» Aktuelles » Meldung 

21.11.2017:
Blasen im Pulsarwind schlagen Funken

Neuer Mechanismus für flackerndes Gammalicht aus dem Krebsnebel

Abb. 1: Der Krebsnebel (M1) - Komposit aus Aufnahmen bei verschiedenen Wellenlängen: Infrarot (rot, Spitzer) sichtbares Licht (grün, Hubble), Röntgen (hellblau, Chandra). © NASA.

Abb. 2: Schema des Krebsnebels: Die vom zentralen Pulsar ausgehenden elektromagnetischen Wellen sind als blaue Linien dargestellt, die in den Pulsarwind (hellblau) eingebetteten Blasen geringerer Dichte als weiße Flächen. Elektron-Positron-Paare werden im Pulsarwind beschleunigt und erzeugen an der Schockfront zum umgebenden Nebel (hellviolett) Synchrotronstrahlung (rot). © MPIK.

Für die seit ihrer Entdeckung vor einigen Jahren rätselhaften Ausbrüche hochenergetischer Gammastrahlen aus dem Krebsnebel haben Physiker des Heidelberger MPI für Kernphysik eine neue theoretische Erklärung geliefert. Eine plötzliche Verringerung des Teilchenstroms, der den Pulsarwind des Nebels speist, sorgt für eine induktive Beschleunigung weniger Teilchen, die aber umso höhere Energien aufnehmen. Treffen diese auf die äußeren Bereiche des Nebels, so erzeugen sie die beobachtete kurzzeitige Intensivierung des Gammalichts.  [Physical Review Letters, 21.11.2017].

Der Krebsnebel (M1) ist der Überrest einer spektakulären Supernova, die im Jahre 1054 n. Chr. im Sternbild Stier aufleuchtete. Die Sternexplosion hinterließ im Zentrum den Krebspulsar, einen Neutronenstern von 1,4 bis 2 Sonnenmassen mit einem Durchmesser von nur 10 bis 30 km, der sich sehr schnell (gut 30 Mal pro Sekunde) um seine Achse dreht. Er besitzt ein starkes Magnetfeld, dessen Achse gegenüber der Rotationsachse geneigt ist und so im Magnetfeld gefangene geladene Teilchen mitführt. Aus den zentralen Bereichen geht ein „Pulsarwind“ aus – ein Plasmastrom aus relativistischen Elektronen und ihren Antiteilchen (Positronen). Ihre Energie beziehen sie aus der Rotation des Neutronensterns mit seiner geneigten Magnetosphäre, die wie ein Quirl den Pulsarwind-Nebel durchrührt und hochfrequente elektromagnetische Wellen abstrahlt. Wo der Pulsarwind in einigen Lichtmonaten Entfernung vom Zentrum auf die äußeren Bereiche des Krebsnebels trifft, bildet sich eine Schockfront. Die auf extrem hohe Energien beschleunigten Elektronen und Positronen produzieren schließlich die ausgedehnte nicht-thermische Strahlung des Krebsnebels. Diese sehr effizienten Prozesse machen ihn zu einer der hellsten Quellen hochenergetischer Gammastrahlung, wobei der Pulsar im hohen und der Nebel vorwiegend im sehr hohen Energiebereich leuchten.

Neben dem regulären Pulsieren der Gammastrahlung, die vom Krebsnebel ausgeht, hat u. a. der Fermi-Satellit in den „Dunkelphasen“ unregelmäßige Eruptionen („Flares“) im hohen Energiebereich – gleichsam ein Flackern des Gammalichts – beobachtet. Diese waren in mehrfacher Hinsicht für die Astrophysiker rätselhaft: Ihre rasche Variation innerhalb von Stunden schränkt den Ursprung auf ein sehr kleines Gebiet ein, etwa von der Größe unseres Sonnensystems (Lichtstunden), da sich keine Störung schneller als mit Lichtgeschwindigkeit ausbreiten kann. Zudem wurde Gammalicht bei Energien beobachtet, die bis zu viermal über denen liegen, die nach bisherigem Verständnis im Elektron-Positron-Plasma des Pulsarwinds erreicht werden.

