May 27, 2002 @NEUTRINO2002

Future Experiments with Super Neutrino Beams

Tsuyoshi NAKAYA (Kyoto University)

Outline

Introduction
 Super Neutrino Beams
 Experiments with a super neutrino beam
 Physics sensitivity
 Summary and Conclusion

1. Introduction

A next goal of the neutrino experiments is to explore the neutrino oscillation phenomena in detail beyond the discovery phase.

- Three generation Matrix (NMS matrix)
- CP Violation, matter effect, the sign of $\Delta m_{23}{}^2$
- May be an unexpected physics behind the oscillation phenomena.

A voyage to the unexplored region

Discovery and Confirmation.

- Super-Kamiokande, SNO, K2K, MINOS, ICARUS,
- These are good at discovering a surprise of the large effect (v oscillation).
- , which should be followed by the more complete studies with high statistics,
 - more precision
 - θ_{23} , Δm_{23}^2 , oscillation curve, non-oscillation scenario
 - sensitive to a rare process
 - = θ_{13} ($\nu_{\mu} \rightarrow \nu_{e}$), CP Violation, unexpected phenomena.

to explore the underlying physics of v oscillation.

2. Super Neutrino Beam

 A Super Neutrino Beam makes it possible to study v oscillation phenomena with a great precision.

What is the Super Neutrino Beam?

- No Clear definition, but it is a very intense neutrino beam produced by a high power (~1MW or more) accelerator.
 - A conventional method.
 - Still technically challenging due to the high power and the high radiation environment, but not impossible.

(High Intensity) Proton Accelerators

	Power	Energy (GeV)	Intensity (10 ¹² ppp)	Rep. rate
				0.45
NEN-PS	0.005	12	0	0.45
AGS	0.14	24	60	0.6
FNAL-MI	0.41	120	40	0.53
SPS	0.3	400	35	0.16
JHF-I	0.77	50	330	0.29
Super-AGS	1.3	28	120	2.5
FNAL-proton driver-I	1.2	16	30	15
SPL	4	2.2	230	50
JHF-II	4	50		

Not the construction stage yet, but R&D stage.

(Super) Neutrino Beams

	<ev> (GeV)</ev>	L (km)	#CC v/kt/vr	L/L _{osci} *	f(v _e) @peak
K2K	1.3	250	2	0.47	~1%
NuMi (High E)	15	730	3100	0.12	0.6%
NuMi (Low E)	3.5	730	469	0.51	1.2%
CNGS	17.7	732	2448	0.10	0.8%
JHF-I	0.7	295	133	1.02	0.2%
Numi off-axis	2.0	730	~80	0.89	0.5%
Super AGS	1.5	2540	11	4.1	0.5%
JHF-II	0.7	295	691	1.02	0.2%
SPL	0.26	130	16.3	1.21	0.4%
β beam **	0.58	130	<mark>84</mark>	0.54	

(*) $L_{\text{osci.}} = \frac{\pi}{2} \cdot \frac{\langle E_v \rangle}{1.27 \,\Delta m_{23}^2} w / \Delta m_{23}^2 = 3 \times 10^{-3} eV^2$ (**) $\gamma = 150, \,^{6}\text{He}(\overline{v_e})$

 3. Experiments with the super neutrino beam
 Japan: JHF-Kamioka Neutrino Project
 USA: FNAL Super-NUMI w/ the proton driver upgrade and the BNL Super-AGS
 Europe: SPL (or CNGS off-axis) +β beam

v beam at JHF

• Principle

- Intense Narrow Band Beam by "off-axis".
- Beam energy is at the oscillation maximum.
 - High sensitivity, less background
- ~1 GeV v beam for Quasi-elastic interaction.

v_{μ}/v_{μ} flux for CP violation search.

Super-Kamiokande

50,000 ton water Cherenkov detector (22.5 kton fiducial volume)

FNAL, BNL to Soudan

Water Cherenkov like Super-K

18

Detectors

TOP END CAP DRIN TORE Liquid Ar TPC COTL (~100kton) 6- CRHISTAT 6- CATHODES (N° S) 7- KIRE OWNERS (N° 4) 8- FIELD SHAPTNG ELECTRODES (4)(3) ۲ 6 3 2 LANNDD

Liquid Argon Neutrino and Nucleon Decay Detector

USA beams and detectors

- US neutrino physicists are investigating several combinations of detectors, beams, baseline, etc. including v-factory.
- BNL LOI is proposed to send v beam to Homestake at the distance of ~3000km to study matter effect and the sign of ∆m₂₃².
 This is a unique feature of this project, which is not considered in JHF-Kamioka and CERN-SPL.
- My talk does not cover NUMI off-axis which will be presented in the later talk.

