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(Inverse) Compton Scattering

1 Overview

• Compton Scattering, polarised and unpolarised light

• Differential cross-section dσ/dΩ and total cross-section σ

• Compton kinematics εf(εi, θ)

• Thomson (εf ' εi) and Klein-Nishina regime

• Inverse Compton scattering

• Energy change in Inverse Compton scattering
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2 Thomson Scattering of Polarized Radiation by an electron

Consider radiation from a free electron in response to incident linearly polarised

electromagnetic wave.

Force on charge (neglecting magnetic force for v � c):

~F = me~̈r = e E0~ε sinω0t

with ~ε denoting E-field direction.

With dipole moment ~d := e~r:

~̈d = e~̈r =
e2E0

me
~ε sinω0t ⇒ ~d = − e

2E0

meω2
0

~ε sinω0t

electron

�
�
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Power of radiating dipole (cf. Larmor’s formula, lecture 4):

dP

dΩ
=

q2

4πc3
|~̇v|2 sin2 Θ =

~̈d 2

4πc3
sin2 Θ

and by intergration over solid angle (Larmor’s formula):

P =
2q2

3c3
|~̇v|2 =

2 ~̈d 2

3c3

Time-averaged power: Averaging ~̈d 2 =
e4E2

0
m2
e

sin2 ω0t over time t, with< sin2 ω0t >=

1
T

∫ T= 2π
ω0

0 sin2 ω0t dt = 1/2 gives:

dP

dΩ
=

e4E2
0

8πm2
ec

3
sin2 Θ and P =

e4E2
0

3m2
ec

3

(Note: Θ:= angle between ~̈d and ~n!)
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Incident (time-averaged) radiation flux on electron (with |~S| = c
4πE

2
0 sin2 ω0t):

< |~S| >=
c

8π
E2

0

Differential cross-section dσ for scattering into dΩ, is defined as

dP

dΩ
:=< |~S| > dσ

dΩ
=
cE2

0

8π

dσ

dΩ

With dP
dΩ =

e4E2
0 sin2 Θ

8πm2
ec

3 :

dσ

dΩ

∣∣∣∣
polarized

=
e4

m2
ec

4
sin2 Θ =: r2

0 sin2 Θ

with classical electron radius

r0 :=
e2

mec2
= 2.82× 10−13 cm

Visualization: dσ gives area presented by electron to a photon that is going to

be scattered in direction dΩ.
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Total cross-section σ by integrating over solid angle, or immediately from

P =< |~S| > σ ⇒ σ = P / < |~S| >

where P = (e4E2
0)/(3m2

ec
3) = E2

0r
2
0c/3 and < |~S| >= cE2

0/(8π), giving:

σ =
8π

3
r2

0=: σT

with Thomson cross-section σT :

σT = 6.652× 10−25 cm2

Note:

1. σT applies only to non-relativistic regime; for higher energies, Klein-Nishina

cross-section σKN must be used (see later)

2. Scattered radiation is linearly polarised in direction of incident polarisation

vector, ~ε, and direction of scattering, ~n.

3. Single particle (time-averaged) Thomson power P = σT < |~S| >= σTc (E2
0/8π) =

σTcUrad with radiation energy density Urad = E2
0/8π =time-averaged energy

density in incident wave.
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3 Thomson Scattering of Unpolarized Radiation

Unpolarised radiation: can have E-field in any direction = independent superpo-

sition of two linearly polarized beams with perpendicular axes.

To scatter non-polarised radiation propagating in direction k into direction n,

need to average two scatterings through angle Θ and π/2:

dσ

dΩ

∣∣∣∣
unpol

=
1

2

(
dσ(Θ)

dΩ

∣∣∣∣
pol

+
dσ(π/2)

dΩ

∣∣∣∣
pol

)

=
r2

0

2
(sin2 Θ + 1) =

r2
0

2
(cos2 θ + 1) =

3σT
16π

(1 + cos2 θ)

where θ = 6 (k,n). Forward-backward symmetry (θ → π + θ)!

Total cross-section, integrated over Ω, is again σ = σT .

�

n

k

1

2

�

�

�/2
�
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4 Thomson Optical Depth

=Probability for a photon to experience Thomson scattering while traversing

region containing free electrons with density ne

τT :=

∫
neσT ds

For τT � 1 source optically-thin to Thomson scattering, for τT � 1 optically-thick.