John Kirk und Gwenael Giacinti vom Heidelberger Max-Planck-Institut für Kernphysik haben nun mit einem neuen theoretischen Modell einen Mechanismus gefunden, der das beobachtete Spektrum der Gamma-Flares und ihre typische Zeitdauer erklärt. Hierzu nahmen die Forscher an, dass der Pulsarwind in seinem Ursprung nicht kontinuierlich gespeist wird, sondern Fluktuationen aufweist. Diese bilden „Blasen“ im Plasma mit erheblich geringerer Dichte – bis zu einem Faktor von 1 Million. Die Rechnungen zeigen nun, dass auf dem Weg zur Schockfront die wenigen Teilchen durch Induktion insgesamt die gleiche Energiemenge aufnehmen, aber dafür die Energie pro Teilchen entsprechend höher ist. Die plötzliche Verringerung der Anzahl von Ladungsträgern wirkt so ähnlich, wie bei einem induktiven Stromkreis die Unterbrechung des Stroms eine Spannungsspitze erzeugt. Dieser Induktionseffekt ist für die bekannten Funken beim Öffnen des Schalters für einen Elektromagneten verantwortlich (Funkeninduktor) – ein Anwendungsbeispiel sind Zündkerzen für Ottomotoren.

Treffen nun diese hochenergetischen Elektronen und Positronen auf die Schockfront, so werden sie dort magnetisch abgelenkt und geben ihre Energie in Form von Synchrotronstrahlung ab, die dann als hochenergetisches Gammalicht beobachtet wird. Die Skizze illustriert diesen Vorgang: Die Plasmablasen starten in einem relativ kleinen Bereich nahe dem Pulsar und breiten sich in einem Sektor durch den Pulsarwind aus, wobei sie sich proportional zur Entfernung aufblähen. Der von dem blasenhaltigen Sektor getroffene Bereich der Schockfront (rot hervorgehoben) leuchtet dann im Gammalicht auf. Da die Schockfront gekrümmt ist, liegt der exakt in Richtung Erde weisende Bereich etwas näher als dessen Umgebung. Der Unterschied liegt in der Größenordnung von Lichtstunden, was zur beobachteten Zeitstruktur der Gammastrahlung passt. Auch die Form des Spektrums wird durch die neuen Rechnungen gut wiedergegeben.

Das neue Modell sagt auch weitere Eigenschaften der Strahlung voraus, z. B. die Polarisation, also die Schwingungsrichtung des Gammalichts, welche in naher Zukunft gemessen werden könnten. Es legt zudem nahe, dass ähnliche Gamma-Flares auch in anderen Pulsarwind-Nebeln auftreten.

______________________________________

Originalveröffentlichung:
Inductive spikes in the Crab Nebula — a theory of gamma-ray flares
John G. Kirk and Gwenael Giacinti
Physical Review Letters 119, 211101 (2017)  doi: 10.1103/PhysRevLett.119.211101

Presseinformation (2012) „Kalter” Wind des Krebspulsars erzeugt höchstenergetische Gammastrahlenpulse

 Video zu den „Superflares“ (englisch, NASA)

Arbeitsgruppe „Theoretische Astrophysik“ am MPIK

Faltblatt zur Theoretischen Astrophysik

______________________________________

Kontakt:

Apl. Prof. Dr. John Kirk
Tel.: +49 6221-516-482
E-Mail:  john.kirk(at)mpi-hd.mpg.de

Presse- und Öffentlichkeitsarbeit am MPIK

Max-Planck-Gesellschaft

04.12.17

Trauer um Elmar Jessberger

Das MPI für Kernphysik trauert um Prof. Dr. Elmar K....


21.11.17

Blasen im Pulsarwind schlagen Funken

Neuer Mechanismus für flackerndes Gammalicht aus dem...


16.11.17

Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss

Mit dem HAWC-Observatorium in Mexiko gelang einem...


19.10.17

Materie-Antimaterie-Rätsel bleibt ungelöst

Noch immer zeigt sich kein Unterschied zwischen Protonen...