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Abstract

A new technique, neutrino momentum spectroscopy, is used to set limits on the admixture of
heavy neutrinos into the electron neutrino. We measure coincidences between nuclear recoils and
positrons from the beta decay of trapped radioactive atoms and deduce the neutrino momentum.
A two-dimensional maximum likelihood search for peaks in the resulting reconstructed time-
of-flight spectrum as a function of positron energy is performed. The admixture upper limits range
from 4 x 10~ to 2 x 10~ and are the best direct limits for neutrinos (as opposed to antineutrinos)
for the mass region of 0.7 to 3.5 MeV/c'.

The TRINAT facility, located at TRIUMF in Vancouver, Canada, uses a double Magneto-Optical Trap
system to do precision, low-energy experiments with radioactive atoms to test the Standard Model.
A MOT holds the atoms suspended in space by laser light and a weak magnetic quadrupole field and
allows the observation of the momenta of the recoiling daughter atom and the positron free of
distortions as both escape the trap. By measuring the angle of the recoil, the angle and energy of the
positron and knowing the trap position, we are able to correct for the kinematic spread in the TOF
distribution through momentum reconstruction. The MOT in the first chamber is used to maximize
the collection of the *"K atoms from the ISAC radioactive ion beam facility at TRIUMF.
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the correct position that correspond to a certain mass of heavy neutrino.
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The experimental data is divided into a series of bins in beta energy and the resulting
recoil TOF projections are examined for peaks corresponding to heavy neutrinos.

To improve the search, the data is reconstructed event-by-event to remove the
kinematic spread and sharpen the TOF projections. An example is given in the top
figure on the right. From knowledge of the position of the recoil and the position and |
energy of the positron, the TOF of the recoil is calculated and compared to the 0
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measured TOF. The TOF difference between the measured TOF and the calculated Recoil TOF [ns]
TOF results in both increased sensitivity and increased range of mass for the

5000

TOF Difference [ns]

possibly admixed neutrino. The reconstruction reduces the effects of the size of the
detectors, producing a peak whose size is due primarily to the width of the atom trap.
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A Monte Carlo simulation of a 1 MeV/c” heavy neutrino mixing at 5% into the
electron neutrino is shown in the bottom figure on the right. The TOF difference
between the measured TOF and the reconstructed TOF clearly resolves the small
heavy neutrino peak.
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The reconstructed TOF data is binned by beta energy and fit by the model
(consisting of the sum of the Monte Carlo for the electron neutrino decay,
the experimentally determined random background and the Monte Carlo
for the heavy neutrino) to determine the possible contribution of the heavy
neutrino. All energy bins are fit simultaneously for each neutrino mass,
for masses from 0.5 to 3.6 MeV/c’.

An example for the possible mixing of a 1 MeV/c” heavy neutrino is shown
below. The red line shows the
agreement between the data
points and the model. The blue
dashed line shows the amount
of possible mixing attributed to
the heavy neutrino, and is
magnified by a factor of 50 for

illustration in the linear plot. O e gttt e o g
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Neutrino Mixing Limit Results

The admixture results and 1 sigma errors of
the full analysis for all masses are shown in 0.00 _}iiiiﬂghuﬂiungﬂg H ‘ !
the top of the figure and are consistent with _0.02 - ¢ { } 1
no significant deviations from zero. . S

The results are also interpreted as 90% CL
upper limits which are shown in the bottom
of the figure, along with the results of other
experiments.

This represents the first attempt to use optically
trapped radioactive atoms to set mixing limits.
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neutrinos (not antineutrinos) into the electron X
neutrino for the mass range of 0.7 to 3.6 MeV/c’. Dotted: M.M. Hindi et al., Phys. Rev. C 58, 2512 (1998).

Dash-dotted: J. Deutsch, M. Lebrun, and R. Prieels, Nucl. Phys. A518,
149 (1987).
Dashed : C. Hagner et al., Phys. Rev. D 52, 1343 (1995).
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