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Pair Plasmas in Astrophysics
1 Overview

e Pair Production 7+~ — e™ + e~ (threshold)

e Compactness parameter

e Example I: "internal” ~~-absorption in AGN (Mkn 421)

e Example II: EBL & limited transparency of the Universe to TeV photons
e Pair Annihilation e™ + e~ — v + 7 (no threshold)

e Example: Annihilation-in-flight (energetics)



2 Two-Photon Pair Production

Generation of e*e™-pairs in environments with very high radiation energy density:
Y+ —e e

e Reaction threshold for pair production (see lecture 9):

e1es — pipa cos 0 = mimac® + dm ¢ (my +mg + 0.5 om)

With m; = 0, ¢; := ¢;/c = p; (photons) and dm = 2m,.:

e162(1 — cos6) = 0.5 (6m)*c* = 2m2c*

= €1€9 = mzc4

for producing e*e™ at rest in head-on collision (lab frame angle cos = —1).

o Example: for TeV photon €; = 102 eV, interaction possible with soft photons
€2 > (0.511)%eV = 0.26 eV (infrared photons).
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e Cross-section for pair-production:

-5 o572+ 0- ) 10 (£

01 (B7) = 1 —

with 8% = v*/c velocity of electron (positron) in centre of momentum frame,
and mry = 3o7/8.

In terms of photon energies and collision angle 6 (cf. above):
e1eo(1 —cos) = 2E2 and E¥ = v*'m.c? = mecA(1 — 37712
where E*=total energy of electron (positron) in CoM frame, so

4 1
(1 _ 6*2)

2m2ct
:> * — 1 . e
g \/ €1€2(1 — cos 0)

e165(1 — cos ) = 2v**m?c* = 2m?’c
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Figure 1: Cross-section for y~-pair production in units of the Thomson cross-section o as a function of
interacting photon energies (€; /mqc?) (€2/mec?) (1—cos®). The cross-section rises sharply above the threshold
€162(1 — cos ) = 2m?c* and has a peak of ~ o7/4 at roughly twice this value, i.e. at €;eo(1 — cos ) = 4m?2ct.
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e At low energies, large annihilation probability of created pairs (cf. later).
e Maximum of cross-section (isotropic radiation field, average of cos — 0)
0y =2 0.2507 at €169 4mzc4
= TeV photons interact most efficiently with infrared photons
1 TeV
€ =€y~ 1 ( ) eV

€1

= produced e*e™ will be highly relativistic and tend to move in direction of
initial VHE ~-ray.

e High-energy limit (5* — 1):

o) = TR1- 57 2557 -2+ - 57 ()]
00 (0%) =~ g% [ln(47*2) — 1} X i

= v-rays with €; can interact with all photons above threshold, but cross-
section decreases.



e Delta-function approximation for cross-section in power-law soft photon field
(cf. Zdziarski & Lightman 1985):
(e.g., y-ray with €; interacting with power-law differential energy density n(e2) o e, **; approximating interac-

tion by cross-section peak at ejea ~ 2m?2c* [head-on] and accounting for proper normalization)

2
5 0T € 5 €9 2Mm.c
05, (€1, €2) 2 2
3 MmeC mMeC €1
e Compare (noting d(ax) = (1/]al)d(x)):
max 1 €169 o7 2m.c? €9 2Mc?
Toyy ~ 0T 0 Py = 70 2
4 2mzc 4 € MeC €1
or €9 5 €9 2.
4 mc? MeC2 €1

with

4

€162 ~ 2m?c*  (from peak location for head — on)



e In general optical depth for yvy-absorption of a ~-ray photon in differential
soft photon field ny (€2, €2, ) including interaction probability oc (1 — cos §):

0,@)

R
Ty (€1) —/0 da:/4 ds2 (1—0089)/%%64 des npn (€9, §2, ) 044(€1, €9, CO8 )

€1(1—cos )

