Standard and non-standard neutrino properties J. W. F. Valle

- masses and mixings
- from current oscillation experiments
 - ... from first principles ...
- neutrinos as astrophysics probe
- Majorana, not Dirac
- Non-Standard nu-Interactions
- robustness of atmospheric oscillations
- other solar neutrino solutions
- The future

Neutrino-2002, Valle – p.1/50

solar nu's before & after SNO-NC

more

Maltoni, Schwetz, Tórtola & JV, hep-ph/0206xxx

Neutrino-2002, Valle – p.2/50

solar nu's before & after SNO-NC

more

Maltoni, Schwetz, Tórtola & JV, hep-ph/0206xxx

• good determination of both Δ_S and θ_S

first LMA hint from SK-specGonzalez-Garcia etal NPB573 (2000) 3Lisi, Smirnov & Smy's talks; Bahcall et al; Bandyopadhyay et al; Barger et al; Creminelli et al

Neutrino-2002, Valle – p.2/50

solar-nu oscillations-a

Maltoni, Schwetz, Tórtola & JV 2002

solar-nu oscillations-a

Maltoni, Schwetz, Tórtola & JV 2002

pure sterile disfavored at $\gtrsim 5\sigma$

Neutrino-2002, Valle – p.3/50

reactor + atm neutrino oscillations

Fogli etal; Fornengo et al PRD65 (2002) 013010 Maltoni, Schwetz, Tórtola, JV 2002

 $\sin^2 \theta_R \leq 0.045$ at 99% CL 1dof

reactor + atm neutrino oscillations

Fogli etal; Fornengo et al PRD65 (2002) 013010 Maltoni, Schwetz, Tórtola, JV 2002

 $\sin^2 \theta_R \leq 0.045$ at 99% CL 1dof

Neutrino-2002, Valle – p.4/50

simplest gauge theory mixing matrix

- 3 angles θ
 1 KM-like
 - $+2 \text{ extra phases} + \dots$

23=A 12=S 13=R ϕ_R ϕ_1, ϕ_2

Schechter, JV PRD22 (1980) 2227

simplest gauge theory mixing matrix

simplest gauge theory mixing matrix

leptonic CPV will be a challenge !

"Dirac" CPV disappears when $\Delta_S \rightarrow 0$ PRD21 (1980) 309

"Majorana" CPV suppressed due to V-A PRD23 (1981) 1666

Neutrino-2002, Valle – p.5/50

Dirac or Majorana?

• in gauge theories $\beta\beta_{0\nu} \leftrightarrow$ majorana mass

Schechter, JV PRD25 (1982) 2951

Neutrino-2002, Valle – p.6/50

Dirac or Majorana?

• in gauge theories $\beta\beta_{0\nu} \leftrightarrow$ majorana mass

Schechter, JV PRD25 (1982) 2951

like other ΔL = 2 processes (e.g. nu-transition magnetic moments) β_{0ν} is sensitive to Majorana phases
 Schechter & JV D24 (1981) 1883; Wolfenstein PLB107 (1981)
 77; Doi et al; Bilenky et al, Kayser et al

absolute neutrino mass scale

Barger et al PLB532 (2002) 15

Neutrino-2002, Valle – p.7/50

neutrinos as astro probe

• large angle oscillations affect $\bar{\nu}_e$ SN-signal

Smirnov, Spergel, Bahcall 94; Raffelt et al 96, Kachelriess et al JHEP 0101 (2001) 030

neutrinos as astro probe

• large angle oscillations affect $\bar{\nu}_e$ SN-signal

Smirnov, Spergel, Bahcall 94; Raffelt et al 96, Kachelriess et al JHEP 0101 (2001) 030

• solar+SN1987A analysis

Kachelriess et al PRD65 (2002) 073016

neutrinos as astro probe

• large angle oscillations affect $\bar{\nu}_e$ SN-signal

Smirnov, Spergel, Bahcall 94; Raffelt et al 96, Kachelriess et al JHEP 0101 (2001) 030

solar+SN1987A analysis

Kachelriess et al PRD65 (2002) 073016

• "standard" SN input, $E_{\bar{\nu}_e}=14$, $E_{\text{bind}}=3$, $\tau \equiv T_{\nu_h}/T_{\bar{\nu}_e}=1.4$

neutrinos as astro probe future SN

use effect of large mixing on $\bar{\nu}_e$ signal to probe $\tau \equiv T_{\nu_h}/T_{\bar{\nu}_e}$

