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Synchrotron Emission II + Curvature Emission

1 Overview

• Radiation of charged particles in magnetic fields.

• Synchrotron Self-Absorption, cut-off in the spectrum at low frequencies.

• Synchrotron cooling effects for injected electron distribution (kinetic equa-

tion), resultant emission spectrum.

• Minimum energy considerations and ”equipartition”

• Curvature Emission
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2 Synchrotron Radiation (recap)

Total power per unit frequency [erg/s/Hz] for single electron with Lorentz factor

γ (relativistic case β ' 1)

Pν(γ) =
√

3
e3B sin θ

mc2
F

(
ν

νc

)
with F (x) := x

∫∞
x K5/3(x′)dx′ ' 1.8 x0.3e−x, K5/3 modified Bessel function of

order 5/3, and γ entering via

νc =
3

4π
γ2 eB

mc
sin θ =

3

4π
γ2 Ω0 sin θ
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Figure 1: F (ν/νc) as function of frequency ν/νc. The spectrum has a maximum at νmax = 0.29νc.
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3 Synchrotron Self-Absorption

Inverse Process = free electron in a magnetic field can absorb a photon.

Happens when source is compact. Heuristic Derivation:

• Compare with thermal radiation, where source function Sν = Bν(T ), i.e.

Sν =

(
2ν2

c2

)(
hν

ehν/kT − 1

)
∝ ν2Ē

first term corresponds to phase-space factor, second to mean energy (e.g.,

Ē ∝ kT in Rayleigh Jeans limit kT � hν).

• For non-thermal synchrotron, kT must be replaced by mean energy of electron

emitting synchrotron at ν, Ē = γmec
2 with ν ' γ2νL (where νL := Ω0/2π),

i.e. γ ' (ν/νL)1/2, thus

Sν '
(

2ν2

c2

)(
ν

νL

)1/2

mec
2 ∝ B−1/2ν5/2

⇒ Source function is power law with index 5/2, independent of the value

of electron power law index p.

• Note: Spectral index is different from thermal Rayleigh-Jeans Sν ∝ ν2!
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4 Total Synchrotron Spectrum

Recall solution of transfer equation for constant source function (lecture 3)

Iν = Sν (1− e−τν)
where Sν := jν/αν, and τν =

∫
ανds integrated through source.

From above, αν = jν/Sν ∝ B1/2ν−5/2jν ∝ B(p+2)/2ν−(p+4)/2 [cm−1] with syn-

chrotron jν ∝ B(p+1)/2ν−(p−1)/2 for electron power law.

⇒ αν decreases towards higher ν

Limiting cases:

Iν → Sν for τν � 1

Iν → Sνανs = jνs for τν � 1 .

Thus for source with τνB = 1 at some frequency νB, we have low-frequency

(optically thick) range:

Iν ∝ ν5/2

and high frequency (optically-thin) range:

Iν ∝ ν−(p−1)/2
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Figure 2: Total synchrotron spectrum - Shape for electron power law n(γ) ∝ γ−p, with jν ∝ ν5/2 in the
low-frequency, optically-thick regime (ν < νB), and jν ∝ ν−(p−1)/2 in the optically thin (ν > νB) regime. Note
that for an electron distribution with low- and high-energy cut-off γmin, γmax, the optically thin spectrum
could be more complex with low-frequency part jν ∝ ν1/3, mid-frequency part jν ∝ ν−(p−1)/2 and high-energy
frequency part jν ∝ e−ν/νmax , νmax ' γ2maxνL.
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5 Kinetic Equation for Electron Distribution

Consider electrons experiencing synchrotron losses before escaping from source.

• particles injected at rate Q(E, t)dV undergoing energy changes within dV :

−dE
dt

= η(E)

For synchrotron, dE/dt = −c1E
2 (lecture 5), c1 = 4

3cσT
1

(mec2)2
B2

8π .

