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RADIATION FROM ACCELERATED CHARGES

1 Overview

• Radiation from moving charges, Larmor’s formula (non-relativistic version)

• Lorentz Transformations and Relativistic Invariants

• Beaming and Relativistic Larmor’s formula

• Relativistic Doppler effect (emitted-received)

• Example: Relativistic Jet Sources, Superluminal Motion, de-/beaming, etc
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2 Radiation from Accelerated Charges

”Larmor’s formula” = accelerated charges emit radiation.

Heuristic derivation following treatment by J.J. Thomson (cf. Longair §6.2):

Charge q accelerated to ∆v � c in short interval ∆t. After t � ∆t, field

lines outside sphere r = ct do not know that charges has moved, still radially

centered on origin at t = 0. Inside field lines radially centered on moving charge.

Transition region c∆t where fields have to join up ⇒ non-radial component.

�
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Figure 1: Electric field lines for a charge accelerated to ∆v in ∆t along x-axis. After some time t, field
configuration inside and outside sphere of radius r = ct can be distinguished. Transition layer thickness c∆t.
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Observer in shell measures temporal change in E-field/propagating pulse = elec-

tromagnetic radiation.
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Figure 2: Focus on the pulse related to acceleration phase. Further field modifications due to constant velocity phase
ignored (!) as this information has not yet travelled out.

Ratio of E-field components in pulse region for direction θ (angle between accel-

eration vector and field line):

Eθ

Er
=

∆v t sin θ

c∆t

From Coulomb’s law [cgs]:

Er =
q

r2
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Observing at time t implies r = ct, so

Eθ = Er
∆v

∆t

t sin θ

c
=

q

r ct

∆v

∆t

t sin θ

c

In limit ∆t→ 0, we have ∆v/∆t→ |~̇v| = |~a| acceleration, so

Eθ =
q

rc2
|~̇v| sin θ ∝ 1

r

E-field in θ-direction changes from 0 to Eθ and back to 0.

Propagating electromagnetic wave carries energy. Rate of energy flow in direction

~n per unit area per sec, ~S [erg cm−2 s−1], given by Poynting’s theorem (elm plane

wave)

~S =
c

4π
( ~Erad × ~B) =

c

4π
E2
rad ~n '

q2

4πc3r2
|~̇v|2 sin2 θ ~n

Power = Rate of energy flow per sec, multiplied by area dA = r2dΩ subtended

by solid angle dΩ = sin θdθdφ at angle θ and distance r from charge.

dP

dΩ
:= − dE

dtdΩ
= − dE

dtdΩ

r2

r2
= |~S|r2 ∝ sin2 θ
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Total loss rate via integration over solid angle (with
∫ π

0 sin3 θdθ = 4/3)

−P =
dE

dt
= − q2

4πc3
|~̇v|2

∫ 2π

0

dφ

∫ π

0

sin3 θdθ = −2

3

q2

c3
|~̇v|2

Larmor’s formula = power radiated by non-relativistic charge [erg/sec]:

P = −dE
dt

=
2

3

q2

c3
|~̇v|2

Notes:

1. Total power P ∝ q2v̇2

2. Dipole pattern: Power radiated per unit solid angle dP/dΩ ∝ sin2 θ. No

radiation emitted ‖ to ~̇v, maximum radiation emitted ⊥ ~̇v.

3. Direction of ~Erad determined by ~̇v. For acceleration along a line, observed

radiation linearly polarized in plane of ~̇v and ~n = ~R/R.

4. Force required to produce acceleration F = ma, so a ∝ 1/m, i.e. P ∝ 1/m2.

⇒ Electrons are much better at radiating than protons.
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3 Lorentz Transformations (recap)

Consider frame K ′ moving with uniform velocity v with respect to a frame K.