Ezample: For isotropic power-law soft photon field (F,, oc v~%) with energy
spectral index oo = a; — 1, i.e. nyp(€2) ox €, ! using J-approximation:

o > 2m2ct
T (€1) =~ ?TR/ des nyp(€2) €2 0 <62 — ¢ >

m2ct /e €1
or . 2m2c! 2m2c? Lo N
~ —R Nph X — € X €
3 €1 €1 €1

= T,, increase with increasing €, (there are more targets if o > 0).



e Estimating optical depth for homogeneous non-relativistically moving
source:

L(e > ¢) Lo
1Ty
Ton(€1) = Ne,Oy R Y ———0., 2 ————
i) @ drRee; T ArRmocd

with 0., ~ or/4 and n,, number density of target photons, and where last

equality holds for typical photon energies < € >~ m.c’.

= source can be opaque for high target luminosities L., and small sizes R

e If absorbing radiation field is external to source (e.g., BLR in AGN, EBL
interactions), yy-absorption leads to exponential suppression (lect. 3):

F(e) = Fi'(e) e




e If absorption is internal, i.e. happens within source, from formal solution of
radiation transfer equation: (cf. lecture 3, no background source I,,(0) ~ 0, and constant source

function S, := j,/ay, with 7, = @, R)

—T; .VR —T, 'VR —T;
L) S, (1—e™) =20 (1—e ™) =2= (1=
. _ o—Tyy(€) int
L ()~ (e LT BTG oy

Ty (€) Ty (€)

e Compactness parameter /. for measuring relevance of internal y~y-absorption:

o= o T

" AxRm.c3

(Note: Sometimes, I is defined without 47 in denominator)

At MeV energies, 7, < 1 < 1. < 4.

= if [. > 1, then high-energy photons are likely to be absorbed.
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3 Example I: ”Internal” yvy-absorption in AGN: Mkn 421 (d ~ 140
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Figure 2: Spectral Energy Distribution (SED) for the BL Lac object Markarian 421 as seen by different
instruments [Credits: Abdo, A. et al., ApJ 736 (2011)].
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e Application to Markarian 421 — assume " characteristic” numbers:
Schwarzschild rg ~ 104 ecm, L;p ~ 10* erg/s (cf. SED), €7 ~ 1 eV
~ 10712 erg

Liroyy 5(7s
= ~ SO 3107 () > 1
m(evir) A Reerp R
= IR flux from extended region R > ry and/or jetted-AGN emission

(variability may help to distinguish)

e Note: Modification for relativistically moving source ("blob”):
(1) Apparent vs intrinsic luminosity (flux enhancement by beaming, lect. 3):
L= D'L]
(2) Short-term variability vs size of emitting region (Doppler formula):
Ators = At'/D = R = cDAtgy
(3) Photon energy boosting with D = 1/[y(1 — 8 cos)]:
¢ =De, & e =¢/D
= Optical depth: o o .
o
T 47;1%'?6; . R’Z; * 51

12




4 Example II: ” External” Absorption of TeV photons in the Ex-
tragalactic Background Light

e Extragalactic background light (EBL) = accumulated light from all galaxies
(optical /UV) reprocessed by dust (infrared)

= TeV photons from a distant AGN traversing EBL will get absorbed.

Stars and Dust
" L einGalaxies

UV/O/IR
Photons

Nikishov (1962), Jelley (1966), Gould & SThreder (1966) -/\IJJ

Figure 3: Sketch illustrating absorption of VHE gamma-rays from distant AGN by interaction with the EBL
[Credits: M. Raue].
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Figure 4: EBL energy density in the local Universe (z = 0) with model curves to observations (data points)
[Credits: J. Primack|. The EBL is usually difficult to measure due to foreground emission from within the
solar system and the Milky Way. Note: A =1 Angstroem= 10~% cm corresponds to v = ¢/\ = 3 x 10'® Hz.

e TeV photons of energy €; primarily interact with infrared photons of energy
€y~ 1 (ﬂ) eV, corresponding to