• At time t, number density of particles in energy rangeE toE+∆E: n(E)∆E

• At later t + ∆t, these particles are replaced by those having had energy E ′

to E ′ + ∆E ′ at t, with:

E ′ = E + η(E)∆t and :

E ′ + ∆E ′ = (E + ∆E) + η(E + ∆E)∆t

' (E + ∆E) + η(E)∆t +
∂η(E)

∂E
∆E∆t

using Taylor expansion for small ∆E.
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• So

∆E ′ = [E ′ + ∆E ′]− E ′

=

[
(E + ∆E) + η(E)∆t +

∂η(E)

∂E
∆E∆t

]
− (E + η(E)∆t)

= ∆E +
∂η(E)

∂E
∆E∆t

• Change in n(E)∆E in time interval ∆t:

∆n(E)∆E = n(E ′, t)∆E ′−n(E, t)∆E = n (E + η(E)∆t, t) ∆E ′−n(E, t)∆E

applying Taylor expansion for small η(E)∆t:

∆n(E)∆E = −n(E, t)∆E + n(E, t)∆E ′ +
∂n(E)

∂E
η(E)∆t∆E ′

Substituting ∆E ′ = ∆E + ∂η(E)
∂E ∆E∆t from above:

∆n(E)∆E =

−n(E, t)∆E + n(E, t)

(
∆E +

∂η(E)

∂E
∆E∆t

)
+

(
∂n(E)

∂E
η(E)∆t

)(
∆E +

∂η(E)

∂E
∆E∆t

)
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For small ∆E and η(E)∆t end up with (two 2nd order):

∆n(E)∆E = n(E, t)
∂η(E)

∂E
∆E∆t +

∂n(E)

∂E
η(E)∆t∆E

Thus

∂n(E, t)

∂t
:=

∆n(E)

∆t
= n(E, t)

∂η(E)

∂E
+ η(E)

∂n(E, t)

∂E
=

∂

∂E
[η(E)n(E, t)]

Including injection term Q(E, t)dV :

∂n(E, t)

∂t
=

∂

∂E
[η(E)n(E, t)] + Q(E, t)

⇒ Kinetic equation describing evolution of particle distribution in the pres-

ence of a cooling function η(E).
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6 Application: Cooling - Distortion of HE Injection Spectrum

For synchrotron: η(E) = c1E
2, thus

∂n(E, t)

∂t
=

∂

∂E

[
c1E

2n(E, t)
]

+ Q(E, t)

In (quasi) steady-state, ∂n/∂t = 0, with continuous injection:

∂

∂E

[
c1E

2n(E)
]

= −Q(E)

⇒ n(E) =
1

c1E2

(
const.−

∫
E

Q(E′)dE′
)

Examples:

• Mono-energetic injection: Q(E) = Q0δ(E − Emax) with n(E > Emax) = 0:

⇒ n(E) =
Q0

c1E2
H(Emax − E) ∝ 1

E2

• Power law injection: Q(E) = Q0E
−p, p > 1 with n(E > Emax) = 0,

⇒ n(E) ∝ E−p+1

E2
∝ E−(p+1) below Emax
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Monoenergetic inject ion

Particle injection Resultant synchrotron spectrumCooled particle distribution
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Consequence of Cooling for Spectral Evolution:

• Continuous Mono-Energetic Injection:

Electron distribution develops power-law tail n(E) ∝ E−2 below injection,

extending with time down to E(t) = E(t0)/(1 + c1 [t− t0]E(t0)) ' 1/(c1t)

(lecture 5).

⇒ Synchrotron emission shows jν ∝ ν−1/2 behavior.

• Power-Law Injection:

Electrons distribution steepens, with index p → p + 1. Break roughly at

energy Eb(t) ' 1/(c1t). Electrons with E > Eb had sufficient time to cool.

⇒ Synchrotron spectrum above νb ' 1
2πγ

2
bΩ0 steepens by 1/2 to jν ∝ ν−p/2.

Power-law injection

Resultant synchrotron spectrumParticle distribution
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7 Equipartition and Minimum Energy Considerations

How much energy in particle and fields is needed to produce observed synchrotron

radiation?

• Energy density in magnetic field: uB = B2

8π

• Energy density in relativistic particles:

ue = n0

∫ γmax

γmin

(γmec
2)γ−pdγ ' n0mec

2

2− p
γ
−(p−2)
min

for p > 2 and γmax � γmin.

(γmin can be constrained assuming lowest observed frequency, typically ∼ 107 Hz, to correspond to γ2minνL.)

• For a given source luminosity Lν with

Lν =

∫
jνdV ∝ ν−(p−1)/2

minimising (uB+ue)V for a homogeneous source implies minimising (uB+ue)

for a given jν.
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• Emissivity for a power law distribution (lecture 5):

jν ∝ n0
uB
νL

(
ν

νL

)−(p−1)/2

,

with νL ∝ B ⇒ fixed jν for given ν implies n0 ∝ νL ν
−(p−1)/2
L

1
uB

=

CB−(p+1)/2.

