = electron density, in terms of dimensionless accretion rate m =

M | Mgqq, where Mpgg ~ 2.2 (Mpy/108My) Mo /yr ~ 105 Mpp g g/scc

M 103M, 1\ 3/2
n(r) = —— =925 x 10a" b © (T—) em ™
Amr2myv, BH r

assuming radial inflow velocity v, = o (GM/r)"? = a ¢ (ry/r)"/?/+/2 (fraction
a < 1 of free infall); Schwarzschild radius r, := 2G M/ 2 =3x108M BH.8 CIL.

= Thomson optical depth: 77 ~ n.(r)orr ~5 a 'm (%)1/2
= optically-thin for low accretion rates.
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5 Kinematics of Compton Scattering

Scattering of photon off an electron at rest, with momentum 4-vector (E/c, p)
notation:

e Initial and final four momentum of photon: P; = %(1, i), Py = h—zf(l, mf)

e Initial and final four momenta of electron: Q; = m.(c,0), Qf = yyme(c, Uy)

scattered photon

n;

incident photon

recoil

e Energy and momentum conservation: p@ + CNQZ = Pf + Q ¥

= Q%= (P +Q; — P;)* = P? + Q2+ P} + 2BQ, — 2P,P; — 2Q; P,
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With Q? = Q"Q, = v*m.c® — V*ma? = Y?mec?(1 — 5) = mec?, an
P

or:
hl/@hl/f

3 (1 —1is) = me(hv; — hvy)
With 71,1 = cos 0:
hvivi(1 — cos) = mec(v; — vy)

So that

Vi €
e or €Er — €
1+ (1 — cos 6) d 1+ —5(1 — cos0)

mec2 €

vy

or in terms of wavelength A\ = ¢/v:

h

MeC

Af = Ai =

(1 —cosf) =\, (1 —cosl) >0
with Compton wavelength A, := h/m.c = 2.426 x 1071V cm.

Note: \; > )\, for all angles 6 (6 # 0), photons always loses energy.
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Fractional energy change: averaging over @, with Taylor expansion for hy; < me.c?

(=Thomson regime):

g hiv _vi—v 2—[%(1— hw [1—008&])—%]2—]2” [1— < cos 6 >]

€ hy; v v MeC MeC
hVZ‘
- — 5 < 1
MeC

Compton scattering: Scattering of photon off an electron accompanied by
energy transfer (decrease in photon energy).

o Thomson scattering: in regime hy; < mec?, transfer small, scattering al-
most elastic (¢; = hy; = hvy = €f), Thomson cross-section applies (initial
and final wavelength quasi identical).

o Klein-Nishina scattering: in regime hy; > m.c? transfer large, scattering
deeply inelastic, need to use cross-section derived from QED.
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6 Klein-Nishina Formula

General formula for differential cross-section derived by Klein & Nishina 1929

based on QED:
do 3 € 2 €  €f . 9
2 - DT A 0
a0 167 " (q) <ef - € -

with € = hv and €; = ¢;/(1 + 5[l — cosf]) (kinematics). do/d2 measures

ch

probability that photon gets scattered into angle 6.
If e; > ef (for ¢ < mecz) Thomson regime:

do 3 3 do
— 1+ [1 —sin?f]) = —or (1 20) = —
ds? 167TJT ( i [ - ]) 167TOT ( oo ) df} Thomson,unpolarized
Note:

e Principal effects is to reduce cross-section from classical value op as energy
increases.

e Increased forward-scattering with increasing energy. At small energies, cross-
section is forward-backward (6, 7 + #) symmetric.
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7 Total Compton Cross-section

Integration over solid angle gives total cross-section:

o = 21 %Siﬂ@d@

3 l+z (2x(1+x) 1 1+ 3z
= - —In(1+2 —In(1 4+ 22) — ———
1 T [ 3 ( 1+ 2z n(l+ x>)+2x n{l+2) (1+2x)?
where
hl/z'
T =
M C
Limits:

op(1—2x+..) for <1 (Thomson)

~
=
2

3 1 1
o(x) =~ Q0T <1n 2z + 5) for x> 1 (extreme KN)
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Figure 1: Total Compton cross-section as a function of normalized photon energy x = hv;/m.c* along with
asymptotics to high energies.
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8 Inverse Compton Scattering

If electron moves with velocity v (lab. frame K), energy can be transferred from
clectron to photon = Inverse Compton Scattering (1CS).

