HIGH ENERGY ASTROPHYSICS - Lecture 10

PD Frank Rieger ITA & MPIK Heidelberg Wednesday

Pair Plasmas in Astrophysics

1 Overview

- Pair Production $\gamma + \gamma \rightarrow e^+ + e^-$ (threshold)
- Compactness parameter
- Example I: "internal" $\gamma\gamma$ -absorption in AGN (Mkn 421)
- Example II: EBL & limited transparency of the Universe to TeV photons
- Pair Annihilation $e^+ + e^- \rightarrow \gamma + \gamma$ (no threshold)
- Example: Annihilation-in-flight (energetics)

2 Two-Photon Pair Production

Generation of e^+e^- -pairs in environments with very high radiation energy density:

 $\gamma + \gamma \rightarrow e^+ + e^-$

• Reaction threshold for pair production (see lecture 9):

$$e_1 e_2 - p_1 p_2 \cos \theta = m_1 m_2 c^2 + \delta m \ c^2 \ (m_1 + m_2 + 0.5 \ \delta m)$$

With $m_i = 0, e_i := \epsilon_i/c = p_i$ (photons) and $\delta m = 2m_e$:

$$\epsilon_1 \epsilon_2 (1 - \cos \theta) = 0.5 \, (\delta m)^2 c^4 = 2m_e^2 c^4$$

$$\Rightarrow \epsilon_1 \epsilon_2 = m_e^2 c^4$$

for producing e^+e^- at rest in head-on collision (lab frame angle $\cos \theta = -1$).

• *Example:* for TeV photon $\epsilon_1 = 10^{12}$ eV, interaction possible with soft photons $\epsilon_2 \ge (0.511)^2$ eV = 0.26 eV (infrared photons).

• Cross-section for pair-production:

$$\sigma_{\gamma\gamma}(\beta^*) = \frac{\pi r_0^2}{2} (1 - \beta^{*2}) \left[2\beta^* (\beta^{*2} - 2) + (3 - \beta^{*4}) \ln\left(\frac{1 + \beta^*}{1 - \beta^*}\right) \right]$$

with $\beta^* = v^*/c$ velocity of electron (positron) in centre of momentum frame, and $\pi r_0^2 = 3\sigma_T/8$.

In terms of photon energies and collision angle θ (cf. above):

$$\epsilon_1 \epsilon_2 (1 - \cos \theta) = 2E_e^{*2}$$
 and $E_e^* = \gamma^* m_e c^2 = m_e c^2 (1 - \beta^{*2})^{-1/2}$

where E_e^* =total energy of electron (positron) in CoM frame, so

$$\epsilon_1 \epsilon_2 (1 - \cos \theta) = 2\gamma^{*2} m_e^2 c^4 = 2m_e^2 c^4 \frac{1}{(1 - \beta^{*2})}$$

$$\Rightarrow \beta^* = \sqrt{1 - \frac{2m_e^2 c^4}{\epsilon_1 \epsilon_2 (1 - \cos \theta)}}$$

Figure 1: Cross-section for $\gamma\gamma$ -pair production in units of the Thomson cross-section σ_T as a function of interacting photon energies (ϵ_1/m_ec^2) (ϵ_2/m_ec^2) $(1-\cos\theta)$. The cross-section rises sharply above the threshold $\epsilon_1\epsilon_2(1-\cos\theta) = 2m_e^2c^4$ and has a peak of $\simeq \sigma_T/4$ at roughly twice this value, i.e. at $\epsilon_1\epsilon_2(1-\cos\theta) = 4m_e^2c^4$.

- At low energies, large annihilation probability of created pairs (cf. later).
- Maximum of cross-section (isotropic radiation field, average of $\cos \theta \to 0$) $\sigma_{\gamma\gamma} \simeq 0.25 \sigma_T$ at $\epsilon_1 \epsilon_2 \simeq 4 m_e^2 c^4$

 \Rightarrow TeV photons interact most efficiently with infrared photons

$$\epsilon_t := \epsilon_2 \simeq 1 \left(\frac{1 \text{ TeV}}{\epsilon_1}\right) \text{ eV}$$

 \Rightarrow produced e^+e^- will be highly relativistic and tend to move in direction of initial VHE $\gamma\text{-ray.}$

