Results from the Antarctic Muon and Neutrino Detector Array (AMANDA)

Doug Cowen (for the AMANDA Collaboration) Pennsylvania State University cowen@phys.psu.edu

For the most excellent marriage of particle physics and astronomy: •Something old

Recap of recent results

•Something new

•New analyses of older data

•New analyses of newer data

Something borrowed

•Extreme Cold Weather Clothing

•Something blue

•Lips, fingertips, noses,...

The AMANDA Collaboration

1 South American, 9 European and 7 US institutions, about 110 current members:

- 1. Bartol Research Institute, University of Delaware, Newark, USA
- 2. BUGH Wuppertal, Germany
- 3. Universite Libre de Bruxelles, Brussels, Belgium
- 4. DESY-Zeuthen, Zeuthen, Germany
- 5. Dept. of Technology, Kalmar University, Kalmar, Sweden
- 6. Lawrence Berkeley National Laboratory, Berkeley, USA
- 7. Dept. of Physics, UC Berkeley, USA
- 8. Institute of Physics, University of Mainz, Mainz, Germany
- 9. University of Mons-Hainaut, Mons, Belgium
- 10. University of California, Irvine, CA
- 11. Dept. of Physics, Pennsylvania State University, University Park, USA
- 12. Dept. of Physics, Simon Bolivar University, Caracas, Venezuela
- 13. Physics Department, University of Wisconsin, River Falls, USA
- 14. Physics Department, University of Wisconsin, Madison, USA
- 15. Division of High Energy Physics, Uppsala University, Uppsala, Sweden
- 16. Fysikum, Stockholm University, Stockholm, Sweden
- 17. Vrije Universiteit Brussel, Brussel, Belgium

Discovery Potential!

The Site: 5 cm of Powder, 2 km of Base, Never Rains, and Lots of Non-stop Sunshine

The AMANDA Detector

- Hot-water-drill 2km-deep holes & insert strings of PMTs in pressure vessels.
 - AMANDA-B10: 302 PMTs, completed in 1997
 - Old & new A-B10 results presented
 - AMANDA-II: 677 PMTs, completed in 2000
 - Prelimin. results presented
- **AMANDA challenges:**
 - Natural medium!
 - Blame Mother Nature
 - Remote location!
 - Blame Scott & Amundsen who made it look too hard to get there
 - Unfettered bkgd. source!
 - We'd all like to know exactly who to blame...
 - Prototype detector!
 - Can you blame us for trying to improve things?

Depth

CC muon neutrino interactions → Muon tracks

 $\nu_{\mu} + N \rightarrow \mu + X$

- CC electron and tau neutrino interactions: $v_{(e,\tau)} + N \rightarrow (e,\tau) + X$
- NC neutrino interactions:

 $\mathbf{v}_{\mathbf{x}} + \mathbf{N} \rightarrow \mathbf{v}_{\mathbf{x}} + \mathbf{X}$

Important Definition for Northern Hemisphere Dwellers

AMANDA Is Working Well

• Sensitivity to up-going muons demonstrated with CC atm. v_{μ} interactions:

 Sensitivity to cascades demonstrated with *in-situ* sources (see figs.) & downgoing muon brems.

- AMANDA also works well with SPASE:
 - Calibrate AMANDA angular response
 - Do cosmic ray composition studies.

Munich, Neutrino 2002

Results from AMANDA/Doug Cowen/Penn State

AMANDA Results

Dataset	Analyses (<mark>published</mark> ; <u>under internal review</u>); All analyses done * <u>BLIND</u> *
1997	Atmospheric neutrinos ; searches for WIMPs , supernovae , <u>point</u> <u>sources</u> , diffuse sources, EHE v, <u>UHE cascades</u> , GRBs; cosmic-ray composition, relativistic monopoles
1998	Difficult year for detector. Third reconstruction underway; analysis to follow.
1999	Smoother year. Fully reconstructed; data being analyzed. See 1997 for topics.
2000	~3x bigger \rightarrow >3x better. <i>Preliminary</i> results on atmospheric neutrinos, searches for point sources, diffuse sources, cascades, GRBs.
2001	Analyses in progress.
2002	Collecting data. Online filtering in place at Pole.

Reconstruction Handles

	up/down	energy	source direction	arrival time
Atmospheric ν_{μ}	X			
Diffuse v, EHE events	X	X		
Point Sources: AGN,WIMPs	X	X	X	
GRBs	X	X	X	X

"Something Old": 1997 Data 1. Atmospheric v's, Our Test Beam

The only known high energy v source is also the hardest to work with: low E with no temporal or directional handle.

Astro-ph/0205109	, submitted to PRD
------------------	--------------------

	MC down μ	MC atm ν	Data
Triggers	8.8e8	8,978	1.0e9
Upgoing	1,848	557	4,935
q > 7	17 ± 5	279 ± 3	204
		204 needles in a really big haystack	

2. EM & Hadronic Showers: "Cascades"

Motivations for searching for

•

Response to Cascades: Simulated vs. Actual In-Ice Laser Data

Good agreement!

Disagreements: Understood in light of known systematic uncertainties.

Results from AMANDA/Doug Cowen/Penn State

Response to Cascades: Cosmic Ray Muon Brems, Simulated vs. Measured

Discrepancy due to uncertainties in:

- ice optical properties
- OM sensitivity
- cosmic-ray spectrum
- rate of µ energy losses

Agreement restored by shifting energy scale by 0.2 in log₁₀E. Taken into account as systematic.

