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RADIATION FROM ACCELERATED CHARGES
1 Overview

e Radiation from moving charges, Larmor’s formula (non-relativistic version)
e Lorentz Transformations and Relativistic Invariants

e Beaming and Relativistic Larmor’s formula

e Relativistic Doppler effect (emitted-received)

e Example: Relativistic Jet Sources, Superluminal Motion, de-/beaming, etc



2 Radiation from Accelerated Charges

"Larmor’s formula” = accelerated charges emit radiation.
Heuristic derivation following treatment by J.J. Thomson (cf. Longair §6.2):

Charge ¢ accelerated to Av < c¢ in short interval At. After t > At, field
lines outside sphere » = ¢t do not know that charges has moved, still radially
centered on origin at t = 0. Inside field lines radially centered on moving charge.
Transition region cAt where fields have to join up = non-radial component.
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Figure 1: Electric field lines for a charge accelerated to Av in At along x-axis. After some time ¢, field
configuration inside and outside sphere of radius r = ¢t can be distinguished. Transition layer thickness cAt.



Observer in shell measures temporal change in E-field /propagating pulse = elec-
tromagnetic radiation.
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Figure 2: Focus on the pulse related to acceleration phase. Further field modifications due to constant velocity phase
ignored (!) as this information has not yet travelled out.

Ratio of E-field components in pulse region for direction 6 (angle between accel-
eration vector and field line):

FEy  Avtsind
E,  cAt
From Coulomb’s law [cgs]:
g4
r T ’]"2



Observing at time ¢ implies r = ct, so

Avtsinf g Avisinf

At ¢ rctAt c

In limit At — 0, we have Av/At — |v] = |@| acceleration, so

: 1
Ey = %\U! sinf oc —
rc r

E-field in #-direction changes from 0 to Ey and back to 0.

Ey=FE,

Propagating electromagnetic wave carries energy. Rate of energy flow in direction
7 per unit area per sec, S [erg cm ™2 s71], given by Poynting’s theorem (elm plane
wave)

Power = Rate of energy flow per sec, multiplied by arca dA = r2dS) subtended
by solid angle df) = sin #dfd¢ at angle 6 and distance r from charge.

dP dE dE r* 5
= e |S|r* o sin® 6

A0 dtdQ dtdQ r?
15)



Total loss rate via integration over solid angle (with [ sin® 0df = 4/3)

dE 2 [T T 2¢°, -
oy — |m2/ d(b/ sin 06 = —=L |’
dt 47TC3 0 0 3

Larmor’s formula = power radiated by non-relativistic charge |erg/sec:

Notes:

1.
2.

Total power P o< ¢%0?

Dipole pattern: Power radiated per unit solid angle dP/ d) o sin?d. No
radiation emitted || to ¥, maximum radiation emitted L .

. Direction of E,4q determined by . For acceleration along a line, observed

radiation linearly polarized in plane of ¢ and 7 = B/R.

Force required to produce acceleration F' = ma, so a oc 1/m, i.e. P oc 1/m?,
= Electrons are much better at radiating than protons.
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3 Lorentz Transformations (recap)

Consider frame K’ moving with uniform velocity v with respect to a frame K.

Take motion along x-axis:

r = y(xr —vt)

=Y
2 =z
- v
ct = y\ct——x
c
with Lorentz factor |
v (1—?}2/62)1/2 > 1

Inverse transformation:

=Y
z = 2
/ U/
ct = 7(015—1——:6)
C

(interchange prime and unprimed quantities, replace v — —v).
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4 Contraction & Dilation

e Length contraction: Stick of length da’ = 2| — 2, carried in K’. Length
of this stick in K (measured at same [!] time ¢ in K):

/

dr' = x| — x5 = y(x1 — vt) — y(29 — vt) = y(T1 — T2) = ydx

B dx’
Y

Length of a moving object measured along (!) its direction of motion is
shorter than length as measured in proper frame of object.

