Direct neutrino mass experiments: Present and Future

XXth International Conference on Neutrino Physics and Astrophysics, Munich, May 25–30, 2002

Christian Weinheimer

Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn Email: weinheimer@iskp.uni-bonn.de

- Tritium β decay experiments at Mainz and Troitsk 0
- How to proceed? future projects
- S KATRIN
- a large tritium β decay experiment with sub-eV sensitivity
- Conclusion

Need very high energy resolution & very high signal rate & very low background Mainz Neutrino Mass Experiment since 1997

Magnetic Adiabatic Collimation + Electrostatic Filter (MAC-E-Filter) sharp integrating transmission function ↑

without tails: $\Delta E = E \cdot B_{min}/B_{max} = E \cdot A_{s,eff}/A_{analysis} \approx 4.8eV$

- T_2 Film at 1.86 K
- quench-condensed on graphite (HOPG)
 - 45 nm thick (\approx 130ML), area 2cm²
- Thickness determination by ellipsometry

Investigation and in	provement of systematics
• Roughening transition of T_2 filn	
	Determination of dynamics: $\Delta E = (45\pm6)~k_B$ K
Construction Construction T ₂	\Rightarrow no roughening transition below 2 K
	L. Fleischmann et al., J. Low Temp Phys. 119 (2000) 615, (with P. Leiderer L. Fleischmann et al., Eur. Phys. J. B16 (2000) 521 Konstanz)
Inelastic scattering	
	Deterimination of cross section:
AE T2	$\sigma_{tot} = (2.98 \pm 0.16) \cdot 10^{-18} ~ { m cm}^2$
	Determination of energy loss function:
	V.N. Aseev et al., Eur. Phys. J. D10 (2000) 39
 Self charging of T₂ film 	
	Determination of critical field:
e ⁻ b c T, d ^o 20 mV/ML	$E_c=(63\pm4)$ MV/m $=$ 20 mV/monolayer
e · · · · Potential U U _{max} ≈3V	\Rightarrow slight broadeing of energy resolution
	H. Barth et al., Prog. Part. Nucl. Phys. 40 (1998) 353, B. Bornschein, PhD thesis, publication in preparation

Mainz data of 1998,1999

1998+1999: Signal/background 10 x higher

Mainz data of 1998, 1999

Mainz measurements in 2001

due to trapped particles: hysteresis effect in dependence of scanning direction) (In 2000 two measurements (Q9,Q10) with background problems

Before Q11,Q12: optimal preparation

- Vacuum: baken out, getter activated: tritium source spectrometer detector
- T₂ source, HV: new: source substrate tritium ampula HV divider oil
- Conditioning at high pressure (10⁻⁷mbar)
- ⇒ Low and stable background, no Troitsk-like anomalies

origin ?

Troitsk anomaly: monoenergetic line in β spectrum of 10⁻¹⁰ amplitude

Troitsk anomaly

Periodicity of Troitsk anomaly

m(v)< 2.2 eV (95% C.L.) Decribing anomaly phenomenologically by additional line, different run-by-run ↑ $m^{2}(v) = -2.3 \pm 2.5 \pm 2.0 eV^{2}$ Troitsk 1994–1999,2001 data:

Status of Troitsk anomaly

Amplitude of anomaly: Troitsk, Mainz

Troitsk 2001:

- No anomaly in May 2001
- Only small anomaly in Dec. 2001

Mainz:

- Clear contradiction to
 - 0.5 y period
 Similiar effect observed
 - only once (Q4 1998)
- Does not show up in in newest Mainz data: of 2000 (Q9,Q10, partially in parallel with Troitsk) and of 2001 (Q11,Q12)

⇒Troitsk anomaly is very likely experimental artefact, which can be avoided (Mainz)

Motivation for a sub-eV direct neutrino mass search

Cosmological relevant neutrino mass

Neutrino mass scale quasi-degenerate vs hierarchical

What can we learn from ß decay w.r.t. 0vßß ?

Direct neutrino mass determination

If neutrino masses are not resolved \Rightarrow average neutrino mass, e.g.:

 $m^2(v_{e_i}) = \sum |U_{e_i}|^2 m^2(v_{e_i})$ (incoherent sum, real average, since $0 \le |U_{e_i}|^2 \le 1$) Sensitivity of β decay: check degenerate neutrino mass scenarios

⇒ partial cancelation possible (not fully since SNO says: no max solar mixing) Future experiments very sensitive m_{ee}(v) < 0.1 eV 0vBB (only possible for Majorana neutrinos) $m_{ee}(v) = |\sum |U_{ei}^2| e^{i\alpha(i)} m(v_i)|$ (coherent sum)

m(v_e) vs m_{ee}(v): complementary information, differences due to:

- Dirac neutrino
- CP-phases
- Other processes (right-handed currents, Susy-particles, ...)
 - Problems with nuclear matrix elements

excitation by excited electronic states and inelastic scattering is collected ¹⁸⁷Re: $E_0 = 2.5 \text{keV}$ ($t_{1/2} = 5 \ 10^{10} \text{y}$) β emitting crystal = cryodetector Multi-purpose, scalable new detector technology free choice of β emitter: \Rightarrow single final state: **Basic idea:**

BEFS measured (F.Gatti et al., Nature 397 (1999) 137) MANU2 (F. Gatti et al., Genova) Re metallic crystal (1.5 mg) Current experiments:

near future: sensitivity of 10 eV expected current: m(v) < 26 eV

Sensitivity:

T

I

future: eV resolution by s.c. sensors

MiBeta (E. Fiorini et al., Milano,Como) – AgReO₄ (250 –350 μg)

(see poster E4) Sensitivity: similar to MANU2 T

M. Fink et al., University of Texas, Austin (see poster E5) UTA neutrino rest mass experiment

Double deflecting electrostatic deflector aiming for ∆E ≥1eV (FWHM)

Windowless gaseous tritium source $pd \approx 10^{17}/cm^2$ (as Mainz/Troitsk)

Luminosity: at least one order of magnitude less w.r.t. Mainz/Troitsk

Very low background (cnts/day) ?