New Result, 1997 Data: Cascade Search

- Unique result:
 - Limit on <u>all</u> ν
 flavors and
 - Uses <u>full</u>
 reconstruction
 of cascade
- Analysis gets

 easier and more
 competitive with
 muons as detector
 grows in size,
 especially at
 higher energies

3. EHE (E \geq 10¹⁵ eV) Event Search

Results from AMANDA/Doug Cowen/Penn State

4. WIMP Search

astro-ph/0202370, submitted to PRD

Munich, Neutrino 2002

Results from AMANDA/Doug Cowen/Penn State

"Something New": Preliminary Results from AMANDA-II

- A-II is much larger than AMANDA-B10
 - Higher expected event rates
 - Improved angular acceptance near horizon
 - More efficient reconstruction of muons and cascades
 - As of 2002, initial reconstruction is done in real time
- Preliminary results:
 - Atmospheric neutrinos
 - the "test beam" for muons
 - anticipate ~5 clean v/day with very simple set of selection criteria
 - Diffuse cascade search
 - Diffuse v_{μ} source search
 - Point source search
 - GRB search

2002 Data: Real Time Analysis

"Something New": 2000 Data 1. Atmospheric v's, Still Our Test Beam

Data ----MC 70 70 Selection **a**. b. **60** 60 50 50 **Criteria:** 40 40 30 30 $-N_{\rm hit} < 50$ 20 20 - Zenith > 110° 10 10 0 -0.8 -0.2 -0.8-0.6 -1 -0.6 -0.4– High fit quality $cos(\theta)$ $cos(\theta)$ - Uniform light 70 70 C. 290 **60** 60 deposition 50 50 events along track 40 40 30 30 **Excellent** shape 20 $\mathbf{20}$ 10 10 agreement! -0.8 -0.2 -0.8 -0.4 -0.6 -0.4 -0.6 – Less work to $cos(\theta)$ $cos(\theta)$ obtain than

Gradual tightening of cuts extracts atm. v signal Notes: far from optimized; uses 60% of data; expect ~500-1000 atm. v events eventually.

with A-B10!

•

٠

2. Cascade Search

• Larger detector size

- Improves angular acceptance to $4\pi \rightarrow$
- Easier to reject backgrounds
- Increases reach in energy by 3x to ~1PeV
- Will enable us to push limit down by about an order of magnitude—or to see something!
- Current analysis based on 20% subsample of the 2000 data in accordance with our blind analysis procedures
 - At current AMANDA limit of Φ≤10⁻⁶ GeV cm⁻² s⁻¹ (muon analysis), expect about one signal event in 20% subsample
- See poster I-2 by M. Kowalski

Preliminary Cascade Limit (20% of 2000 Data)

Expected signal

Astrophysical v's	<i>Predicted</i> events in 100% of 2000 data
$\Phi_{v_e+v_e} = 10^{-6} \text{ E}^{-2}$ GeV cm ⁻² s ⁻¹	5.5
$\Phi_{\nu_{\tau}+\nu_{\tau}} = 10^{-6} \text{ E}^{-2}$ GeV cm ⁻² s ⁻¹	3.2
Atmospheric v's	<i>Predicted</i> events in 100% of 2000 data
v_e (CC), $v_e + v_\mu$ (NC)	0.15
Prompt charm (RQPM)	0.50

3. Diffuse v_{μ} Search

• Analysis:

- $\ Look \ for \ good \ muon \\ tracks \ with \ channel \\ density \ \rho_{ch} > 3$
- Normalize background to N_{hit} < 50 data
- Preliminary results using 20% of 2000 data
 - No systematics incorporated!
 - Sensitivity*: ~8×10⁻⁷
 - <u>Preliminary</u> Limit:
 - $\leq \sim 10^{-6} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$
 - ~same as *full* 1997

*Average limit from ensemble of experiments w/no signal

4. ν_μ Point Source Search

- Improved coverage near horizon
- In 6°×6° bin, for E⁻² spectrum, 10⁻⁸cm⁻² s⁻¹ flux:
 - ~2 signal events
 - ~1 background event
- Sensitivities calculated using background levels predicted from off-source data

Sensitivities (Preliminary)

Source\Sensitivity	muon (×10 ⁻¹⁵ cm ⁻² s ⁻¹)	v(×10 ⁻⁸ cm ⁻² s ⁻¹)
Markarian 421	2.6	1.1
Markarian 501	2.5	1.0
Crab	4.0	1.3
Cass. A	2.1	1.0
SS433	11.0	2.4
Cyg. X-3	2.6	1.1

Results from AMANDA/Doug Cowen/Penn State

- Look for ν_µ's in 10-100 TeV range, coincident with a GRB
 - Use off-source & off-time data—ideal for maintaining blindness
- 2000 data very stable
- Virtually background-free analysis
 - only need BG rejection factor of 10⁻³-10⁻⁴ (orders of magnitude less demanding than other analyses)
- Anticipate having ~500 GRBs to look at with 1997—2000 datasets
- Waxman-Bahcall limit still out of reach, but we're getting there!

Grand Summary

Courtesy: Learned & Mannheim; Spiering

Conclusions

• AMANDA-B10

- Continues to produce results, many of which are competitive or better than existing measurements, & challenge existing models
- Additional B10 data from 98 & 99 is being analyzed
- AMANDA-II
 - As expected, detector works much better than B10 alone
 - Larger instrumented volume
 - More mature experiment
 - Preliminary results based on 20% sub-samples of 2000 data are already comparable to B10 results from *full* 1997 dataset
 - 2001, 2002 data ready to be processed and analyzed
 - Detector upgrade: Adding full pulse digitization capability to extend physics reach
 - Will integrate A-II into...
- IceCube: The Second Honeymoon (see talk by A. Karle)

THE END

I lied, but only about the penguin.

AMANDA/IceCube postdoc positions available! Contact me afterwards or email me at cowen@phys.psu.edu