= |dx

e Time dilation: Clock at rest in moving frame K': time interval dt’ = t]—t),
(" remains constant, dz’ = 0). Time interval as measured in K:

v v
d =ty =ty = (1] + 52') = y(ty + ') = () — t5) = a’

= |dt = vydt’

Time interval in K has increased, mouving clock appears to have slowed
down.



5 Transformation of Velocities

Differentials perpendicular to motion do not change, dy = dy’, dz = dz’.

dr  ~(dx' +vdt')  ul+wv

u = = =
Codt Ay (dt+ Sd) 1+ S
Todt Ay (dt+ Sdat) (14 )
dz dz’ u
uZ = = =

dt oy (dt+ Sdat) (1 + S u)

Generalizing to components of 4 perpendicular and parallel to v

u1|+fv
u = @ -—
7
/
u
U, = L

Y1+ 5 uﬁ)



6 Aberration & Beaming

Direction of velocities in K and K’ are related by aberration formula:

u u u' sin 6’
tanf = — = L=
wp y(u) +v) v(u' cos @ + v)

with v’ = |@’|. Azimuthal angle remains unchanged!

For light, " = ¢, aberration formula becomes

(an g sin 6’
anf =
vy(cos O +v/c)
w1 utv o 1 ccosh +o cost) +v/c
u cl+Hu;  cl+Hecost 14 (v/c)cost
2 c
, Uy sin 6’
sinf = =

c Y1+ Zcost)
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Consider case §' = /2 (photon emitted at right angles to ¢ in K'):

tanf = — and cos = - (10)
YU c
1
sinf = /1 —cosf?=— (11)
Y

For highly relativistic speeds, v > 1, and 6 ~ 1/~.

= in K photons are concentrated in cone of half angle 1/v = beaming effect.
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7 Example: Brightness Increase due to Relativistic Beaming

Light from source emitting isotropically is equally distributed over sphere, so
observed flux F [erg/s/cm?| at distance r:

L

4rr?
with L luminosity of source [erg/s|. If this power is concentrated into solid angle
AS) instead, observed flux will be:

F =

L
AQr?
Thus, brightness increase due to focusing by factor:
- F foc A1

F AQ
Solid angle subtended by cone with opening angle a:

Ffoc:

b :

27 a/2
AQ = / dgb/ sin 6df = 27— cos 9}3/2 = 2m(1 — cos|a/2])
0 0

For small o, cosw ~ 1 — 2%/2, so AQ) ~ W%Q. For beaming a/2 ~ 1/, AQ ~
7/7?, so brightness increase b ~ 47> = Naively taking 47 x (measured flux)
as proxy for real source luminosity strongly over-estimates required energetics.
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8 Transformation of Acceleration

Have da := %. Consider x-component (motion along x-axis), u, = —£—, use
1+2¢
C
chain rule:

dul, (1 + 24) — (u], + v)(“ar)
(14 %)

vu,,
dt = v (dt’ + gdas') = ~dt’ (1 + )

du, =

So:
- du, ! ’ 2
. du, _ dul, (14 =) — (u), +v)(=5*) _ dul [l + %5 — 5 — 4]
- vdt' (1+ Su,)’ dt (1 + )3
U/ '02
Gl — =] a,

/

Y1+ )P P+ )

—

Do similarly for a, and a.. In instantaneous rest frame of particle K’ (@’ = 0):

r_ .3
a =7q

/ 2
a, =7ay
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9 Relativistic Invariants

Invariants = Quantities that do not change under Lorentz trafo, i.e., stay the
same in all inertial frames.

e Total emitted power: dF/dt = dE'/dt" is Lorentz invariant.

1. Energy dFE is zero component of momentum four vector [dFE /c, dp)
(where E := ymc?, p':= ymuy; U, = velocity of particle)

2. cdt is zero-component of displacement four vector [edt, dr].

= both components transform in same way between inertial frames
= ratio dF /dt invariant.