Example - Thomson scattering in black hole accretion flows:

Ion density = electron density, in terms of dimensionless accretion rate ṁ :=

Ṁ/ṀEdd, where ṀEdd ' 2.2 (MBH/108M�) M�/yr ' 1026MBH,8 g/sec

n(r) =
Ṁ

4πr2mpvr
= 2.5× 1011α−1ṁ

(
108M�
MBH

)(rs
r

)3/2

cm−3

assuming radial inflow velocity vr = α (GM/r)1/2 = α c (rs/r)
1/2/
√

2 (fraction

α < 1 of free infall); Schwarzschild radius rs := 2GM/c2 = 3× 1013MBH,8 cm.

⇒ Thomson optical depth: τT ' ne(r)σTr ' 5 α−1ṁ
(
rs
r

)1/2

⇒ optically-thin for low accretion rates.
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5 Kinematics of Compton Scattering

Scattering of photon off an electron at rest; with momentum 4-vector (E/c, ~p)

notation:

• Initial and final four momentum of photon: P̃i = hνi
c (1, ~ni), P̃f =

hνf
c (1, ~nf)

• Initial and final four momenta of electron: Q̃i = me(c, 0), Q̃f = γfme(c, ~vf)

�

scattered photon

recoil

incident photon

e-

n

n

i

f

• Energy and momentum conservation: P̃i + Q̃i = P̃f + Q̃f

⇒ Q̃2
f = (P̃i + Q̃i − P̃f)2 = P̃ 2

i + Q̃2
i + P̃ 2

f + 2P̃iQ̃i − 2P̃iP̃f − 2Q̃iP̃f
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With Q̃2 = Q̃νQ̃ν = γ2mec
2 − γ2mev

2 = γ2mec
2(1 − v2

c2
) = mec

2, and

P̃ 2 = 0:

⇒ P̃i · P̃f = Q̃i(P̃i − P̃f)

or:
hνihνf
c2

(1− ~ni~nf) = me(hνi − hνf)

With ~ni~nf = cos θ:

hνiνf(1− cos θ) = mec
2(νi − νf)

So that

νf =
νi

1 + hνi
mec2

(1− cos θ)
or εf =

εi
1 + εi

mec2
(1− cos θ)

or in terms of wavelength λ = c/ν:

λf − λi =
h

mec
(1− cos θ) =: λc (1− cos θ) ≥ 0

with Compton wavelength λc := h/mec = 2.426× 10−10 cm.

Note: λf > λi for all angles θ (θ 6= 0), photons always loses energy.
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Fractional energy change: averaging over θ, with Taylor expansion for hνi � mec
2

(=Thomson regime):

∆ε

ε
:=

h∆ν

hνi
=
νf − νi
νi

' 1

νi

[
νi

(
1− hνi

mec2
[1− cos θ]

)
− νi

]
= − hνi

mec2
[1− < cos θ >]

= − hνi
mec2

� 1

Compton scattering: Scattering of photon off an electron accompanied by

energy transfer (decrease in photon energy).

• Thomson scattering: in regime hνi � mec
2, transfer small, scattering al-

most elastic (εi = hνi = hνf = εf), Thomson cross-section applies (initial

and final wavelength quasi identical).

• Klein-Nishina scattering: in regime hνi > mec
2 transfer large, scattering

deeply inelastic, need to use cross-section derived from QED.
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6 Klein-Nishina Formula

General formula for differential cross-section derived by Klein & Nishina 1929

based on QED:

dσ

dΩ
=

3

16π
σT

(
εf
εi

)2(
εi
εf

+
εf
εi
− sin2 θ

)
with ε = hν and εf = εi/(1 + εi

mc2
[1 − cos θ]) (kinematics). dσ/dΩ measures

probability that photon gets scattered into angle θ.

If εi ' εf (for εi � mec
2) Thomson regime:

dσ

dΩ
→ 3

16π
σT
(
1 + [1− sin2 θ]

)
=

3

16π
σT
(
1 + cos2 θ

)
=
dσ

dΩ

∣∣∣∣
Thomson,unpolarized

Note:

• Principal effects is to reduce cross-section from classical value σT as energy

increases.

• Increased forward-scattering with increasing energy. At small energies, cross-

section is forward-backward (θ, π + θ) symmetric.
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7 Total Compton Cross-section

Integration over solid angle gives total cross-section:

σ = 2π

∫ π

0

dσ

dΩ
sin θdθ

= .....

