

Giuliana Fiorillo

University of Naples "Federico II" and INFN

Neutrino 2002, Munich, Germany, May 25-30 2002

The Cern short baseline program:

CHORUS and NOMAD experiments

- Search for v_{τ} appearance in the SPS v_{μ} beam Cosmologically relevant region
- The $\nu_{\mu} \rightarrow \nu_{e}$ oscillation search

LSND signal region

Study of neutrino interactions

Charmed and strange particles production

The SPS neutrino beam

BCT1

Mean distance from v source (π , K decays): NOMAD ~ 620m, CHORUS ~ 600m.

Reflector

Al Collimator

Wide Band Beam: broad energy spectra.

Muon Pits

Main component average energy ~25 GeV

CHORUS

NOMAD

- Antineutrino contamination <6%, ν_{e} ~1%
- Short Baseline Experiments:

 $\langle L \rangle / \langle E \rangle \approx 2 \times 10^{-2} \, \mathrm{km/GeV}$

 $\Rightarrow \Delta m^2$ sensitivity in the range $1 \le \Delta m^2 \le 100 \text{ eV}^2$

The $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation search

NOMAD high resolution on momentum reconstruction and pid Indirect search \rightarrow signal from kinematical criteria

CHORUS very high resolution at vertex

Direct search \rightarrow signal from visual scanning

High design sensitivity $P(\nu_{\mu} \rightarrow \nu_{\tau})=10^{-4}$ for $\Delta m^2 \approx 1-10 \text{ eV}^2$ (relevant for cosmology & DM)

The detectors

Hybrid detector

- Active emulsion target
- \Rightarrow locate interaction and decay vertices
- Electronic detector
- \Rightarrow predict tracks in emulsion + kinematics

Electronic detector

- High resolution tracking
- \Rightarrow momentum resolution 3.5% (p<10 GeV)
- Fine grained calorimetry
- $\Rightarrow \Delta E/E=3.2\%/\sqrt{E} \oplus 1\%$
- Particle id
- \Rightarrow pion rej 10³ with electron eff >90%

Data samples

Chorus (94-97)

2,305k emulsion triggers

- Phase I : 167k events located in emulsion
- Phase II: ~60k new events located + full event analysis at vertex

3-dimensional visual reconstruction

sub-micron resolution at vertex

Nomad (95-98)

1,354k ν_{μ} CC interactions

100% of data analysed

"Bubble chamber" quality

- very high resolution in momentum and energy
- particle I d

The v_{τ} CC signal has intermediate properties between two background sources

Hadronic decay The main source of bkgd are NC \Rightarrow isolation between the visible τ decay products and the hadronic jet.

Electron decay

The main source of bkgd are $v_e CC$ \Rightarrow kinematics based on the missing momentum and angular relations in the transverse plane.

The Nomad analysis (1): general principles

Maximum rejection power achieved using full topology of the events

- Definition of a pdf L, describing the probability for an event to be signal or background
- Event classification based on likelihood ratio between signal and background hypothesis

$$\ln\lambda = L_{s}/L_{B}$$

- Inλ is subdivided into bins characterized by different S/B ratios
- The position of the bins is decided on the basis of the sensitivity of the analysis

Independent measurements from different decay modes & signal bins are combined within the frequentist Unified Approach

(Feldman & Cousins Phys. Rev. D57(1998)3873)

The Nomad analysis (2): selection scheme

Background rejection optimized separately for NC and CC \rightarrow two distinct likelihood functions: $ln\lambda^{CC}$ and $ln\lambda^{NC}$

Definition of signal region: "BOX" overall sensitivity to oscillations is optimized
Blind analysis: data events inside the "box" cannot be analysed until background predictions are finalised

The Nomad analysis (3): reliability of background estimate

large kinematical suppression + multidimensional correlations \Rightarrow knowledge of bkgd O(10⁻⁵)

Data simulator

Corrections to MC extracted from data

- Use identified v_{μ} CC in both Data (DS) and MonteCarlo (MCS) and replace the leading μ^{-} by the appropriate MC particle: V for NC, τ^{-} for signal, e⁻ for v_{e} CC
- Compute all efficiencies as

$$\varepsilon = \varepsilon_{MC} \frac{\varepsilon_{DS}}{\varepsilon_{MCS}}$$

Missing p_t in v_e CC

Control samples

Giuliana Fiorillo

 $\tau^{\scriptscriptstyle +}$ search and $\tau^{\scriptscriptstyle -}$ search outside the "box" are used to check final predictions and evaluate systematics

Final result: no evidence for oscillations in Nomad

Blind box is opened:

- Data are consistent with background in each bin
- Integrals and shapes of Inλ distribution agree with background predictions

