## Future projects on atmospheric neutrinos

- Physics issues
- Detectors

Neutrino 7 MA

Munich

•

0

2002 📕

Sensitivity forecastSummary

Tommaso Tabarelli de Fatis, *INFN* – Milano (Italy)

## Physics issues with atmospheric v's

Neutrino

2002

- Explicit observation of the oscillation pattern in  $\nu_{\mu}$  disappearance
  - Test of the disappearance dynamics (proof of oscillations)
  - Precision measurement of  $\Delta m^2_{\otimes}$  and  $sin^2 2\theta_{23}$
- Search for subdominant effects
  - Matter effects in scenarios with three (or more) neutrinos
    - $sin^2\theta_{13}$ , sign of  $\Delta m^2$ , ...
  - Non statndard interactions (FCNC, VLI, VEP, ...)
- Explicit detection of  $v_{\tau}$  appearance

## **Beam properties**

Wide L/E range with very long baselines

- Sensitivity to oscillations down to small  $\Delta m^2$
- Possibility to test earth-induced matter effects
- Up/down symmetry above ≈ 1 GeV
  - For  $\Delta m^2 < 10^{-2} \text{ eV}^2$  and  $E_v > 1.5 \text{ GeV}$ , downgoing neutrinos unaffected by oscillations  $\rightarrow$  Reference source
- Almost democratic flavour composition
- Low intensity (≈100 evts/kty)
   → massive detectors
- The beam is on!
- Improving knowledge of fluxes (see T.Gaisser talk)



Neutrino

### Detectors

|                                    |             |                               | Neutrino 2 Md  |
|------------------------------------|-------------|-------------------------------|----------------|
|                                    |             |                               | 2002 Munich    |
|                                    | Mass        | Status                        | Physics start  |
| Reference                          |             |                               |                |
| Super-K                            | 50/22 kt    | idle                          | 2003 (restart) |
| Large Water Cherenkov              |             |                               |                |
| UNO                                | 650/450 kt, | discussed                     | 201?           |
| Hyper-K                            | 1.0 Mt      | discussed                     | 201?           |
| Aqua-RICH                          | 1.0 Mt      | R&D                           | ??             |
| Magnetised Iron Neutrino Detectors |             |                               |                |
| Minos                              | 5.4/3.3 kt  | construction                  | 2003           |
| MONOLITH                           | 34/27 kt    | not approved by INFN          | ??             |
| Generic 50 kt                      | ?/50 kt     | discussed for v-<br>factories | 201?           |
| Liquid Argon TPC                   |             |                               |                |
| ICARUS T600                        | 0.6/0.5 kt  | approved                      | 2003           |
| ICARUS                             | 3.0/2.5 kt  | proposed for CNGS             | 2006 (?)       |

## The UNO detector

10%

• Proton decay, supernova, solar and atmospheric neutrinos

A Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit

A. Gung

Cost (built-in staging)

Fully contain E<sub>µ</sub> ≈ 35 GeV

Electron and muon identification (no charge id)

Neutrino 7 MA

Munich

2002

Option for LBL beam Known technique (~SK with lower PM coverage)

Only optical # separation #

60x60x60m<sup>3</sup>x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 # of 8" PMTs: 14,900

Low unit cost (0.5 M€/kt + 0.5 M€/kt for excavation )

## Hyper-Kamiokande

 Super-K successor for Supernova, solar, atmospheric and JHF beam neutrinos and proton decay



Neutrino 7 M

Munich

2002

# A beautiful MIND (MONOLITH)

- Main focus on atmospheric muon neutrinos
  - Acceptance at high energies  $\rightarrow$  good resolution on v energy and angle
  - $v_{\mu}/\overline{v}_{\mu}$  separation (muon charge)

34 kt mass (two modules)

- ~1.3 T magnetic induction
- ~54000 m<sup>2</sup> of Glass Spark Counters

លាំ

Munich

Neutrino

2002

~1 ns timing resolution



• Option (reuseable) for v-factory beams

30 m

- Supernova watch with neutral currents (à la OMNIS) ?
- Low unit cost (1 M€/kt)

14.5 m

13.1 m

## Explicit detection of oscillations



## Forthcoming experiments

• Check of Super-K

• Not for precision measurements (with atmospheric v's!)

Neutrino

2002

Munich



Low mass and limited acceptance at high energies

## A high resolution thought experiment



Flux independent analysis

Neutrino

2002

 $\Delta m^2$  (10<sup>-3</sup> eV<sup>2</sup>

រាំ ស្រ

Munich

- Only multi-GeV µ's
- Reference source of downgoing neutrinos
- Precision on parameters limited by statistics

#### Atmospheric versus beam





- O(1%) cent statistical precision on oscillation parameters
- Systematic limitations:
  - $\approx 1\%$  on sin<sup>2</sup>2 $\Theta_{23}$  (Deviation from exact up/down symmetry)
  - O(1%) on  $\Delta m^2$  (L/E scale and resolution function)

## Explicit detection of $\nu_\tau$

 $\nu_{\tau}$  appearance  $\leftrightarrow$  "NC-like" up/down (zenith angle dependence)