Take motion along x-axis:

x′ = γ(x− vt) (1)

y′ = y (2)

z′ = z (3)

ct′ = γ
(
ct− v

c
x
)

(4)

with Lorentz factor

γ :=
1

(1− v2/c2)1/2
≥ 1

Inverse transformation:

x = γ(x′ + vt′)

y = y′

z = z′

ct = γ
(
ct′ +

v

c
x′
)

(interchange prime and unprimed quantities, replace v → −v).
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4 Contraction & Dilation

• Length contraction: Stick of length dx′ = x′1− x′2 carried in K ′. Length

of this stick in K (measured at same [!] time t in K):

dx′ = x′1 − x′2 = γ(x1 − vt)− γ(x2 − vt) = γ(x1 − x2) = γdx

⇒ dx =
dx′

γ

Length of a moving object measured along (!) its direction of motion is

shorter than length as measured in proper frame of object.

• Time dilation: Clock at rest in moving frameK ′: time interval dt′ = t′1−t′2
(x′ remains constant, dx′ = 0). Time interval as measured in K:

dt = t1 − t2 = γ(t′1 +
v

c2
x′)− γ(t′2 +

v

c2
x′) = γ(t′1 − t′2) = γdt′

⇒ dt = γdt′

Time interval in K has increased, moving clock appears to have slowed

down.
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5 Transformation of Velocities

Differentials perpendicular to motion do not change, dy = dy′, dz = dz′.

ux :=
dx

dt
=

γ(dx′ + vdt′)

γ
(
dt′ + v

c2
dx′
) =

u′x + v

1 + v
c2
u′x

(5)

uy :=
dy

dt
=

dy′

γ
(
dt′ + v

c2
dx′
) =

u′y
γ(1 + v

c2
u′x)

(6)

uz :=
dz

dt
=

dz′

γ
(
dt′ + v

c2
dx′
) =

u′z
γ(1 + v

c2
u′x)

(7)

Generalizing to components of ~u perpendicular and parallel to ~v:

u‖ =
u′‖ + v

1 + v
c2
u′‖

(8)

u⊥ =
u′⊥

γ(1 + v
c2
u′‖)

(9)
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6 Aberration & Beaming

Direction of velocities in K and K ′ are related by aberration formula:

tan θ =
u⊥
u‖

=
u′⊥

γ(u′‖ + v)
=

u′ sin θ′

γ(u′ cos θ′ + v)

with u′ = |~u′|. Azimuthal angle remains unchanged!

For light, u′ = c, aberration formula becomes

tan θ =
sin θ′

γ(cos θ′ + v/c)

cos θ =
u‖
u

=
1

c

u′‖ + v

1 + v
c2
u′‖

=
1

c

c cos θ′ + v

1 + v
c2
c cos θ′

=
cos θ′ + v/c

1 + (v/c) cos θ′

sin θ =
u⊥
c

=
sin θ′

γ(1 + v
c cos θ′)
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Consider case θ′ = π/2 (photon emitted at right angles to ~v in K ′):

tan θ =
c

γv
and cos θ =

v

c
(10)

sin θ =
√

1− cos θ2 =
1

γ
(11)

(12)

For highly relativistic speeds, γ � 1, and θ ∼ 1/γ.

⇒ in K photons are concentrated in cone of half angle 1/γ = beaming effect.

KK'

0' 0
�~1/�
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7 Example: Brightness Increase due to Relativistic Beaming

Light from source emitting isotropically is equally distributed over sphere, so

observed flux F [erg/s/cm2] at distance r:

F =
L

4πr2

with L luminosity of source [erg/s]. If this power is concentrated into solid angle

∆Ω instead, observed flux will be:

Ffoc =
L

∆Ωr2

Thus, brightness increase due to focusing by factor:

b :=
Ffoc
F

=
4π

∆Ω
Solid angle subtended by cone with opening angle α:

∆Ω =

∫ 2π

0

dφ

∫ α/2

0

sin θdθ = 2π[− cos θ]
α/2
0 = 2π(1− cos[α/2])