Minakata, Nunokawa, Tomàs, J. V. hep-ph 0112160

neutrinos as astro probe future SN

use effect of large mixing on $\bar{\nu}_e$ signal to probe $\tau \equiv T_{\nu_h}/T_{\bar{\nu}_e}$

Minakata, Nunokawa, Tomàs, J. V. hep-ph 0112160

assume SK detector and 10 kpc gal SN, simulate data with given $\langle E_{\bar{\nu}e}^0 \rangle$, τ^0 , E_b^0

Neutrino-2002, Valle – p.9/50

oscillations from first principles

Neutrino-2002, Valle – p.10/50

predicting nu-mass and mixing?

- what is the scale ?
 - Planck scale: Strings?
 - GUT scale E(6) , SO(10) ,...
 - Intermediate scale: P-Q, L-R ...
 - Weak $\overline{\mathrm{SU}(3)}\otimes \overline{\mathrm{SU}(2)}\otimes \overline{\mathrm{U}(1)}$ scale

predicting nu-mass and mixing?

- what is the scale ?
 - Planck scale: Strings?
 - GUT scale E(6), SO(10),...
 - Intermediate scale: P-Q, L-R ...
 - Weak $SU(3) \otimes SU(2) \otimes U(1)$ scale
- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...

predicting nu-mass and mixing?

- what is the scale ?
 - Planck scale: Strings?
 - GUT scale E(6), SO(10),...
 - Intermediate scale: P-Q, L-R ...
 - Weak $\overline{\mathrm{SU}(3)}\otimes \overline{\mathrm{SU}(2)}\otimes \overline{\mathrm{U}(1)}$ scale
- what is the mechanism?
 - tree vs radiative
 - B-L gauged vs ungauged...
- no theory of flavour

neutrino mass theories

2 approaches: top-down and bottom-up hierarchical vs quasi-degenerate spectra

basic dim-5 operator

Neutrino-2002, Valle – p.13/50

basic dim-5 operator

Weinberg; Barbieri, Ellis, Gaillard; Akhmedov et al

Neutrino-2002, Valle – p.13/50

basic dim-5 operator

• from Gravity

Weinberg; Barbieri, Ellis, Gaillard; Akhmedov et al

• from seesaw schemes

 Gell-Mann, Ramond, Slansky; Yanagida;
 Mohapatra, Senjanovic; Schechter, Valle
 King's talk here I consider at an effective level Neutrino-2002, Valle – p.13/50

neutrino unification

Chankowski, Ioannisian, Pokorski & JV PRL 86 (2001) 3488

• masses unify when they run upwards

neutrino unification

Chankowski, Ioannisian, Pokorski & JV PRL 86 (2001) 3488

• masses unify when they run upwards

• common nu-mass at M_X , splittings from RGE

neutrino unification

Chankowski, Ioannisian, Pokorski & JV PRL 86 (2001) 3488

• masses unify when they run upwards

- common nu-mass at M_X , splittings from RGE
- large solar mixing predicted

effects in β decay (KATRIN) and HDM (2dF galaxy redshift survey) but no $\beta_{0\nu} \rightarrow$ stable under RC **more**

Neutrino-2002, Valle – p.14/50

family symmetries

Nardi et al PLB492 (2000) 81

quark and lepton mixing from textures U(1) symmetry gives simplest bi-linear RPV SUSY model: $W = W_{MSSM} + \mu_{\alpha} \ell_{\alpha} H_u$ giving common origin for μ -problem & nu-anomalies $\mu_0 \sim m_{3/2} \theta$ Giudice-Masiero $\mu_i \sim m_{3/2} \theta^{7+x}$ Nilles-Polonsky

2 massless nu's after RPV-seesaw degeneracy lifted by loops

family symmetries

Nardi et al PLB492 (2000) 81

quark and lepton mixing from textures U(1) symmetry gives simplest bi-linear RPV SUSY model: $W = W_{MSSM} + \mu_{\alpha} \ell_{\alpha} H_u$ giving common origin for μ -problem & nu-anomalies $\mu_0 \sim m_{3/2} \theta$ Giudice-Masiero $\mu_i \sim m_{3/2} \theta^{7+x}$ Nilles-Polonsky