- S/N  $\approx$  1/100 before selections
  - SK result ( $\approx 2\sigma$  effect) statistically limited
  - Largest systematic error (16%) related to uncertain knowledge of  $\Delta m^2$
  - Expect  $3\sigma$  effect in 10 y of SK exposure
  - Achievable also with other techniques provided the mass is large enough
  - If needed: UNO  $\approx$  400  $\tau$ 's/year



Neutrino

2002

Munich

- Marginal compared to  $\nu_{\tau}$  detection from beam, but useful to test scenarios with sterile neutrinos

## Subdominant effects?

Subdominant effects can perturb the L/E dependence of standard • (pure)  $v_{\mu}$  -  $v_{\tau}$  oscillations

Neutrin

Matter effects

200

- $[\nu_{\mu} \nu_{\tau}]$  +  $[\nu_{\mu} \nu_{e}]$   $\rightarrow$  [L/E] + [MSW]  $[\nu_{\mu} \nu_{\tau}]$  +  $[\nu_{\mu} \nu_{s}]$   $\rightarrow$  [L/E] + [MSW]
- $[\nu_{\mu} \nu_{\tau}]$  +  $[VEP, VLI] \rightarrow [L/E] + [LE]$
- $[v_{\mu} v_{\tau}]$  + [FCNC]  $\rightarrow$  [L/E] + [L]
- Electron neutrino (three neutrino oscillations) •
  - Solar LMA solution
  - Contribution of  $v_e \leftrightarrow v_u$  to  $\Delta m^2_{\otimes}$
- Sterile neutrino (2+2 and 1+3 scenarios) •
  - Spectral distortions at high E, + upward muons (SK, MACRO-like analysis)
  - If non maximal mixing  $\rightarrow$  additional handle from charge id (MIND) •

## Matter effects with three neutrinos



"One mass scale dominance" scenario for atmospheric v's:  $\Delta m_{\otimes}^2 = \Delta m_{23}^2 >> \Delta m_{\odot}^2 = \Delta m_{12}^2$ 

Neutrino

2002

Munich

Relevant parameters:  $\Theta_{13}$ ,  $\Theta_{23}$  ,  $\Delta m^2_{\otimes}$ 

Resonant  $\nu_e \leftrightarrow \nu_\mu$  transition either on  $\nu$ or on anti- $\nu$  depending on the sign of  $\Delta m^2_{\otimes}$ 



 Largest effects in the earth's mantle (E<sub>R</sub>≈7 GeV)

 $v_e$  appearance

Neutrino



- Difference in resonance height for positive and negative  $\Delta m^2$ 
  - Lower rate (cross-section) for antineutrinos than for neutrinos
  - $\approx 2\sigma$  separation for  $\pm \Delta m^2$



$$v_{\mu} \text{ disappearance}$$
•  $\frac{\phi(\mu)_{obs}}{\phi(\mu)_{exp}} = P_{\mu\mu} + \frac{\phi(e)}{\phi(\mu)} P_{e\mu}$ 
Charge Asymmetry
$$\int_{1}^{1} \int_{0}^{1} \int_{0}^{1}$$

## Sensitivity plots (90% C.L.)



#### Large exposures

Neutrino



#### Sensitivity statistically limited

- Small uncertainty from the knowledge of the Earth's density profile (Earth's mantle is well known)
- Resonance width comparable to the experimental resolution
- Better resolution needed to further push the sensitivity below  $\sin^2 2\Theta_{13} \approx 0.01$

## The LMA solution with high $\Delta m^2_{\odot}$ Neutrino 2002 Munich



- Suggested solution to the normalization problem of sub-GeV electrons in SK (Peres&Smirnov, 2001)
  - A non zero effect requires either
    - (2,3) mixing not maximal
    - (1,3) mixing not vanishing
- Effects statistically visible in large water Cherenkov detectors
  - (zenith angle dependence smeared by resolution at low energy → need good knowlegde of flux normalization)

## ICARUS (20 kty)



 Improved reconstruction of the neutrino direction at low energies

Neutrino

2002

Munich

- (resolution limited by Fermi motion and nuclear effects)
- With some luck a zenith angle dependence might be detectable

(Some model dependence in the correction for the up/down asymmetry of low energy neutrino events)

- Key to  $\Theta_{13}$  or non maximal  $\Theta_{23}$ , if LMA parameters fixed elsewhere
- Precision measurement in SuperICARUS?

## Summary



- Short term (approved experiments)
  - Precision on sin<sup>2</sup>2 $\Theta_{23}$  and  $v_{\tau}$  appearance from SK ÷ (exposure)<sup>1/2</sup> (if operation conditions as before)
  - Other approved projects have limited sensitivity to atmospheric neutrinos
- Medium/Long term (?): Massive (magnetised) detector
  - precise reconstruction of the oscillation pattern
  - precision measurement of  $\Delta m^2$  and  $sin^2 2\Theta_{23}$ 
    - Most probably covered by LBL beams (NuMI, JHF)
  - If  $\sin^2 2\Theta_{13}$  not too small, window of opportunity to observe matter effects in  $3\nu$  oscillations and measure the sign of  $\Delta m^2$ 
    - Requires Very-LBL (Super-Beams, Neutrino factories)