For small x, cosx ' 1 − x2/2, so ∆Ω ' πα
2

4 . For beaming α/2 ' 1/γ, ∆Ω '
π/γ2, so brightness increase b ' 4γ2⇒ Naively taking 4π× (measured flux)

as proxy for real source luminosity strongly over-estimates required energetics.
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8 Transformation of Acceleration

Have da := du
dt . Consider x-component (motion along x-axis), ux = u′x+v

1+
vu′x
c2

, use

chain rule:

dux =
du′x(1 + vu′x

c2
)− (u′x + v)(vdu

′
x

c2
)

(1 + vu′x
c2

)2

dt = γ
(
dt′ +

v

c2
dx′
)

= γdt′
(

1 +
vu′x
c2

)
So:

ax =
dux
dt

=
du′x(1 + vu′x

c2
)− (u′x + v)(vdu

′
x

c2
)

γdt′
(
1 + v

c2
u′x
)3 =

du′x[1 + vu′x
c2
− u′xv

c2
− v2

c2
]

γdt′(1 + vu′x
c2

)3

=

du′x
dt′ [1−

v2

c2
]

γ(1 + vu′x
c2

)3
=

a′x

γ3(1 + vu′x
c2

)3

Do similarly for ay and az. In instantaneous rest frame of particle K’ (~u ′ = 0):

a′‖ = γ3a‖ (13)

a′⊥ = γ2a⊥ (14)
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9 Relativistic Invariants

Invariants = Quantities that do not change under Lorentz trafo, i.e., stay the

same in all inertial frames.

• Total emitted power: dE/dt = dE ′/dt′ is Lorentz invariant.

1. Energy dE is zero component of momentum four vector [dE/c, d~p]

(where E := γmc2, ~p := γm~vp; ~vp = velocity of particle)

2. cdt is zero-component of displacement four vector [cdt, d~r].

⇒ both components transform in same way between inertial frames

⇒ ratio dE/dt invariant.

More detailed: In rest frame of accelerated particle, total energy loss dE ′

has dipole symmetry (Larmor’s formula), thus zero net momentum d~p ′ = 0.

Energy trafo dE = γ(dE ′ + udp′u) = γdE ′.

Time trafo dt = γdt′ (dt′ proper time).

⇒ P :=
dE

dt
=
dE ′

dt′
=: P ′
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• Phase space volume: dVps = dV ′ps is Lorentz invariant

where dVps := d3xd3p, d3x := dxdydz, and d3p := dpxdpydpz.

Consider particles with small spread in position and momentum (but not

energy, dE ′ = 0) in K ′:

1. In K, d3x = γ−1d3x′ due to length contraction in x-direction.

2. Momentum transforms as four vector (dpydpz = dp′ydp
′
z) with

dpx = γ(dp′x + vdE ′/c2) = γdp′x

⇒ dVps := d3xd3p =
d3x′

γ
γd3p′ =: dV ′ps
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• Phase space distribution: f := dN
dVps

is Lorentz invariant.

Number of particles within phase volume element, dN is countable quan-

tity (conserved), thus dN = dN ′.

Phase space element dVps = dV ′ps (just shown)

⇒ f =
dN

dVps
=
dN ′

dV ′ps
= f ′

• Intensity: Iν/ν
3 is Lorentz invariant.

Remember (lecture 3):

Iν =
2hν3

c2
f

But f is invariant, so
Iν
ν3

=
I ′ν′

ν ′3

Note: Same holds for source function Sν = jν/αν
(cf. transfer eq.: dIν/dτν = Sν − Iν).
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10 Transformation Properties of Radiation Quantities

• Optical depth: τ = τ ′=invariant, since e−τ gives fraction of photons pass-

ing through material (”counting” - conserved).

• Absorption coefficient: ναν is invariant. Have τν :=
∫
ανds, so

τ =
lαν
sin θ

=
l

ν sin θ
(ναν)

!
= τ ′

But for perpendicular components l = l′ and photon 4-momentum kν =

(ω/c,~k), so component ky ∝ ν sin θ with ky = k′y, thus

ανν = α′ν′ν
′

K K'

�
l

�'
l'
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• Emission coefficient: jν/ν
2 is invariant.