• High-energy limit $(\beta^* \to 1)$:

$$\begin{split} \sigma_{\gamma\gamma}(\beta^*) &= \frac{\pi r_0^2}{2} (1 - \beta^{*2}) \left[2\beta^* (\beta^{*2} - 2) + (3 - \beta^{*4}) \ln\left(\frac{1 + \beta^*}{1 - \beta^*}\right) \right] \\ \Rightarrow \sigma_{\gamma\gamma}(\beta^*) &\to \frac{3\sigma_T}{16} (1 - \beta^{*2}) \left[2(1 - 2) + (3 - 1) \ln\left(\frac{(1 + \beta^*)(1 + \beta^*)}{(1 - \beta^*)(1 + \beta^*)}\right) \right] \\ \sigma_{\gamma\gamma}(\beta^*) &\simeq \frac{3}{8} \frac{\sigma_T}{\gamma^{*2}} \left[\ln(4\gamma^{*2}) - 1 \right] \propto \frac{1}{\epsilon_1 \epsilon_t} \end{split}$$

 $\Rightarrow \gamma$ -rays with ϵ_1 can interact with all photons above threshold, but cross-section decreases.

• Delta-function approximation for cross-section in power-law soft photon field (cf. Zdziarski & Lightman 1985):

(e.g., γ -ray with ϵ_1 interacting with power-law differential energy density $n(\epsilon_2) \propto \epsilon_2^{-\alpha_1}$; approximating interaction by cross-section peak at $\epsilon_1 \epsilon_2 \simeq 2m_e^2 c^4$ [head-on] and accounting for proper normalization)

$$\sigma_{\gamma\gamma}^{\delta}(\epsilon_1,\epsilon_2) \simeq \frac{\sigma_T}{3} \frac{\epsilon_2}{m_e c^2} \,\delta\left(\frac{\epsilon_2}{m_e c^2} - \frac{2m_e c^2}{\epsilon_1}\right)$$

• Compare (noting $\delta(ax) = (1/|a|)\delta(x)$): $\sigma_{\gamma\gamma}^{\max} \sim \frac{1}{4}\sigma_T \,\delta\left(\frac{\epsilon_1\epsilon_2}{2m_e^2c^4} - 1\right) = \frac{\sigma_T}{4}\frac{2m_ec^2}{\epsilon_1}\,\delta\left(\frac{\epsilon_2}{m_ec^2} - \frac{2m_ec^2}{\epsilon_1}\right)$ $= \frac{\sigma_T}{4}\frac{\epsilon_2}{m_ec^2}\,\delta\left(\frac{\epsilon_2}{m_ec^2} - \frac{2m_ec^2}{\epsilon_1}\right)$

with

 $\epsilon_1 \epsilon_2 \simeq 2m_e^2 c^4$ (from peak location for head – on)

• In general optical depth for $\gamma\gamma$ -absorption of a γ -ray photon in differential soft photon field $n_{ph}(\epsilon_2, \Omega, x)$ including interaction probability $\propto (1 - \cos \theta)$:

$$\tau_{\gamma\gamma}(\epsilon_1) = \int_0^R dx \int_{4\pi} d\Omega \, (1 - \cos\theta) \int_{\frac{2m_e^2 c^4}{\epsilon_1(1 - \cos\theta)}}^\infty d\epsilon_2 \, n_{ph}(\epsilon_2, \Omega, x) \, \sigma_{\gamma\gamma}(\epsilon_1, \epsilon_2, \cos\theta)$$

Example: For isotropic power-law soft photon field $(F_{\nu} \propto \nu^{-\alpha})$ with energy spectral index $\alpha = \alpha_1 - 1$, i.e. $n_{ph}(\epsilon_2) \propto \epsilon_2^{-\alpha_1}$ using δ -approximation:

$$\tau_{\gamma\gamma}(\epsilon_1) \simeq \frac{\sigma_T}{3} R \int_{m_e^2 c^4/\epsilon_1}^{\infty} d\epsilon_2 \ n_{ph}(\epsilon_2) \ \epsilon_2 \ \delta\left(\epsilon_2 - \frac{2m_e^2 c^4}{\epsilon_1}\right)$$
$$\simeq \frac{\sigma_T}{3} R \ \frac{2m_e^2 c^4}{\epsilon_1} \ n_{ph}\left(\frac{2m_e^2 c^4}{\epsilon_1}\right) \propto \frac{1}{\epsilon_1} \ \epsilon_1^{\alpha_1} \ \propto \epsilon_1^{\alpha_1}$$

 $\Rightarrow \tau_{\gamma\gamma}$ increase with increasing ϵ_1 (there are more targets if $\alpha > 0$).