2 massless nu's after RPV-seesaw degeneracy lifted by loops

family symmetries

Nardi et al PLB492 (2000) 81

quark and lepton mixing from textures U(1) symmetry gives simplest bi-linear RPV SUSY model: $W = W_{MSSM} + \mu_{\alpha} \ell_{\alpha} H_u$ giving common origin for μ -problem & nu-anomalies $\mu_0 \sim m_{3/2} \theta$ Giudice-Masiero $\mu_i \sim m_{3/2} \theta^{7+x}$ Nilles-Polonsky

2 massless nu's after RPV-seesaw degeneracy lifted by loops

Neutrino-2002, Valle – p.15/50

RPV as origin of neutrino masses

Aulakh, Mohapatra 83; Hall, Suzuki 84; Ross, JV 85; Ellis et al 85; Santamaria, JV 87, ...

RPV as origin of neutrino masses

Aulakh, Mohapatra 83; Hall, Suzuki 84 ; Ross, JV 85; Ellis et al 85;Santamaria, JV 87, ...various realizations

BRPV soln to nu-anomalies

Hirsch et al PRD62 (2000) 113008 & PRD61 (2000) 071703

arises automatically if RPV spontaneous
 Masiero, JV PLB251 (1990) 273

BRPV soln to nu-anomalies

Hirsch et al PRD62 (2000) 113008 & PRD61 (2000) 071703

- arises automatically if RPV spontaneous
 Masiero, JV PLB251 (1990) 273 MOTE...
- hierarchical nu-masses

LSP decay length [cm]: BRPV from Bartl et al NPB 600 (2001) 39

$\begin{array}{c} 100 \\ 10 \\ 10 \\ 0.1 eV \\ 0.1 eV \\ 1 eV \\ 0.01 \\ 30 40 50 60 70 80 90 100 \\ M_{LSP} [GeV] \end{array}$

Mukhopadhyaya, Roy & Vissani; Chun & Lee; Choi et al; Datta et al

Neutrino-2002, Valle – p.18/50

neutrino mixing angles in BRPVHirsch et al PRD62 (2000) 113008 $tan_A^2(\Lambda_2/\Lambda_3)$ $tan_S^2(\epsilon_1/\epsilon_2)$ $U_{e3}^2(\Lambda_1/\Lambda_3)$

Neutrino-2002, Valle – p.19/50

Life beyond LMA ??

• not a sin more

Neutrino-2002, Valle – p.21/50

- not a sin more
- dim-4 renormalizable (eg CC & NC)

- not a sin more
- dim-4 renormalizable (eg CC & NC)
- $\dim \ge 5$: transition nu-magnetic moments

- not a sin more
- dim-4 renormalizable (eg CC & NC)
- $\dim \ge 5$: transition nu-magnetic moments
- FC/NU sub-weak strength terms εG_F

- not a sin more
- dim-4 renormalizable (eg CC & NC)
- $\dim \ge 5$: transition nu-magnetic moments
- FC/NU sub-weak strength terms εG_F

affect nu-propagation

more... good atm-contained fit G-G et al PRL82 (1999) 3202

Neutrino-2002, Valle – p.21/50

How robust are Oscillations ??

atmospheric bounds on NSI

Fornengo, Maltoni, Tomàs & J. V.PRD65 (2002) 013010bounds on FC and NU nu-interactions

Neutrino-2002, Valle – p.23/50

alternatives to (solar-nu) oscillations?

at least two viable ones ...

Neutrino-2002, Valle – p.24/50

Spin Flavor Precession

over 20 years Schechter, Valle PRD24 (1981) 1883, PRD25, 283

add matter effects

Lim-Akhmedov-Marciano (1988) PRD37, 1368; PLB213, 64

add matter effects

Lim-Akhmedov-Marciano (1988) PRD37, 1368; PLB213, 64

Density & B-field profiles

from Miranda etal NPB595 (2001) 360, PLB521 (2001) 299

Neutrino-2002, Valle – p.26/50

add matter effects

Lim-Akhmedov-Marciano (1988) PRD37, 1368; PLB213, 64

Density & B-field profiles

from Miranda etal NPB595 (2001) 360, PLB521 (2001) 299

Neutrino-2002, Valle – p.26/50

Oscillation-SFP Miranda etal PLB521 (2001) 299

Neutrino-2002, Valle – p.27/50

Oscillation-SFP Miranda etal PLB521 (2001) 299

only 3 good solns: RSFP, NRSFP & LMA expected Borexino signal lower than for LMA Akhmedov & Pulido