In electron rest frame K’ previous result holds (written in terms of rest-frame
variables = primed), e.g.:

/
€

MeC>

/
€.
€ = — ~e |1—
1+ —5(1 —cosa)

Mec?

(1 —cosa’)

with o scattering angle in K, 6;, 6’ polar angles between electron and photon
propagation directions:

cos &' = cos 0] cos 0y + sin 0; sin 0 cos(¢; — @)

where ¢}, ¢, azimuthal angles of incident and scattered photon in electron rest
frame [ERF], noting that cosa’ = 7} - 7} and in spherical coordinates 7i; =
(cos 07, sin 0. cos ¢, sin 0. sin ¢}) with cos(a — b) = cosa cosb+sin asin b etc. Last

relation on rhs in energy eq. valid in Thomson regime.
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Photon energies €'s in K" and K are related by Doppler formula
¢ = De; <+ € =¢evy(1— Bcost;)

1

6/
S / /
€ ST Beont) e;y(1+Bcost))

where D = 1/(~[1 — Bcosl]), B =v/c,y=1/y/1 —v?/c>.

2 .
, l.e.

Thomson regime for €, < m.c

)

TR m@CQ/”Y

Limits:

(1) for 8; = 0 (photon approaches from behind): €, = ¢y(1 — 5) — €;/[27].

(2) for 6; = w (head-on collision): €, = ey(1 + 8) = 27¢;

= Maximum energy in Thomson regime (using equation (2) above):

€ fmax = 26577 = 267y = 47%¢;.

= in Klein-Nishina regime: €y 4, < fymec2 +€; ~ ’ymGCQ (energy conservation).
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Alternatively, using aberration formula (lecture 4):

cost r — B
1 — Bcost; ¢

/ —_—
cost; ;=

[sotropic distribution in lab. frame K: half the photons have ; between 7 (head-
on) and /2.

= in electron rest frame K’ cosf! = —( for §; = 7w /2.

= For relativistic electrons (8 =~ 1), most photons are close to head-on in ERF.

In Thomson regime: for €; < m.c?, €; = €} with egs. (1),(2) before:

0, —
e = Y&(1 — Beost)(1+ Beosty) = e (1 — B eosb) (1 + 510(156fcosgf)
(1 — Bcosb;) (1 — Bcosb;)
(1 — Bcosby) (1 — Bcosby)

For head-on scattering §; = 7 and §; = 0 (photons turns around after scattering),

€ f max o <1 + 5) o
&« (1-p)

1-p5%) =«

2

(14 B)* ~ 492,
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Summary: Scattered photon energy in lab frame:

e L€ > mec?/vy Klein — Nishina limit

{ +2e; L€ < mec?/y Thomson regime
€Er >~
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Figure 2: ~%-energy boost in Thomson regime as a result of relativistic beaming. Top left: Electron moving with
velocity v in lab frame, incoming photons are isotropically distributed. Top right: Incoming photons as seen in the rest
frame of the electron. They are now highly anisotropic, electron sees them as nearly head-on, their typical energies
are boosted by a factor ~ . Bottom left: Photons after scattering in electron rest frame. They are approximately
isotropic and have roughly the same energy (Thomson regime) they had before being scattered. Bottom right:
Scattered photons as seen in the lab-frame. They are now again highly collimated, with their typical energies boosted
by a further factor ~ «, so that in lab-frame the overall energy is boosted by a factor 42 [Credits: N. Kaiser].