Aim: $\Delta m(v) = 1.4 \text{ eV}$ (3 σ) ?

Response function: no tails beyond Gaussian?

Background from tritium?

Which way to sub-eV neutrino masses?

Neutrinos of galactic supernova (s. talk by J. Beacom)

- galactic SN only every 40 years
- not sensitive below 1eV (uncertainty in time spectrum of neutrino emission)

Large scale structure (s. talk by S. Hannestad)

- model depedent
- neutrino mass from lab can serve as input for astrophysics

Search for $0\nu\beta\beta$ (s. talk by O. Cremonesi)

Direct neutrino mass determination

- $^{-187}$ Re eta decay with cryogenic bolometers
- Tritium β decay with electrostatic deflector (UTA-exp.) I
- Tritium B decay with MAC-E-Filter
- first MAC-E-Filters (Mainz/Troitsk) are very successful
- no material in beam line, no tails of resolution function
- quasi "single final state" experiment
- also: not-integrating MAC-E-TOF mode

Molecular tritium sources

molecular tritium source Windowless gaseous

maximum count rate without

WGTS allows almost

large sys. uncertainties

0.6

R

9

(pionieered by LANL (Seattle), adapted to MAC-E by Troitsk)

10 m length, 70 mm diameter, 5 10^{17} T₂ / cm²

Pre and main spectrometer

-- $L = A_{\text{seff}} \Delta \Omega / 4\pi = A_{\text{analysier}} \Delta E / (2E) = 10 \text{ cm}^2$

high luminosity:

5g

- Ultrahigh vacuum requirements (Background) p < 10⁻¹¹ mbar
- ",simple" construction: vacuum vessel at HV = electrode

Pre spectrometer:

- \Rightarrow Reduction of scattering probaility in main spectrometer Transmission of electron with highest energy only ⇒ Reduction of background (10⁻⁷ part in last 100 eV)
- only moderate energy resolution required: $\Delta E = 50 eV$
- Test of new ideas (shape of electrodes, removal of trapped particles, ...)

(see poster E3)

Systematic uncertainties

As smaller m(v),

as smaller the region of interest below endpoint

- \Rightarrow Excited electronic final states does not play \Rightarrow Inelastic scattering in T₂ is small a role ($\Delta E_{exc} > 27 eV$)
- $(\Delta E_{inel.} > 12eV \implies largest interval 25eV: 2\%)_{e}$
 - ⇒ One well-defined final state
- (similiar to cryo detectors)
- Is only true, since MAC-E-Filter response function has no tails

Systematic uncertainties

- Rotation-vibration excitation of final state
- (systematic uncertainty: Troitsk 2%, Mainz 6%) electrical potential distribution over source Inelastic scattering
 - - Solid state effects (for QCTS only)
- Stability of parameters (HV, T_2 partial pressure, T_2 purity, ...)

Estimation of sensitivity

First simulations with conservative assumptions

background rate: 11 mHz

Technical challenges

- Recirculation and purification of tritium to a large extent (kCi)
- ≈ 30 superconducting solenoids
- UHV (< 10⁻¹¹mbar) in huge volume (1000m²)
- HV calibration and stability on ppm level
- High resolution detectors
- •

⇒ ideal place: Forschungszentrum Karlsruhe/Germany

Inst. of Nuclear Physics (IK)

Inst. of Electronics (IPE)

Status and schedule of Katrin

1999/2000 First

First discussions

1/2001

Neutrino Masses in the sub-eV Range

International workshop on future direct measurements of the electron neutrino mass and their implications

Bad Liebenzell / Schwarzwald , Germany, January 18 - 21, 2001

transperencies: http://www-ik1.fzk.de/tritium/liebenzell

KATRIN collaboration founded:

6/2001

9/2001

Fulda, Karlsruhe, Mainz, Prag, Seattle, Troitsk + Bonn (12/01) Letter of Intent (hep-ex/0109033)

First founding by BMBF/Germany

International review panel

5/2002

2002

Discussion with other groups to enlarge collaboration Proposal and application for major funding Construction of pre spectrometer at FZK Background investigations at Mainz

2007

Start of data taking

Modification of the Mainz Spectrometer 01-05/02

electrical dipoles to remove trapped particles by ExB drift

Summary

Current tritium B experiments: Final sensitivity reached

intensive studies of systematics and optimal preparation of experiment Mainz: All problems solved by

⇒ m(v_e) <2.2 eV

anomaly is becoming less stable, probably experimental artefact by substraction of anomaly run-by-run: $m(v_e) < 2.2 eV$ Troitsk: Experimental improvements

 bower background

How to proceed?

Need future direct sub-eV neutrino mass experiment

- UTA experiment: electrostatic deflector
- Cryogenic detectors with Rhenium: challenging

challenging new approach how far can they go? KATRIN: A large tritium β decay neutrino mass experiment at FZ Karlsruhe with sub-eV sensitivity (<0.35 eV)

probes degenerate neutrino masses and cosmologically relevant mass ⇒ key experiment w.r.t. neutrino mass