More detailed: In rest frame of accelerated particle, total energy loss dE’
has dipole symmetry (Larmor’s formula), thus zero net momentum dp” = 0.
Energy trafo dE = y(dE' + udp]) = vdFE'.
Time trafo dt = ~dt’ (dt’ proper time).

dE  dE
dtdt

= |P: =: P’
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e Phase space volume: dV),, = dV/ is Lorentz invariant
where dV,s := d*xd’p, d*x := dxdydz, and d°p = dp,dp,dp..

Consider particles with small spread in position and momentum (but not
energy, dE' = 0) in K

1. In K, d®>x = v 'd*x’ due to length contraction in x-direction.

2. Momentum transforms as four vector (dp,dp. = dpjdp’) with

dp, = v(dp', +vdE'/c*) = ~dp/,

d3 /
= |dV,, = d’xd’p = Txvd3p’ =: dV,
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1s Lorentz invariant.

e Phase space distribution: [ = vas

Number of particles within phase volume element, d/N is countable quan-
tity (conserved), thus dN = dN'.
Phase space element dV,s = dV/; (just shown)

dN  dN’
dVys AV,

= f=

e Intensity: /,/v° is Lorentz invariant.

Remember (lecture 3):

3
1=
c
But f is invariant, so
I, I
R

Note: Same holds for source function S, = j,/«,
(cf. transfer eq.: dI,/dr, =S, — 1,,).
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10 Transformation Properties of Radiation Quantities

e Optical depth: 7 = 7’=invariant, since e~ gives fraction of photons pass-
ing through material (”counting” - conserved).

e Absorption coefficient: v« is invariant. Have 7, := f o, ds, SO

la, : (vay,) <

7': - p— -
sinff vsin6

But for perpendicular components [ = I’ and photon 4-momentum k" =
(w/c, k), so component k, o vsin 6 with k, = k|, thus

/ /
C\KVV — &V/V

/ /
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e Emission coefficient: j,/v/* is invariant.
Have 5, = S,a,. Hence

v vy

jy SVO[V B SI/// (V>3 (&//1/_’) o SL’@lV/ B ];/

y2 V2 V2 V’2 V’2

as source function S, transforms like intensity I, = (v/v/)* I,.

e Number density: n = yn/.

AN AN AN’ ,
v Px yx

n
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11 Larmor Formula for a Relativistically Moving Particle

Known: P = 2 =invariant, and in instantaneous rest frame P’ = %q—g\ﬁ ) s0

dE dE' 2q 52

E K dt/ K! 3 CB

with v/ = @’ and 6’-6’2&’2 ||

Transformation properties for components of acceleration (instantaneous rest

frame K') eq. (13f)

Y
@ =7 q
d| =~ay (15)
Hence
dE 2q o
I L3 ——(a] +~ CL||) (16)

(Note: In instantaneous rest frame K’ particle has zero velocity at a certain time; it will not remain at rest in this

frame, since it can accelerate, but for infinitesimally neighbouring times it will move non—relativistically.)
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12 Relativistic Doppler Effect

=frequency relation between by observer received and in K’ emitted radiation
(taking travel time into account)

g

I=vdt

In rest frame K of observer, emitting source moves from 1 to 2 at velocity v.
Photons emitted in interval dt., = in moving frame K’ of source are separated in
K by (time-dilation)

dt = ~dt.,
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But in this time, source has moved in K distance [ = wvdt along axis, and
d = vdt cos 6 towards observer.
Difference in arrival times as seen by observer for radiation emitted at 1 and 2

Aty :dt—c—i:dt— (gdtcosﬁ) = dt (1 —BCOSQ) = <1 —ECOSQ> dt.

c c c
Using frequencies vyps 1= A%A’ Vo= #7 and 3 := £, then
Vobs = : v =: DV (17)
 4(1 — Bcosh) '

with D = Doppler factor.

