Neutrino Telescopes in the Mediterranean

John Carr (Centre de Physique des Particules de Marseille)

Motivation for a Northern Hemisphere Water Detector
Status of Mediterranean Projects: ANTARES, NEMO, NESTOR

Water versus Ice

Deployment

Ice gives solid platform to install detector Sea experiments need boats/ platforms Ice detectors worked first (Baikal deploys from ice)

Angular Resolution

Light scattering much less in waterAMANDA: $\sim 3^{\circ}$ (real detector)ANTARES: $\sim 0.4^{\circ}$ (simulations)

Uniformity of Detector response

Water homogeneous Ice has dust layers, bubbles Knowledge of efficiency simpler in water

Noise Backgrounds

Water: ⁴⁰K /bioluminescence ~ 60kHz / PMT Ice: only dark tube noise ~ 5kHz / PMT Detector design must take into account

Sky Observable by Neutrino Telescopes

South Pole

Mediterranean

Gamma ray flux >100 MeV observed by EGRET

Region of sky seen in galactic co-ordinates assuming efficiency=100% for 2π downwards

Need Neutrino Telescopes in both hemispheres to see whole sky

The Acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946

R. Enomoto et al., Nature, v416, p823,25 April 2002

Relative Right Ascension (degrees)

Cosmic Rays near Galactic Centre

Density plot of Charged Cosmic Rays E ~ 10¹⁸ eV

Search for Dark Matter as Neutralino


```
\chi + \chi \rightarrow WW, bb, ....

\downarrow \qquad \downarrow \qquad \downarrow

\mu\nu \qquad c\mu\nu

E_{\nu} \sim 0.3-0.5 m_{\chi}
```


WIMP looses energy by elastic interaction => if v < v_{escape}, capture capture + annihilation balance => constant density in core

Search for Annihilation at centre of Earth, Sun or Galactic Galactic Centre and Sun more visible from North

Comparison between ANTARES and Direct Detection

Mediterranean Sites

6°W 4°W 2°W 0°E 2°E 4°E 6°E 2°E 10°E 12°E 14°E 16°E 18°E 20°E 22°E 24°E 26°E 28°E 30°E 32°E 34°E 36°E 38°E 40°E 42°

C2GS

See talk of F. Dydak

Evolution of Mediterranean Projects

NESTOR

	1991 -	R & D, Site Evaluation
Summer	2002	Deep-sea deployment (4100m) & run 2-floors
Winter	2003	Recovery & re-deployment with 4-floors
Autumn	2003	Full Tower deployment in the deep sea
	2004	Add the three DUMAND strings around tower
	2005 - ?	Deployment of more NESTOR towers e.g. 7

ANTARES

	1996 - 2000	R&D , Site Evaluation
January	2000	Data from Demonstrator line
	2001	Start Construction of ~ 0.1km² at Toulon site
September	2002	Deploy pre-production prototype line
December	2004	10 line detector complete
	2005 - ?	Construction of 1km³ Detector

NEMO (Neutrino Mediterranean Observatory)

1999 - 2001 Site selection and R&D

2002 - 2004 Advanced R&D and prototyping at Catania Test Site

2005 - ? Detector realization

NEMO and ANTARES collaborating since 2000

work together to build 0.1km² at Toulon site with agreement to choose best site for future detector

NESTOR Future Plans

ANTARES Deployment Sites

Water Transparency

time delay (in ns)

Biofouling

Optical Backgrounds

Short bursts (bioluminescence) over a continuous background (^{40}K) .

~5% of time a PMT is unusable

Triangulation $\rightarrow -5$ cm final precision

ANTARES Detector Line

Optical Module

All components delivered industrial production underway for 900 OM

Sea Electronics

One complete set of electronics working in lab. Set of electronics for pre-production line ready mid June

Assembly of pre-production line July, deployment Sept

ANTARES Sea Operations

ANTARES Readout Electronics

Electronics in production for pre-production line

NEMO Neutrino Mediterranean Observatory

The Capo Pas ero Site

The site exploration results show that the **Capo Passero** site has optimal characteristic

- Close to the coast (~ 80 km) and to existing infrastructures
- About 3500 m deep
- Measured currents are low and regular (2-3 cm/s average; 12 cm/s peak)
- Very good optical properties (light absorption length 70÷90 m)
- Very low sedimentation and biological activity

NEMO R&D at Catania Test Site

The "Phase 1" project

At the LNS Test Site

Realization of a complete detector subsystem including all critical components

EO CABLE

Length – 25 km •10 Optics Fiber ITU- T G-652 •6 Electrical Conductors $\Phi 4 \text{ mm}^2$

UNDERWATER LABORATORY

•N.1 Main Junction Box •N.2 Secondary Junction Boxes •N.2 NEMO Towers

R&D for 1km³

Conclusions

Science case for one 1km³ Neutrino Telescope in each hemisphere Water detector in northern hemisphere complementary to ice detector in south (See coming report by HENAP committee)

Ice deployment more successful in past but water detectors now using technology developed for oil industry

Current Status of Mediterranean Projects

3 sites explored and found to have good water properties 3 sites linked to shore by submarine cables (*Catania Bay not Capo Passero in Sicily*) NESTOR promises one tower 2003, expansion later ANTARES 10 line detector (AMANDA scale) operational 2004, room to expand NEMO and ANTARES involved in R&D for large scale detector

Expanding collaboration forming for the 1km³ detector in Mediterranean

ANTARES Sphere Implosion Test

Stored potential energy in sphere at 2600m: V Δ P~ 1 mega Joule !!

⇒ Risk of accidental implosion provoking a catastrophic chain reaction (a la SuperKamiokande)

Tests (June 2000) – Two storeys 12m apart, 1 sphere weakened, implosion occurred at a depth of 2600m

RESULT:

-Neighbouring spheres on same storey also imploded-Electronics in LCM destroyed

-Upper storey intact-Mechanical cable unbroken