The Chorus ν_{τ} search

1) Event reconstruction by electronic detectors

Pre-selection of events and tracks

reduce scanning load

2) Event location in emulsion

Automatic emulsion scanning: location of the selected tracks in the emulsion sheets and follow up to the interaction vertex (Scanback)

3) Decay search

Automatic scanning and offline selection for decay topology search

confirmation by eye-scan

(Netscan: search for all tracks in $1.5 \times 1.5 \times 6$ mm³)

4) Post-scanning analysis

Kinematical study, kink Pt measurement

1µ sample: 1 negative muon from the primary interaction vertex with P < 30 GeV/c Oµ sample: at least one negative track with P \in [-1,-20] GeV/c

Location efficiency higher for 1μ (40%) than for 0μ (27%) independently from track angle

Kink finding

Decay search

- Segments with small IP wrt the scan-back track are parent candidates
- Large angle Long path kinks are visible

Candidates are selected for eye-scan

Data flow in Chorus Phase I

Emulsion triggers: 2,305K

1µ		Оµ		
Initial sample	713,000	Initial sample (CC contamination)	335,000 (140,000)	
Momentum cut + angle cut	477,600	≥1 negative tracks + Momentum cut + angle cut	122,400	
Events scanned	355,395	Events scanned	85,211	
Vertex located	143,742	Vertex located	20,081	
Selected for eye-scan	11,398	Selected for eye-scan	2,282	

Computer-assisted operator measurements of candidate kink topology

White kink background

Post scanning WK rejection

the transverse plane

correlated with phad

 Φ_{kink} cut: τ opposite to the shower in

 L_{decay} cut: τ flight length shorter and

1-prong nuclear interaction with no ionizing activity at interaction point

- CHORUS measured $\lambda_{WK}(P_t>250MeV/c) = 24.0 \pm 8.5 \text{ m}$
 - \Rightarrow 2.6 \pm 0.8 WK expected in the signal region

Cuts optimisation by the a-priori criterium of maximising the exclusion power, independently from data. Giuliana Fiorillo

Chorus and Nomad as small background experiments

 $N_{\tau}^{max} = N^{obs} \times (\sigma_{\tau}/\sigma_{\mu}) \times (\epsilon_{\tau}/\epsilon_{\mu}) \times Br$

75% of the final NOMAD sensitivity comes from low bkgd bins

K	channel	Total bkgd	$N_{ au}^{max}$	Data	channel	Total bkgd	$N_{ au}^{max}$	Data	2
	1µ	0.1	5014	0	e	0.61	2826	0	-
	•				h	0.76	5343	1	
	0μ	1.1	2004	0	3h	0.32	675	0	
		1.2	7018	0		1.69	8844	1	-

NO EVIDENCE FOR OSCILLATIONS

Results of the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation search

V r	Total bkgd	$N_{ au}^{max}$	Data	Total bkgd	N_{τ}^{max}	Data	24
·	1.2	7018	0	50.5	15226	52	-
	(±30% syst)	(±15% syst)		(±20% syst)	(±10% syst)		

Calculation of Limit @ 90% CL

$$L_{osc}(\nu_{\mu} \rightarrow \nu_{\tau}) = 3.4 \times 10^{-4}$$
$$S_{osc}(\nu_{\mu} \rightarrow \nu_{\tau}) = 3.7 \times 10^{-4}$$
$$P(\leq L_{osc}) = 28\%$$

$$\begin{array}{l} \mathsf{L}_{\mathrm{osc}}(\nu_{\mu} {\rightarrow} \nu_{\tau}) = 1.63 \times 10^{-4} \\ \mathsf{S}_{\mathrm{osc}}(\nu_{\mu} {\rightarrow} \nu_{\tau}) = 2.5 \times 10^{-4} \\ \mathsf{P}(\leq \mathsf{L}_{\mathrm{osc}}) = 37\% \end{array}$$

$$L_{osc}(\nu_{\mu} \rightarrow \nu_{\tau}) = 2.1 \times 10^{-4}$$

$$S_{osc}(\nu_{\mu} \rightarrow \nu_{\tau}) = 3.4 \times 10^{-4}$$

$$P(\leq L_{osc}) = 29\%$$

T.Junk, NIM A434 (1999) 435 G.J.Feldman & R.D.Cousins,

Phys.Rev. D57 (1998) 3873

Exclusion plots

Combined result with F&C (*)