Have jν = Sναν. Hence

jν
ν2

=
Sναν
ν2

=
S ′ν′
(
ν
ν′
)3

(α′ν′
ν′

ν )

ν2
=
S ′ν′α

′
ν′

ν ′2
=
j′ν′

ν ′2

as source function Sν transforms like intensity Iν = (ν/ν ′)3 I ′ν′.

• Number density: n = γn′.

n =
dN

dV
=
dN

d3x
=

dN ′

γ−1d3x′
= γn′
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11 Larmor Formula for a Relativistically Moving Particle

Known: P = dE
dt =invariant, and in instantaneous rest frame P ′ = 2

3
q2

c3
|~̇v ′|2, so(

dE

dt

)
K

=

(
dE ′

dt′

)
K ′

=
2

3

q2

c3
|~̇v ′|2

with ~̇v ′ = ~a′ and ~a′ · ~a′ = a′2⊥ + a′2‖ .

Transformation properties for components of acceleration (instantaneous rest

frame K ′) eq. (13f)

a′‖ = γ3a‖

a′⊥ = γ2a⊥ (15)

Hence (
dE

dt

)
K

=
2

3

q2γ4

c3
(a2
⊥ + γ2a2

‖) (16)

(Note: In instantaneous rest frame K ′ particle has zero velocity at a certain time; it will not remain at rest in this

frame, since it can accelerate, but for infinitesimally neighbouring times it will move non-relativistically.)
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12 Relativistic Doppler Effect

=frequency relation between by observer received and in K’ emitted radiation

(taking travel time into account)

1 2

�

v

d 
= 

v 
dt

 c
os

 �

l = v dt

In rest frame K of observer, emitting source moves from 1 to 2 at velocity v.

Photons emitted in interval dt′em in moving frame K ′ of source are separated in

K by (time-dilation)

dt = γdt′em
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But in this time, source has moved in K distance l = vdt along axis, and

d = vdt cos θ towards observer.

Difference in arrival times as seen by observer for radiation emitted at 1 and 2

∆tA = dt− d

c
= dt−

(v
c
dt cos θ

)
= dt

(
1− v

c
cos θ

)
= γ

(
1− v

c
cos θ

)
dt′em

Using frequencies νobs := 1
∆tA

, ν ′ := 1
dt′em

, and β := v
c , then

νobs =
1

γ(1− β cos θ)
ν ′ =: Dν ′ (17)

with D = Doppler factor.

Note:

Doppler factor depends on angle between observer and direction of motion and

can be very large (for v → c), e.g., for head-on motion (θ = 0) and large speeds

D =
1

γ(1− β)
=

(1 + β)

γ(1− β)(1 + β)
=

(1 + β)

γ 1
γ2

' 2γ
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13 Superluminal Motion in AGN

Apparent velocity measured in many AGN jets are vapp > c

Figure 3: Apparent superluminal motion in the jet of the AGN 3C279 (z = 0.536): Rightmost (blue-green)
radio (22GHz) blob moved about 25 light years from 1991 to 1998, translating into an apparent speed of
∼ 25/7 = 3.5 c [Credits: NRAO/AUI].



Explanation: Motion with speed close to c at small viewing angles (in K).

1 2

�

v
d 

= 
v 

dt
 c

os
 �

l = v dt

�l  = v dt  sin �

p

• Consider blob moving with speed v at angle θ to line of sight, emitting light

signals at t1 and t2 = t1 + dt.

• Light travel time: Observers sees signal separated by:

∆tA = dt− d

c
= dt

(
1− v

c
cos θ

)
• Observed distance traveled in plane of sky:

∆lp = vdt sin θ
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• Apparent velocity inferred from observations:

vapp =
∆lp
∆tA

=
vdt sin θ

dt
(
1− v

c cos θ
) =

v sin θ(
1− v

c cos θ
)

⇒ For v/c large and θ small: vapp > c

• Maximum: dvapp/dθ = 0 at cos θ = v
c , with apparent velocity vmaxapp = γv.
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14 Solid Angle Trafo for Radiation Emitted within dΩ′ in K’

• Solid angle element dΩ′ := sin θ′dθ′dφ′ = −d cos θ′ dφ

• Azimuthal angle not affected, so: dφ′ = dφ.