• Estimating optical depth for homogeneous **non-relativistically moving** source:

$$\tau_{\gamma\gamma}(\epsilon_1) \simeq n_{\epsilon_t} \sigma_{\gamma\gamma} R \simeq \frac{L(\epsilon > \epsilon_t)}{4\pi Rc\epsilon_t} \sigma_{\gamma\gamma} \simeq \frac{L_{\epsilon_t} \sigma_{\gamma\gamma}}{4\pi Rm_e c^3}$$

with $\sigma_{\gamma\gamma} \simeq \sigma_T/4$ and n_{ϵ_t} number density of target photons, and where last equality holds for typical photon energies $\langle \epsilon_t \rangle \sim m_e c^2$.

 \Rightarrow source can be opaque for high target luminosities L_{ϵ_t} and small sizes R

• If absorbing radiation field is **external** to source (e.g., BLR in AGN, EBL interactions), $\gamma\gamma$ -absorption leads to exponential suppression (lect. 3):

$$F_{\nu}^{obs}(\epsilon) = F_{\nu}^{int}(\epsilon) \ e^{-\tau_{\gamma\gamma}(\epsilon)}$$

• If absorption is **internal**, i.e. happens within source, from formal solution of radiation transfer equation: (cf. lecture 3, no background source $I_{\nu}(0) \simeq 0$, and constant source function $S_{\nu} := j_{\nu}/\alpha_{\nu}$ with $\tau_{\nu} = \alpha_{\nu}R$):

$$I_{\nu}(\tau_{\nu}) \simeq S_{\nu} \ \left(1 - e^{-\tau_{\nu}}\right) = \frac{j_{\nu}R}{\alpha_{\nu}R} \ \left(1 - e^{-\tau_{\nu}}\right) = \frac{j_{\nu}R}{\tau_{\nu}} \ \left(1 - e^{-\tau_{\nu}}\right)$$

$$\Rightarrow F_{\nu}^{obs}(\epsilon) \simeq F_{\nu}^{int}(\epsilon) \ \frac{1 - e^{-\tau_{\gamma\gamma}(\epsilon)}}{\tau_{\gamma\gamma}(\epsilon)} \simeq \frac{F_{\nu}^{int}(\epsilon)}{\tau_{\gamma\gamma}(\epsilon)} \quad \text{for} \quad \tau_{\gamma\gamma} \gg 1$$

• Compactness parameter l_c for measuring relevance of internal $\gamma\gamma$ -absorption:

$$l_c := \frac{L_\gamma}{4\pi R} \frac{\sigma_T}{m_e c^3}$$

(Note: Sometimes, l_c is defined without 4π in denominator) At MeV energies, $\tau_{\gamma\gamma} \stackrel{>}{\sim} 1 \Leftrightarrow l_c \stackrel{>}{\sim} 4$. \Rightarrow if $l_c \gg 1$, then high-energy photons are likely to be absorbed. 3 Example I: "Internal" $\gamma\gamma$ -absorption in AGN: Mkn 421 ($d \sim 140$ Mpc)

Figure 2: Spectral Energy Distribution (SED) for the BL Lac object Markarian 421 as seen by different instruments [Credits: Abdo, A. et al., ApJ 736 (2011)].

• Application to Markarian 421 – assume "characteristic" numbers: Schwarzschild $r_S \sim 10^{14}$ cm, $L_{IR} \sim 10^{44}$ erg/s (cf. SED), $\epsilon_{IR} \sim 1$ eV $\sim 10^{-12}$ erg

$$\Rightarrow \tau(\epsilon_{VHE}) \simeq \frac{L_{IR}\sigma_{\gamma\gamma}}{4\pi Rc\epsilon_{IR}} \sim 3 \times 10^5 \left(\frac{r_s}{R}\right) \gg 1$$

 \Rightarrow IR flux from extended region $R \gg r_s$ and/or jetted-AGN emission (variability may help to distinguish)