Note:
Doppler factor depends on angle between observer and direction of motion and
can be very large (for v — ¢), e.g., for head-on motion (# = 0) and large speeds

p__ bt (+p :(1+6>§27

Y(1=8) A1=B)1+8)
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13 Superluminal Motion in AGN

Apparent velocity measured in many AGN jets are v,,, > ¢

1992

(yres}

Time

1998

20 40 60 80
Light Years

Figure 3: Apparent superluminal motion in the jet of the AGN 3C279 (z = 0.536): Rightmost (blue-green)
radio (22GHz) blob moved about 25 light years from 1991 to 1998, translating into an apparent speed of
~ 25/7 = 3.5 ¢ [Credits: NRAO/AUIJ.



Explanation: Motion with speed close to ¢ at small viewing angles (in K).

I=vdt

e Consider blob moving with speed v at angle 8 to line of sight, emitting light
signals at ¢t and ¢ty = t1 + dt.

e Light travel time: Observers sees signal separated by:

AtA:dt—gl:dt (1—2(3089)

C C

e Observed distance traveled in plane of sky:
Al, = vdtsin 0
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e Apparent velocity inferred from observations:

Al, vdt sin 0 vsin b

Uapp:AtA:dt (1—%0089) (1—%0088)

= For v/c large and 6 small: v,,, > ¢

o Maximum: dvgy,/df = 0 at cos 6 = <, with apparent velocity v 5" = yv.
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14 Solid Angle Trafo for Radiation Emitted within d{) in K’
e Solid angle element d€) := sin 8'd6’d¢’ = —d cos 0’ d¢

e Azimuthal angle not affected, so:  d¢' = do.

cosf—v/c

e Aberration formula: cosf = T-(o/c) cosT

e Differentiating this gives

dcosf(1 — Bcos) — (cos® — B)[—f dcost]  dcost (1 — %)

dcosf = =
(1 — B cosh)? (1 — Bcosh)?
e Hence
dcosf df)
Q) = — d¢' = = D*d)
v2(1 — B cosh)? ¢ v2(1 — B cosh)?

e Brightness increase due to focusing b = Fjs,/Ffoe = 4m/AQ and AQ) =
4w /D? so b = D?. For head-on motion (6 = 0) D ~ 2v, so b ~ 44?* as
before.
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15 Luminosity boosting I

Remember: I,/v was invariant under Lorentz transformation (I, = I(v) the
specific intensity).

e Thus, observed intensity of a moving blob:
I(vops)  I(V')

3
Vobs

V3
SO

I(vops) =I(Y (”063)3 — DIV

]//

e If we are interested in energy flux: vpd (Vops) = DWW IV

e For a blob with power law I(v/) = AV~ = A (%) " = D Av

I(Vobs> — D3+al(yobs>,

e Consequence: For a relativistic flow with 8 >~ 0.97 (v = 4) flux in forward
direction can be boosted by a factor ~ 1000, and de-boosted by the same
amount in the backwards direction (noting 6, — 7 + 6).
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16 Luminosity boosting II

Remember: dF), : — and dE = I, cos OdAdtdS2dy.

dAdt
= observed flux density for an optically-thin source F}, := fS curee 10(0, @) cos 0dS)
“integrated over the solid angle subtended by the source”.

e For small angular source sizes, # < 1 rad, cosf ~ 1, thus

F,=F(v) ~ / I(v)dS2

e Since d) = dA/d%, dy, = distance, F, oc d;? (inverse-square law).
Spectral luminosity L, := 4md3 F), intrinsic property of the source!

e With transformation properties for specific intensity I(v):
, dr'dA
F(v) :/ I(v) dQ2 = D3/ (v 7 D3/ (" Z

with intensity evaluated at transformed frequency v/ = v/D.
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e Note: Assuming beaming, integration over ”solid angle subtended by source”

utilises (d€2 := sin 0d0d¢ = —d cos Od¢ and dSY = D*dQ)