• Aberration formula: cos θ′ = cos θ−v/c
1−(v/c) cos θ .

• Differentiating this gives

d cos θ′ =
d cos θ(1− β cos θ)− (cos θ − β)[−β d cos θ]

(1− β cos θ)2
=
d cos θ (1− β2)

(1− β cos θ)2

• Hence

dΩ′ = − d cos θ

γ2(1− β cos θ)2
dφ′ =

dΩ

γ2(1− β cos θ)2
= D2dΩ

• Brightness increase due to focusing b := Fiso/Ffoc = 4π/∆Ω and ∆Ω =

4π/D2, so b = D2. For head-on motion (θ = 0) D ' 2γ, so b ' 4γ2 as

before.
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15 Luminosity boosting I

Remember: Iν/ν
3 was invariant under Lorentz transformation (Iν ≡ I(ν) the

specific intensity).

• Thus, observed intensity of a moving blob:

I(νobs)

ν3
obs

=
I(ν ′)′

ν ′3

so

I(νobs) =I(ν ′)′
(νobs
ν ′

)3

= D3I(ν ′)′

• If we are interested in energy flux: νobsI(νobs) = D4ν ′I(ν ′)′

• For a blob with power law I(ν ′)′ = A ν ′−α = A
(νobs
D

)−α
= Dα Aν−αobs :

I(νobs) = D3+αI(νobs)
′

• Consequence: For a relativistic flow with β ' 0.97 (γ = 4) flux in forward

direction can be boosted by a factor ∼ 1000, and de-boosted by the same

amount in the backwards direction (noting θb → π + θ).
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16 Luminosity boosting II

Remember: dFν := dE
dAdtdν and dE = Iν cos θdAdtdΩdν.

⇒ observed flux density for an optically-thin source Fν :=
∫

source Iν(θ, φ) cos θdΩ

”integrated over the solid angle subtended by the source”.

• For small angular source sizes, θ � 1 rad, cos θ ' 1, thus

Fν ≡ F (ν) '
∫

source

I(ν)dΩ

• Since dΩ = dA/d2
L, dL = distance, Fν ∝ d−2

L (inverse-square law).

Spectral luminosity Lν := 4πd2
LFν intrinsic property of the source!

• With transformation properties for specific intensity I(ν):

F (ν) =

∫
source

I(ν) dΩ = D3

∫
source

I(ν ′)′
dA

d2
L

= D3

∫
source

j(ν ′)′
dx′dA

d2
L

with intensity evaluated at transformed frequency ν ′ = ν/D.
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• Note: Assuming beaming, integration over ”solid angle subtended by source”

utilises (dΩ := sin θdθdφ = −d cos θdφ and dΩ′ = D2dΩ)∫
source

dΩ =

∫ θ=1/γ

θ=0

dΩ = −2π

∫ θ=1/γ

θ=0

d cos θ = −2π[cos θ]
1/γ
0 ' π/γ2

=

∫ θ′=π/2

θ′=0

1

D2
dΩ′ = −2π

∫ θ′=π/2

θ′=0

d cos θ′

γ2(1 + β cos θ′)2
' π/γ2

with cosx ' 1− x2/2 and −
∫ 0

1 dx/(1 + x)2 = [1/(1 + x)]01, and noting that

D =
1

γ(1− βcos θ)
=

1

γ
(

1− β cos θ′+β
1+β cos θ′

)
=

1 + β cos θ′

γ(1 + β cos θ′ − β cos θ′ − β2)
= γ(1 + βcos θ′)
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17 Advancing and Receding Jets

For jet-like feature=series of unresolved, uniformly-spaced blobs. Need to con-

sider emission per unit length l in the observer frame. Number of blobs observed

per unit length ∝ 1/D, so have one D less in the boosting formula compared

with single blob.