• Note: Modification for relativistically moving source ("blob"): (1) Apparent vs intrinsic luminosity (flux enhancement by beaming, lect. 3):

$$L_t = \mathbf{D}^4 L_t'$$

(2) Short-term variability vs size of emitting region (Doppler formula):

$$\Delta t_{\rm obs} = \Delta t'/D \quad \Rightarrow \quad R' = c \mathbf{D} \Delta t_{\rm obs}$$

(3) Photon energy boosting with $D = 1/[\gamma_b(1 - \beta_b \cos i)]$:

$$\epsilon_t = D\epsilon'_t \quad \Leftrightarrow \quad \epsilon'_t = \epsilon_t/D$$

 \Rightarrow Optical depth:

$$\tau' \simeq \frac{L'_t \sigma_{\gamma\gamma}}{4\pi R' c\epsilon'_t} \propto \frac{L'_t}{R'\epsilon'_t} \propto \frac{L_t}{D^4}$$

- 4 Example II: "External" Absorption of TeV photons in the Extragalactic Background Light
 - Extragalactic background light (EBL) = accumulated light from all galaxies (optical/UV) reprocessed by dust (infrared)
 - \Rightarrow TeV photons from a distant AGN traversing EBL will get absorbed.

Figure 3: Sketch illustrating absorption of VHE gamma-rays from distant AGN by interaction with the EBL [Credits: M. Raue].

Figure 4: EBL energy density in the local Universe (z = 0) with model curves to observations (data points) [Credits: J. Primack]. The EBL is usually difficult to measure due to foreground emission from within the solar system and the Milky Way. Note: $\lambda = 1$ Angstroem= 10^{-8} cm corresponds to $\nu = c/\lambda = 3 \times 10^{18}$ Hz.

• TeV photons of energy ϵ_1 primarily interact with infrared photons of energy $\epsilon_2 \simeq 1 \left(\frac{1 \text{ TeV}}{\epsilon_1}\right) \text{ eV}$, corresponding to $\lambda_2 = \frac{h c}{\epsilon_2} = 1.2 \times 10^4 (\epsilon_1/1 \text{ TeV}) \text{ Angstrom} = 1.2 (\epsilon_1/1 \text{ TeV}) \mu m$

Figure 5: Gamma-ray flux attenuation for γ -ray photons of energy E_{γ} from sources at different redshifts z. The plateau between 1 and 10 TeV at low redshifts is a consequence of the mid-IR valley in the EBL spectrum [Credits: J. Primack].

• EBL spectrum and intensity depends on cosmological time (star formation history) and hence on redshift z. "Knowing" intrinsic source spectra, $\gamma\gamma$ absorption imprint can be used to diagnose EBL evolution.

5 Pair Annihilation

Decay of e^+e^- -pairs into two photons (no threshold):

$$e^+ + e^- \rightarrow \gamma + \gamma$$

• Annihilation cross-section in center of momentum (CoM) frame:

$$\sigma_{e^+e^-}(\gamma^*) = \frac{\pi r_0^2}{\gamma^* + 1} \left[\frac{\gamma^{*2} + 4\gamma^* + 1}{\gamma^{*2} - 1} \ln\left(\gamma^* + \sqrt{\gamma^{*2} - 1}\right) - \frac{\gamma^* + 3}{\sqrt{\gamma^{*2} - 1}} \right]$$

with $\gamma^* = E^*/m_e c^2$ lepton energy in CoM frame, $r_0 = e^2/m_e c^2$ (cgs) classical electron radius. Note: Thomson cross-section $\sigma_T := 8\pi r_0^2/3$.

• Low-energy ($\beta^* \ll 1$, thermal electrons) limit:

$$\sigma_{e^+e^-} \simeq \frac{1}{\beta^*} \pi r_0^2 = \frac{3\sigma_T}{8\beta^*}$$

- \Rightarrow Annihilation probability is high for leptons nearly at rest.
- ⇒ Decay produces two γ 's very close to rest energy of electron: $h\nu \sim m_e c^2$ ⇒ 0.511 MeV "annihilation line"

Figure 6: Cross-section $\sigma_{e^+e^-}$ for pair annihilation in units of the Thomson cross-section σ_T as a function of CoM electron/positron Lorentz factor γ^* .