0=1/~ 0=1/v 1
/ dQ) = / dS) = —27T/ dcosf) = —2rm[cos 0], ~ w/~*
source 0=0 =0

0'=r/2 1 0'=n/2 d cos 6’
= —dQ) = -2 / ~ 2
/9/0 D? " ov—o V(1 + Bcosh)? ™/

with cosz ~ 1 —2%/2 and — flo dz/(1+z)* =[1/(1 + )]}, and noting that

1 1
v(1 — Beos h) ~ (1 Lo +8

1+Bcos€’>
1+ Bcost /
p— _ 1 L‘
~(1+ Beosf — Beosf — B2) v(1 4 Beost)
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17 Advancing and Receding Jets

For jet-like feature=series of unresolved, uniformly-spaced blobs. Need to con-
sider emission per unit length [ in the observer frame. Number of blobs observed
per unit length o< 1/D, so have one D less in the boosting formula compared
with single blob.

Alternatively:

e Observed flux is given by integration over solid angle subtended by the source

dldA  D? D?te
FV:/]I/dQ:/]I/ 2 = P2 /]L’dv: 12 /];dv
L L L

Noting j, = D?j/,, and with volume integration being performed in ob-
server’s frame. Last expression valid for power-law j/, oc v/~ o< (v/D)™

with v = DV, where D = 1/[v(1 — £ cos 0)].

e For receding jet, 0,oc = ™+ 6, 80 c086,.c = —cosO, Dy.. = 1/[y(1 +
Beosh)] < 1/, so strong de-boosting = one-sidedness of jet!
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Application:
jets:

So

l.e.

thus

Ratio of fluxes measured from (identical) advancing and receding

P B DA (14 Beosf\T
~ Free D2ra \1— Bcosd
Rl/[2+a]:1+/60089

1 — Bcost

BeosB + Bcos ORI = R/l _

Rl/[%—a} 1

feost = RURVal 1 1

= Can constrain angle € from measured flux ratio (upper limit for 5 = 1).
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18 Example: Relativistic Effects in GRBs

The Internal-External Fireball Model

y-rays Afterglow

FAVA
FAVA
N
Inner Relativistic |
Engine Outflow Sersitiel External
: l Tsﬂnhs Shock
10°cm 1013-10'%m  10%6-10'%cm

Figure 4: Sketch of GRB model where HE prompt emission is related to internal shocks, and afterglow
emission to external shock in ambient medium. The prompt emission (between a few millisec to tens of min)
in mostly confined to gamma-rays, while afterglow emission (from weeks to months) is seen in X-rays, optical
and radio [Credit: T. Piran].
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Prompt HE emission associated with internal shocks = colliding shells

Assume: Central engine ejects two shells separated by time At,,,. (observer’s
frame) with velocity vo > vy, (with vy ~ ¢, v = v(v1)).

Collision for r; = ry where

r1 = v1(t + Atye) and 19 = ot

viz. at t = (U;’_lvl)Atvm, so radius at which collision occurs:
R #i/wmm _ ”fi% ZQ>NW
N 201
= 1z U1 / 5 Atyar
~ 2e7° At yar

(18)
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Consider photon-photon pair production in GRBs (v 4+~ — e™ +¢7):

Optical depth (pure number) 7 is an invariant. Calculate it in flow rest frame

o / /
Ty = Ty = an,yAr

e Doppler formula v = DV = DAt = At/

var-

Ar' = cAt, = cDAtyg ~ 27cAtyar

var

Causality implies

with head-on motion approximation D =~ 2.

e Photon number density given we know source luminosity

n — le ~ L,/[29P*
T AmrPchy' Amrichy /(2]

using luminosity boosting (jet scaling, L ~ F,v) and flux spectrum F),

e Using r from above, optical depth becomes

=~ Lv/[Q”Y]SJra
vy = —

" o1 drr2chy /(2]
077L7 2—3+a
A2 Atygrhv ) ot
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e With typical numbers L, ~ 10°! erg/s, Aty ~ 5 ms, hv = 0.5MeV =
8 x 1077 erg, = 4/3, 0., =~ 07/5:

2 x 101
Tyy ™ fy5—|—oz

e Transparency requires 7 < 1 so need v < 100, i.e. ultra-relativistic
speeds of GRB outflows.
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