=
3

4
σT

[
1 + x

x3

(
2x(1 + x)

1 + 2x
− ln(1 + 2x)

)
+

1

2x
ln(1 + 2x)− 1 + 3x

(1 + 2x)2

]
where

x ≡ hνi
mec2

Limits:

σ(x) ' σT (1− 2x + ...) for x� 1 (Thomson)

σ(x) ' 3

8
σT

1

x

(
ln 2x +

1

2

)
for x� 1 (extreme KN)
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Figure 1: Total Compton cross-section as a function of normalized photon energy x = hνi/mec
2 along with

asymptotics to high energies.
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8 Inverse Compton Scattering

If electron moves with velocity v (lab. frame K), energy can be transferred from

electron to photon = Inverse Compton Scattering (ICS).

In electron rest frame K ′, previous result holds (written in terms of rest-frame

variables = primed), e.g.:

ε′f =
ε′i

1 +
ε′i

mec2
(1− cosα′)

' ε′i

[
1− ε′i

mec2
(1− cosα′)

]
with α′ scattering angle in K ′, θ′i, θ

′
f polar angles between electron and photon

propagation directions:

cosα′ = cos θ′i cos θ′f + sin θ′i sin θ′f cos(φ′i − φ′f)

where φ′i, φ
′
f azimuthal angles of incident and scattered photon in electron rest

frame [ERF], noting that cosα′ = ~n′f · ~n′i and in spherical coordinates ~n′i =

(cos θ′i, sin θ
′
i cosφ′i, sin θ

′
i sinφ′i) with cos(a− b) = cos a cos b+ sin a sin b etc. Last

relation on rhs in energy eq. valid in Thomson regime.
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Photon energies ε’s in K ′ and K are related by Doppler formula

εi = Dε′i ↔ ε′i = εiγ(1− β cos θi) (1)

εf =
ε′f

γ(1− β cos θf)
= ε′fγ(1+β cos θ′f) (2)

where D = 1/(γ[1− β cos θ]), β = v/c, γ = 1/
√

1− v2/c2.

Thomson regime for ε′i � mec
2, i.e.,

εi � mec
2/γ

Limits:

(1) for θi = 0 (photon approaches from behind): ε′i = εiγ(1− β)→ εi/[2γ].

(2) for θi = π (head-on collision): ε′i = εiγ(1 + β)→ 2γεi

⇒ Maximum energy in Thomson regime (using equation (2) above):

εf,max = 2ε′fγ = 2ε′iγ = 4γ2εi.

⇒ in Klein-Nishina regime: εf,max < γmec
2 + εi ∼ γmec

2 (energy conservation).
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Alternatively, using aberration formula (lecture 4):

cos θ′i,f =
cos θi,f − β

1− β cos θi,f

Isotropic distribution in lab. frame K: half the photons have θi between π (head-

on) and π/2.

⇒ in electron rest frame K ′, cos θ′i = −β for θi = π/2.

⇒ For relativistic electrons (β ' 1), most photons are close to head-on in ERF.

In Thomson regime: for ε′i � mec
2, ε′i = ε′f with eqs. (1),(2) before:

εf = γ2εi(1− β cos θi)(1 + β cos θ′f) = γ2εi(1− β cos θi)

(
1 + β

cos θf − β
1− β cos θf

)
= γ2εi

(1− β cos θi)

(1− β cos θf)
(1− β2) = εi

(1− β cos θi)

(1− β cos θf)

For head-on scattering θi = π and θf = 0 (photons turns around after scattering),

εf,max
εi

=
(1 + β)

(1− β)
= γ2(1 + β)2 ' 4γ2 .
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Summary: Scattered photon energy in lab frame:

εf '

{
γ2εi , εi � mec

2/γ Thomson regime

γmec
2 , εi � mec

2/γ Klein− Nishina limit
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Figure 2: γ2-energy boost in Thomson regime as a result of relativistic beaming. Top left: Electron moving with
velocity v in lab frame, incoming photons are isotropically distributed. Top right: Incoming photons as seen in the rest
frame of the electron. They are now highly anisotropic, electron sees them as nearly head-on, their typical energies
are boosted by a factor ∼ γ. Bottom left: Photons after scattering in electron rest frame. They are approximately
isotropic and have roughly the same energy (Thomson regime) they had before being scattered. Bottom right:
Scattered photons as seen in the lab-frame. They are now again highly collimated, with their typical energies boosted
by a further factor ∼ γ, so that in lab-frame the overall energy is boosted by a factor γ2 [Credits: N. Kaiser].