• High energy $(\gamma^* \gg 1)$ limit:

$$\sigma_{e^+e^-} \simeq \frac{\pi r_0^2}{\gamma^*} \left(\ln 2\gamma^* - 1\right)$$

Decay produces two photons, but photons have broader energy spread \Rightarrow "annihilation spectrum".

• If ambient density of electrons is n_e , characteristic positron annihilation time scale (assuming $\sigma_{e^+e^-} \sim 3\sigma_T/8$) is:

$$t_{ann} \simeq \frac{1}{cn_e \sigma_{e^+e^-}} \sim 4 \times 10^6 \left(\frac{n_e}{\mathrm{cm}^{-3}}\right) \text{ year}$$

Note: e⁺ are created in π⁺-decay, i.e. π⁺ → μ⁺+ν_μ with μ⁺ → e⁺+ν_μ+ν_e, the charged pion's being created in pp-collisions (lect. 9), p+p → p+n+π⁺.... Since pp-collisions also produce π⁰ which decay into γ-rays, flux of interstellar positrons created by this process can be estimated from γ-ray luminosity of interstellar gas.

6 Example: Positron-electron-annihilation in flight

Maximum/minimum photon energy in case of relativistic e^+ and stationary e^- : 4-vectors $P_{e^+} = \gamma m_e(c, \vec{v}), P_{e^-} = m_e c(1, 0), P_{\gamma_1} = e_1(1, -\vec{n}), P_{\gamma_2} = e_2(1, \vec{n}),$ with $\vec{n} = \vec{v}/|\vec{v}|$:

$$P_{e^+} + P_{e^-} = P_{\gamma_1} + P_{\gamma_2}$$

$$\Rightarrow P_{\gamma_1}^2 = (P_{e^+} + P_{e^-} - P_{\gamma_2})^2$$

$$\Rightarrow 0 = P_{e^+}^2 + P_{e^-}^2 + P_{\gamma_2}^2 + 2P_{e^+}P_{e^-} - 2P_{e^+}P_{\gamma_2} - 2P_{e^-}P_{\gamma_2}$$

$$\Rightarrow 0 = 2m_e^2 c^2 + 2\gamma m_e^2 c^2 - 2\gamma m_e c e_2 \left(1 - \frac{v}{c}\right) - 2m_e c e_2$$

$$\Rightarrow e_i := \frac{\epsilon_i}{c} = m_e c \frac{1+\gamma}{\gamma(1 \mp \frac{v}{c})+1} = m_e c^2 \frac{1+\gamma}{\gamma \mp \sqrt{\gamma^2 - 1}+1}$$

(minus sign for e_2 ; plus sign for e_1 once solved for P_{γ_2})

Have

$$\Rightarrow e_i := \frac{\epsilon_i}{c} = m_e c^2 \frac{1+\gamma}{\gamma \mp \sqrt{\gamma^2 - 1} + 1}$$

In terms of kinetic e^+ -energy: $T = E - m_e c^2 = (\gamma - 1)m_e c^2 \Leftrightarrow \gamma = \frac{T}{m_e c^2} + 1$:

$$\epsilon_{i} = \frac{m_{e}c^{2}(T + 2m_{e}c^{2})}{T + 2m_{e}c^{2} \mp \sqrt{2m_{e}c^{2}T + T^{2}}} = \frac{m_{e}c^{2}}{1 \mp \frac{T\sqrt{1 + 2m_{e}c^{2}/T}}{T(1 + 2m_{e}c^{2}/T)}} = \frac{m_{e}c^{2}}{1 \mp (1 + 2m_{e}c^{2}/T)^{-1/2}}$$

For $T \gg m_{e}c^{2}$, expansion $(1 + x)^{-1/2} \simeq 1 - \frac{x}{2}$,
 $\epsilon_{i} \simeq \frac{m_{e}c^{2}}{1 \mp (1 - m_{e}c^{2}/T)}$
Hence

$$\epsilon_1 \simeq \frac{m_e c^2}{2} (\text{plus sign})$$

 $\epsilon_2 \simeq T($ for minus sign)

 \Rightarrow forward-going photon (maximum) takes almost all the kinetic energy of the positron, while energy of backward-moving photon (minimum) is only half the rest mass energy.

 \Rightarrow in lab. frame, photon spectrum by annihilation will spread over interval $[\epsilon_1, \epsilon_2]$.