• Thus, ue changes as ue ∝ n0 ∝ B−(p+1)/2, while uB ∝ B2. Minimising

means
d

dB
(ue + uB) = −(p + 1)ue

2B
+

2uB
B

!
= 0

⇒
ue =

4

p + 1
uB ' uB (for 2 < p < 3)

⇒ Equipartition requirement:

Minimum energy constraint for an optically thin synchrotron source

places similar amount of energy in particles as in magnetic fields.
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8 Example: Radio Galaxy Cygnus A

Radio synchrotron emission of lobes with B ∼ 10−4 G. Approximating two lobes

by spheres of radius R ∼ 10 kpc, required minimum energy

Emin ' (uB + ue)V ' (2 uB) 2
4π

3
R3 ∼ 1060 erg

⇒ enormous energy (∼ 109 SN explosions)!

Figure 3: The powerful FR II radio galaxy Cygnus A (z = 0.057, d ' 230 Mpc) with estimated black hole
mass of ∼ 109M�: Radio (5 GHz) false color image of its jet and lobes (stretching 50 kpc from centre). Red
shows regions with brightest radio emission, while blue shows regions of fainter emission. The radio structure
has an angular extend of ∼ 100 arcsec corresponding to ∼ 100 kpc [Credits: NRAO/AUI]
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9 Curvature Radiation

Curvature Radiation = Synchrotron variant for charged particle moving along

curved magnetic field line.

• Radiation primarily due to field line curvature, not gyro-acceleration.

• Recall total synchrotron power for single particle

Psyn ∝ B2γ2 sin2 θ ,

θ pitch angle (angle between magnetic field and particle motion).

⇒ in strong B, perpendicular momentum is quickly radiated away.

⇒ Particle ”slides” along field line.

• Curvature of field line can lead to curvature radiation.

⇒ Expect similar characteristics as for synchrotron.

⇒ Comparison of acceleration a =
v2⊥
rL

= v2

Rc
→ Rc = v2

v2⊥
rL

⇒ replace rL
sin2 θ

= γmc2

eB sin θ by curvature radius of field line Rc.
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10 Total Power Emitted and Characteristic Frequency

Have for synchrotron emission from single particle (lecture 5, for β ∼ 1)

Psyn =
2

3

e2γ4

c3

v2
⊥e

2B2

γ2m2c2
=

2

3

e4B2

m2c3
γ2 sin2 θ

νc =
3

4π
γ2 eB

mc
sin θ =

3

4π
γ2 Ω0 sin θ

So for curvature, using γmc2

eB sin θ ↔ Rc, or B ↔ mc2

e
γ

Rc sin θ , total emitted power:

Pcurv =
2

3

e2c

R2
c

γ4 ∝ γ4

at characteristic frequency:

νcurv =
3c

4πRc
γ3 ∝ γ3

Corresponding cooling timescale:

tcool =
E

|dE/dt|
=
γmc2

Pcurv
= 180 R2

c

(
m

me

)
1

γ3
[sec]

18



11 Example: VHE Emission from AGN Black Hole Magneto-

sphere

• Suppose unscreened electric field E ∼ B is available for particle acceleration.

• Estimate B from equipartition B2

8π ∼
LEdd
4πr2sc

, LEdd ' 1046MBH,8 erg/s, using

rs = 2GMBH/c
2 ' 3× 1013MBH,8 cm ⇒ B ∼ 104 G.

• Particle acceleration timescale tacc = ε
|dε/dt| with ε = γmc2 and dε/dt =

eEr/(r/c) = eEc (potential Φ = Er), so

tacc '
γmc

eB

• Maximum achievable particle energy in the presence of curvature losses:

tacc = tcool = 180 R2
c

(
m

me

)
1

γ3

⇒ γmax ' 1010

(
Rc

rs

)1/2(
B

104 G

)1/4

⇒ νmaxcurv =
3c

4πRc
γ3 ∼ 2× 1026 Hz = 1 TeV
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Figure 4: Constraints on Curvature Emission in the nearby (d ∼ 20 Mpc) giant elliptical Fornax cluster galaxy
NGC 1399. Observations and flux upper limits derived for the gamma-ray regime are below the anticipated
curvature output (thick black line) suggesting that the available potential is much reduced [from Pedaletti et
al. 2011, ApJ 738, 142].
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