$$\begin{array}{l} \mathsf{L}_{\rm osc}(\nu_{\mu} {\rightarrow} \nu_{\tau}) = 0.5 \times 10^{-4} \\ \mathsf{S}_{\rm osc}(\nu_{\mu} {\rightarrow} \nu_{\tau}) = 1.7 \times 10^{-4} \\ \mathsf{P}({\leq} \mathsf{L}_{\rm osc}) = 15\% \end{array}$$

$$\begin{array}{l} \mathsf{L}_{\rm osc}(\mathsf{v}_{\rm e} {\rightarrow} \mathsf{v}_{\tau}) = 0.4 \times 10^{-2} \\ \mathsf{S}_{\rm osc}(\mathsf{v}_{\rm e} {\rightarrow} \mathsf{v}_{\tau}) = 0.9 \times 10^{-2} \\ \mathsf{P}({\leq} \mathsf{L}_{\rm osc}) = 25\% \end{array}$$

(*) by courtesy of R. Petti

Nomad $\nu_{\mu} \rightarrow \nu_{\rm e}$ oscillation search

- Appearance experiment based on powerful electron id in NOMAD
- $v_{\rm e}$ in the beam ~ 1%
- Different energy spectra and radial distribution for ν_e and ν_μ

 $\Rightarrow Study R_{e\mu} = (v_e CC)/(v_{\mu}CC) \text{ as a}$ function of E_v and r

748k $\nu_{\!_{\mu}}\text{CC}$ and 8k $\nu_{\!_{e}}\text{CC}$ candidates

compare $R_{e\mu}$ distribution in data and MC with a Blind Analysis

NO EVIDENCE FOR OSCILLATIONS

Nomad $\nu_{\mu} \rightarrow \nu_{\rm e}$ exclusion region (Preliminary)

At large $\Delta m^2 \rightarrow sin^2(2\Theta) < 1.2 \times 10^{-3} @ 90\%$ CL

CHORUS Phase II

- Scanning speed increased by three orders of magnitude since the start of data taking
- → Automatic scanning of a large emulsion volume is now feasible
 - New predictions/locations (mainly Oµ) to increase by >60k the current sample of ~167k located events (scan-back almost completed)
 - On all located event → NETSCAN analysis at vertex (data-taking is on-going, current speed is ~10k events/month)
- ➔ Improvement of oscillation search to reach the proposal sensitivity
- Collection of O(10⁵) sample of events fully analyzed at vertex
- ➔ Unbiased study of charm production in neutrino interactions
 - About 4000 charm events inclusively selected

A new scanning technique!

Netscan

- Use already located events
- Pick up <u>all track segments</u> in 1.5 × 1.5 × 6.3 mm³ fidvol around scan-back track

At least 2-segment connected tracks

- → Decay search is not limited to the scan-back track
- Offline analysis of emulsion data

Eliminate passingthrough tracks

Charm Physics with Chorus

• D⁰ production Phys. Lett. B527(2002)173 Data taking ongoing : $25k \text{ CC} \rightarrow 150k \text{ CC}$ I mproved selection : purity $65\% \rightarrow 90\%$

No need for manual?

Inclusive charm

~ 4,000 neutrino-induced charm events (E531 had 122) Fragmentation fractions D^0 : D^+ : D_s^+ : Λ_c^+

 $B(c \rightarrow \mu)$, V_{cd} , s(x), ...

• Associated charm production Background evaluation based on CHORUS data and FLUKA I mproved selection : efficiency $1\% \rightarrow 25\%$

Exclusive channels
 Proton identification
 MCS momentum measurement
 Σ[±] detection

 Λ_c absolute BR,QE Λ_c production

- D* production Phys. Lett. B526(2002)278
- High purity sample of D^{*_+} events \rightarrow study of fragmentation process
- Inclusive neutrino charm production by dimuons

currently being updated

- Strange particles and resonances production Nucl. Phys. B621(2001)3
- V⁰ sample (K⁰_s, Λ , anti- Λ) \rightarrow an order of magnitude increase in statistics with respect to bubble chamber experiments
- (anti-)Lambda polarization Nucl. Phys. B605(2001)3
- Backward going protons and pions in CC reactions Nucl. Phys. B609(2001)255
- Study of nuclear effects in neutrino interactions. Test of Fermi motion models

• The CERN short baseline program explored $v_{\tau} \rightarrow v_{\tau}$ oscillations within the cosmologically relevant region down to $\sin^2(2\Theta) O(10^{-4})$

NO EVIDENCE FOR OSCILLATIONS IN THE EXPLORED REGION

- The two CERN neutrino experiments have demonstrated that a sensitive search for v_{τ} appearance can be achieved with two different approaches: the kinematical analysis and the automatic emulsion scanning \rightarrow valid techniques for planned and future experiments
- Highly valuable data samples have been collected → further studies for neutrino physics, more results to come