Neutrino-2002, Valle – p.27/50

hybrid NSI soln to nu-anomalies

post-SNO-NC global fit

upd of Guzzo et al NPB629 (2002) 479

no solar splitting nor mixing needed

Neutrino-2002, Valle – p.28/50

hybrid NSI soln to nu-anomalies

post-SNO-NC global fit

no solar splitting nor mixing needed

oscillation studies at NuFact

Dydak's and Lindner's talks

Neutrino-2002, Valle – p.29/50

oscillation studies at NuFact

apart from probing s_{13} and δ ...

NuFact can and must probe NSI

Improved FC-tests confusion theorem

Huber et al

PLB523 (2001) 151

PRL88 (2002) 101804

hep-ph/0202048

Adding LSND: 4-nu models Peltoniemi, Tommasini & JV PLB298 (1993) 383 Peltoniemi & JV NPB406 (1993) 409 Caldwell-Mohapatra PRD48 (1993) 325 http://www.to.infn.it/~giunti/neutrino/ MOTE

light sterile-nus from extra dimensions

Ioannisian, JV PRD63 (2001) 073002

Antoniadis, Arkani-Hamed, Dimopoulos, Dvali... Mohapatra, Perez-Lorenzana...

sterile-nu as zero-th mode of the Kaluza-Klein tower

Ioannisian, JV PRD63 (2001) 073002

Antoniadis, Arkani-Hamed, Dimopoulos, Dvali... Mohapatra, Perez-Lorenzana...

sterile-nu as zero-th mode of the Kaluza-Klein tower

Ioannisian, JV PRD63 (2001) 073002

Antoniadis, Arkani-Hamed, Dimopoulos, Dvali... Mohapatra, Perez-Lorenzana...

• sterile-nu as zero-th mode of the Kaluza-Klein tower

Neutrino-2002, Valle – p.31/50

Ioannisian, JV PRD63 (2001) 073002

Antoniadis, Arkani-Hamed, Dimopoulos, Dvali... Mohapatra, Perez-Lorenzana...

• sterile-nu as zero-th mode of the Kaluza-Klein tower

Neutrino-2002, Valle – p.31/50

sterile-nu after SNO-NC Schwetz's poster

Maltoni, Schwetz, Tórtola & JV; upd of PRD65 (2002) 093004

sterile-nu after SNO-NC Schwetz's poster

Maltoni, Schwetz, Tórtola & JV; upd of PRD65 (2002) 093004

Neutrino-2002, Valle – p.32/50

fitting all current oscillation data

sol+atm+reac+sbl/lsnd

Maltoni, Schwetz, Tórtola & JV 2002; upd of PRD65 (2002) 093004

Neutrino-2002, Valle – p.33/50

• nu-properties, predicting vs modeling ...

- nu-properties, predicting vs modeling ...
- LSND poorly explained in a 4-nu model:more

- nu-properties, predicting vs modeling ...
- LSND poorly explained in a 4-nu model:more
- in 2+2 solar at odds with atmospheric

- nu-properties, predicting vs modeling ...
- LSND poorly explained in a 4-nu model:more
- in 2+2 solar at odds with atmospheric
- in 3+1 LSND at odds with the rest

- nu-properties, predicting vs modeling ...
- LSND poorly explained in a 4-nu model:more
- in 2+2 solar at odds with atmospheric
- in 3+1 LSND at odds with the rest
- null KamLAND \longrightarrow NSI & SFP solar solns ??

- nu-properties, predicting vs modeling ...
- LSND poorly explained in a 4-nu model:more
- in 2+2 solar at odds with atmospheric
- in 3+1 LSND at odds with the rest
- null KamLAND \longrightarrow NSI & SFP solar solns ??
- NSI can (and must) be tested at NuFact...
Conclusions

- nu-properties, predicting vs modeling ...
- LSND poorly explained in a 4-nu model:more
- in 2+2 solar at odds with atmospheric
- in 3+1 LSND at odds with the rest
- null KamLAND \longrightarrow NSI & SFP solar solns ??
- NSI can (and must) be tested at NuFact...
- Dirac or Majorana ??