Alternatively:

• Observed flux is given by integration over solid angle subtended by the source

Fν =

∫
IνdΩ =

∫
jν
dldA

d2
L

=
D2

d2
L

∫
j′ν′dV =

D2+α

d2
L

∫
j′νdV

Noting jν = D2j′ν′, and with volume integration being performed in ob-

server’s frame. Last expression valid for power-law j′ν′ ∝ ν ′−α ∝ (ν/D)−α

with ν = Dν ′, where D = 1/[γ(1− β cos θ)].

• For receding jet, θrec = π + θ, so cos θrec = − cos θ, Drec = 1/[γ(1 +

β cos θ)] ≤ 1/γ, so strong de-boosting ⇒ one-sidedness of jet!
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Application: Ratio of fluxes measured from (identical) advancing and receding

jets:

R :=
F adv
ν

F rec
ν

=
D2+α
adv

D2+α
rec

=

(
1 + β cos θ

1− β cos θ

)2+α

So

R1/[2+α] =
1 + β cos θ

1− β cos θ

i.e.

β cos θ + β cos θR1/[2+α] = R1/[2+α] − 1

thus

β cos θ =
R1/[2+α] − 1

R1/[2+α] + 1

⇒ Can constrain angle θ from measured flux ratio (upper limit for β = 1).
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18 Example: Relativistic Effects in GRBs

Figure 4: Sketch of GRB model where HE prompt emission is related to internal shocks, and afterglow
emission to external shock in ambient medium. The prompt emission (between a few millisec to tens of min)
in mostly confined to gamma-rays, while afterglow emission (from weeks to months) is seen in X-rays, optical
and radio [Credit: T. Piran].
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Prompt HE emission associated with internal shocks = colliding shells

Assume: Central engine ejects two shells separated by time ∆tvar (observer’s

frame) with velocity v2 > v1, (with v2 ' c, γ ≡ γ(v1)).

Collision for r1 = r2 where

r1 = v1(t + ∆tvar) and r2 = v2t

viz. at t = v1
(v2−v1)∆tvar, so radius at which collision occurs:

r = r2 =
v1v2

v2 − v1
∆tvar =

v1

1− v1/v2
∆tvar =

v1(1 + v1/v2)

1− v2
1/v

2
2

∆tvar

' 2v1

1− v2
1/c

2
∆tvar

' 2cγ2∆tvar

(18)
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Consider photon-photon pair production in GRBs (γ + γ → e+ + e−):

Optical depth (pure number) τ is an invariant. Calculate it in flow rest frame

τγγ = τ ′γγ ' σγγn
′
γ∆r

′

• Doppler formula ν = Dν ′ ⇒ D∆tvar = ∆t′var. Causality implies

∆r′ = c∆t′var = cD∆tvar ' 2γc∆tvar

with head-on motion approximation D ' 2γ.

• Photon number density given we know source luminosity

n′γ =
L′γ

4πr′2chν ′
' Lγ/[2γ]3+α

4πr2chν/[2γ]

using luminosity boosting (jet scaling, L ∼ Fνν) and flux spectrum Fν ∝
ν−α.

• Using r from above, optical depth becomes

τγγ = τ ′γγ ' σγγ
Lγ/[2γ]3+α

4πr2chν/[2γ]
2γc∆tvar '

2−(1+α)σγγLγ∆tvar
4π(2cγ2∆tvar)2hνγ1+α

'
(

σγγLγ
4πc2∆tvarhν

)
2−3+α

γ5+α
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• With typical numbers Lγ ' 1051 erg/s, ∆tvar ' 5 ms, hν = 0.5MeV =

8× 10−7 erg, α ' 4/3, σγγ ' σT/5:

τγγ ∼
2× 1011

γ5+α

• Transparency requires τ < 1 so need γ >∼ 100, i.e. ultra-relativistic

speeds of GRB outflows.
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