» Aktuelles » Meldung 

09.04.2013:
Tunneleffekt relativistisch betrachtet

Theorie zeigt möglichen experimentellen Zugang zu ‚Tunnelzeiten‘

Schematische Darstellung der Tunnelionisation eines hochgeladenen Ions bei relativistischen Laserintensitäten. Die Überlagerung des Coulomb-Potentials des Atomkerns mit dem elektrischen Feld des Lasers bildet eine Potentialbarriere (blau), durch welche das Wellenpaket des Elektrons (grün) in Richtung der elektrischen Feldkomponente hinaus tunneln kann. Im Gegensatz zum nicht-relativistischen Fall wird die Energie des Elektrons (rote Fläche) durch die Wechselwirkung mit dem Magnetfeld ortsabhängig. Darüber hinaus wird das Wellenpaket schon während des Tunnelns durch den ‚Lichtdruck‘ in Ausbreitungsrichtung des Laserstrahls verschoben (durchgezogene grüne Linie, näheres siehe Text).

Ein Ball, der einen Hügel hinaufrollt, kann diesen nicht überwinden, wenn seine Anfangsgeschwindigkeit dafür nicht ausreicht. In der Quantenwelt der Atome kann dagegen ein Teilchen mit einer gewissen Wahrscheinlichkeit auf die andere Seite einer Barriere gelangen, auch wenn seine Bewegungsenergie aus klassischer Sicht dafür nicht ausreicht. Physiker sprechen hier vom ‚Tunneleffekt‘, weil das Teilchen die Barriere scheinbar durchtunnelt. Dieser ist von grundlegender Bedeutung und seine Auswirkungen reichen vom radioaktiven Zerfall bis zur technischen Anwendung im Rastertunnelmikroskop. Eine bis heute zum Teil kontrovers diskutierte Frage betrifft die Zeit, die ein Teilchen für das Tunneln braucht, da diesem Vorgang keine klassische Bewegung entspricht.

Ein Beispiel für quantenmechanisches Tunneln bilden Atome, die einem starken Laserfeld ausgesetzt sind. Bildlich gesprochen hat das attraktive Coulomb-Potential des Atomkerns, welches das Elektron an das Atom bindet, die Form eines Trichters. Diesem überlagert sich wie eine geneigte Ebene das elektrische Feld, welches das Elektron herauszerrt. Es bildet sich eine so genannte Potentialbarriere, die das gebundene Elektron vom Bereich freier Bewegung trennt (Abbildung). Handelt es sich bei dem Atom um ein hochgeladenes wasserstoffähnliches Ion (Atomkern plus ein einzelnes Elektron), so bedarf es Laserintensitäten in der Größenordnung von 1018 W/cm2, um eine nennenswerte Tunnelwahrscheinlichkeit zu erreichen. Bei so hohen Intensitäten muss neben dem elektrischen Feld auch die Wirkung des Magnetfeldes auf das Elektron mit berücksichtigt werden. Dies erfordert eine relativistische Beschreibung des Systems, die über das konventionelle Bild des Tunnelns durch eine Barriere hinausgeht.

Michael Klaiber und Kollegen aus der Abteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik haben die Ionisation wasserstoffähnlicher Ionen in ultrastarken Feldern einschließlich der relativistischen Effekte theoretisch untersucht. Sie konnten zeigen, dass sich das Bild der Tunnelionisation entgegen früherer Vermutungen bei entsprechender Anpassung der Barriere aufrechterhalten lässt. Zudem gewannen sie neue Erkenntnisse zur ‚Tunnelzeit‘. Bisherige experimentelle Versuche, die Tunnelzeit direkt zu messen, waren nicht erfolgreich. Im Rahmen der erreichbaren Messgenauigkeit verläuft das Tunneln praktisch instantan, was auch von quasiklassischen Näherungen des Tunnelverhaltens vorhergesagt wird.

„Wir haben zwei charakteristische Zeiten identifiziert, die sich indirekt bestimmen lassen könnten“, erläutert Michael Klaiber. Da ist zum einen die so genannte Keldysh-Zeit – anschaulich die Zeit, die das Elektron mit seiner klassischen Geschwindigkeit im Atom braucht, um die Tunnelstrecke zu durchqueren. Die Wechselwirkung mit dem Magnetfeld führt generell zu einer Komponente der Endgeschwindigkeit des Elektrons in Richtung des Laserstrahls. Dieser ‚Lichtdruck‘ wirkt einerseits auf die Bewegung des freien Elektrons, nachdem es das Atom durch die Tunnelstrecke verlassen hat. „In unseren Rechnungen fanden wir aber systematisch einen zusätzlichen Beitrag, der proportional zur Keldysh-Zeit ist, also eine Wirkung des Lichtdrucks während des Tunnelns“, so Heiko Bauke, ein weiterer Postdoc auf dem Projekt. Im Prinzip sollte dieser Effekt in Messungen beobachtbar sein.

Die andere Tunnelzeit ist nach den Physikern Eisenbud, Wigner und Smith benannt und betrachtet die Bewegung eines Wellenpakets durch die Barriere. Gegenüber der quasiklassischen Näherung, in der das Tunneln praktisch keine Zeit braucht, ergibt sich hier in der genaueren Rechnung eine endlich große Zeit. Während dieser Tunnelzeit bewirkt der Lichtdruck eine kleine räumliche Verschiebung des Wellenpakets. Der Effekt ist aber leider nicht messbar, da er nur in unmittelbarer Nähe des Atoms auftritt – zu späteren Zeiten ergibt sich kein Unterschied mehr zur quasiklassischen Beschreibung. Dies sollte sich aber ändern, wenn die Tunnelstrecke relativ kurz ist, also bei recht hohen Intensitäten des Laserfeldes. Entsprechende weitergehende Untersuchungen sind aktuell in Arbeit.

________________________________________________________

Originalveröffentlichung:
Under-the-barrier dynamics in laser-induced relativistic tunneling
Michael Klaiber et al., Phys. Rev. Lett. 110, 153004 (2013)  doi:10.1103/PhysRevLett.110.153004

Abteilung Keitel am MPIK

 Presseinformation der MPG: Tunneln nahe der Lichtgeschwindigkeit

 English Press Release (idw)

________________________________________________________

Kontakt:

Hon.-Prof. Dr. Christoph H. Keitel
Tel.: 06221 516-150
E-Mail:  christoph.keitel(at)mpi-hd.mpg.de

Dr. habil. Karen Z. Hatsagortsyan
Tel.: 06221 516-160
E-Mail:  Karen.Hatsagortsyan(at)mpi-hd.mpg.de

Presse-und Öffentlichkeitsarbeit des MPIK

Max-Planck-Gesellschaft

21.06.18

Doppelte Auszeichnung für Lisa Schmöger

Otto-Hahn-Medaille und Otto Hahn Award


20.06.18

Wie Cluster die Temperatur ihrer Umgebung annehmen

Mit einer neuen Methode gelang es Physikern vom MPI für...


07.06.18

Neue Wege in die „Terra incognita“ der Nuklidkarte

Hochpräzise Massenmessungen an neutronenreichen...