3.3 CERN: SPL + β beam

SPL (Super Proton Linac)

CERN SPL to UNO at Frejus

4. Physics Sensitivity

- Physics goals of most super v-beam experiments are:
 - Discovery of $v_{\mu} \rightarrow v_{e}$ and the measurement of θ_{13}
 - CP Violation ($\nu_{\mu} \rightarrow \nu_{e} \text{ vs } \overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$)
 - Sign of Δm^2 by using matter effect.
 - Precision measurement of v oscillation parameters.

<u>ve</u> appearance (continue)

$\underline{\nu_{\mu}}$ disappearance

$\nu_{\mu} \rightarrow \nu_{\tau}$ confirmation w/ NC interaction

• NC π^{0} interaction (v + N \rightarrow v + N + π^{0}) > $v_{\mu} \rightarrow v_{e}$ CC + NC(~0.5CC) ~0 (sin²2 $\theta_{\mu e}$ ~0) v_{\mu} CC + NC(~0.5CC) ~0 (maximum oscillation) NC

CP Sensitivity (3σ)

JHF-HK CPV Sensitivity

assuming 2% BG uncertainty

sin²2θ₁₃=0.01 →sinδ>0.44 (26deg)

large sin²2θ₁₃ →sinδ>0.25 (14deg)

US Super v beam

 They are studying the physics potential of several options, which are competitive to JHF-Kamioka project.

CERN: SPL+ β beams to UNO@Frejus

- Search for $v_{\mu} \rightarrow v_{e}$ w/ super v beam
- Search for $\nu_e \rightarrow \nu_\mu$ w/ β beam
- They can also study T symmetry in v oscillation between $v_{\mu} \rightarrow v_{e}$ and $v_{e} \rightarrow v_{\mu}$.

CP sensitivity (δ)

• θ_{13} and δ measurement

CERN: SPL+ β beams to UNO@Frejus

More Possibilities (1) Japan to Korea or China (hep-ph/0112338) ■ CP violation and the sign of Am₂₃² with JHF v beam.

More Possibilities (2) Fermilab to Super-Kamiokande (hep-ex/0203005) Matter enhanced v oscillation (L=9300km)

Remark: Near to Far extrapolation

A next generation LBL v experiment requires the precise knowledge of v spectrum at the far site based on the measurements at the near site.

- Hadron Production Experiments
 CERN HARP(-III), FNAL E907
- A detector at the medium distance
 - JHF-Kamioka project proposes to build the near neutrino detector at 2km away from the target, which is far enough to see the neutrino production volume as a point source.

Non Oscillation Physics

- A near site detector with the super ν beam can probe LSND effect if demanded.
- Precise v interaction and cross section study.
 Quasi-elastic scattering; etc..
- $V_{\mu}e^{-}$ elastic scattering at low Q²; the neutrino magnetic moment.

5. Summary and Conclusion

 In the next 5 years, several LBL v experiments will provide more information on v oscillation.

The Super v beam experiments will follow the trend, and further explore the physics.
 JHF-Kamioka experiment will start in 2007 earliest.
 - sin²20₁₃ sensitivity w/ super v-beams
 0.01~0.001 w/ 20~50 kton detectors
 >10 times more sensitive than CHOOZ.
 <0.001 w/ 400~1000 kton detectors

5. Summary and Conclusion (Continue)

- CP Violation sensitivity
 - Need a larger detector (400~1000 kton) when $v_{\mu} \rightarrow v_{e}$ oscillation is discovered.
 - The sensitivity of CP violation phase δ is down to 10~20 degrees if $\Delta m_{12}^2 = 5 \cdot 10^{-5} \text{eV}^2$ (LMA).
- The sign of Δm_{23}^2 and matter effect
 - The longer baseline (~1000km or more) is necessary to study it. JHF and CERN SPL has no design of the v beam line for this purpose.

 There may be a surprise behind the v oscillation phenomena. We should proceed the experiments with the super v beams and the larger detectors.