€1

h
Ay = o 12x 10t (€1/1 TeV) Angstrom = 1.2 (e1/1 TeV) um
€2
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Figure 5: Gamma-ray flux attenuation for v-ray photons of energy E, from sources at different redshifts z.
The plateau between 1 and 10 TeV at low redshifts is a consequence of the mid-IR valley in the EBL spectrum

[Credits: J. Primack].

e EBL spectrum and intensity depends on cosmological time (star formation
history) and hence on redshift z. ”Knowing” intrinsic source spectra, 7y
absorption imprint can be used to diagnose EBL evolution.
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5 Pair Annihilation
Decay of e™e™-pairs into two photons (no threshold):
et +e = y+y

e Annihilation cross-section in center of momentum (CoM) frame:

*2
+ 4 +1 TR +3
: *2 __ fy In (7 + *2 ) fy

Y 2 —1

2
T

7t

O¢te- (7*) —

with v* = E*/m.c* lepton energy in CoM frame, 79 = €?/me.c* (cgs) classi-
cal electron radius. Note: Thomson cross-section o := 8rg /3.

e Low-energy (8* << 1, thermal electrons) limit:
I 5 3or
~ EWTO =3 5
= Annihilation probability is high for leptons nearly at rest.

= Decay produces two ~’s very close to rest energy of electron: hv ~ m.c?
= 0.511 MeV "annihilation line”

Octe—
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Figure 6: Cross-section .+, for pair annihilation in units of the Thomson cross-section o7 as a function of
CoM electron/positron Lorentz factor v*.
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e High energy (v* > 1) limit:

r2

,}/*

Decay produces two photons, but photons have broader energy spread

(In2~* — 1)

Yl
Octe— =

= "annihilation spectrum”.

e If ambient density of electrons is n., characteristic positron annihilation time
scale (assuming oo+.~ ~ 3o7/8) is:
1

b~ % 106(
CNeO ot o

ne
— | year
cm

e Note: e are created in 7 -decay, i.e. 77 — p*+v, with u* — e"+v,+v,
the charged pion’s being created in pp-collisions (lect. 9), p+p — p+n+n"....
Since pp-collisions also produce 7" which decay into y-rays, flux of interstellar
positrons created by this process can be estimated from ~y-ray luminosity of
interstellar gas.
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6 Example: Positron-electron-annihilation in flight

Maximum /minimum photon energy in case of relativistic e and stationary e:
4-vectors P+ = yme(c,¥), P.- = m.c(1,0), Py, = ei(l,—17), P, = ea(1,1),
with 7 = /|]:
Per + Po- = Py + Py,
:>P721 :<Pe++Pe_ _P72>2
= 0=P%+ P> +P,+2PF —2P+P, —2P.-P,
5 v
= 0= szCQ + 2~/”rr'z,f(:2 — 2ymeces (1 — —) — 2meces

C

= €; := — = M,C = MeC
C Y1FE+1 YFAV/E—-1+1
(minus sign for ey; plus sign for e; once solved for P,,)

19



Have -,
6.
:>62-::—Z:m62 !

C
¢ TFVY—1+1

In terms of kinetic eT-energy: T'= E — mec® = (7 — )moc® & v = L5 + 1:

Mec?
mec*(T + 2m.c?) M’ Mo’

€; = — —
LT +2m TV T T2 Tieme?/T LF (L4 2mec?/T) Y2

T Trem.2/m)
For T >> m,c?, expansion (1 +z) /2 ~1—%,

Mec?

€ =
LF (1 —mec?/T)
Hence
MeC’ |
€1 ~ — (plus sign)

€9 ~ T'( for minus sign)
= forward-going photon (maximum) takes almost all the kinetic energy of the
positron, while energy of backward-moving photon (minimum) is only half the

rest mass energy.
= in lab. frame, photon spectrum by annihilation will spread over interval [y, €s].
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