» Aktuelles » Meldung 

06.08.2013:
Ein kaltes Stück Weltraum im Labor

Heidelberger Ionenfalle CryPTEx besteht erfolgreich erste Testmessungen

Abb. 1: Regelmäßige Anordnung von etwa zehntausend Ionen (Coulomb-Kristall) in der CryPTEx-Falle. Die einzelnen Ionen werden durch Laserfluoreszenz sichtbar.

Abb. 2: Das neue CryPTEx-Ionenfallen-Labor am Heidelberger MPI für Kernphysik. Vorn rechts der Laser zur Kühlung der Ionen, hinten rechts die Elektrostrahl-Ionenquelle für hochgeladene Ionen und links die CryPTEx-Ionenfalle.

Eine am Heidelberger Max-Planck-Institut für Kernphysik in Kooperation mit der Universität Aarhus (Dänemark) entwickelte Falle für kalte Ionen wurde kürzlich erstmals erfolgreich getestet. Mittels präziser Laserspektroskopie wurde am Beispiel von Magnesiumhydrid-Ionen die Leistungsfähigkeit der Falle demonstriert. Sie bietet ein hohes Potential für vielfältige Untersuchungen: an Molekülionen für die Astrophysik oder an hochgeladenen Ionen für fundamentale Tests bis hin zu Anwendungen als Zeitstandard. [Physical Review Letters, 31. Juli 2013]

Moleküle, die Infrarotlicht absorbieren bzw. emittieren können, spielen in Geo- und Astrophysik eine große Rolle für den Strahlungshaushalt, z. B. in planetaren Atmosphären oder in interstellaren Wolken. Bekannt und bedeutend ist der Treibhauseffekt in der Erdatmosphäre, verursacht durch den geringen Anteil an mehratomigen bzw. polaren Spurengasen wie Wasser, Kohlendioxid oder Methan, während die symmetrischen zweiatomigen Stickstoff- und Sauerstoffmoleküle für Infrarotstrahlung praktisch transparent sind. Die Stabilität interstellarer Molekülwolken gegenüber einem Gravitationskollaps ist essentiell für die Frage der Entstehung von Sternen und Planetensystemen. Einen wichtigen Kühlmechanismus stellt die Infrarotstrahlung aus Molekülen dar. Spektroskopie dieser Strahlung wiederum erlaubt die Identifizierung der Moleküle und ihrer Häufigkeit. Von Interesse sind dabei Metallhydride, also zweiatomige, unsymmetrische und somit infrarotaktive Moleküle und ihre Ionen.

Zum besseren Verständnis der beobachteten Spektren ist die Astrophysik auf Laborexperimente angewiesen. Diese wiederum müssen die Bedingungen, wie sie im Weltraum herrschen (niedrige Dichte und Temperatur), möglichst gut und kontrolliert nachbilden. Physiker der Gruppe um José Crespo am Heidelberger Max-Planck-Institut für Kernphysik (MPIK) und der Ionenfallengruppe von Michael Drewsen an der Universität Aarhus (Dänemark) haben hierfür erfolgreich eine neue Methode angewandt. Hierzu präparierten sie kalte Magnesiumhydrid-Ionen (MgH+) in der am MPIK gebauten Ionenfalle CryPTEx, die eine Temperatur von 4 K erreicht und exzellente Vakuumbedingungen von weniger als 10–15 mbar liefert. In CryPTEx lassen sich Ionen bis zu 30 Stunden speichern. Bei dem Experiment an der Universität Aarhus haben die Wissenschaftler mit einer von der Aarhuser Gruppe entwickelten Methode Magnesiumhydrid-Ionen präpariert: Zunächst werden Magnesiumionen in der Falle gefangen und mit Laserstrahlen gekühlt. Anschließend reagieren diese mit einem injizierten Wasserstoffstrahl zu MgH+. In der Falle bilden typischerweise einige Tausend kalte Ionen einen so genannten Coulomb-Kristall mit regelmäßiger Struktur (Abb. 1).

Die Forscher untersuchten, wie schnell ein Zustand von MgH+, bei dem je ein Schwingungs- und Rotationsquant angeregt ist (1,1), in den Grundzustand (0,0) zurückfällt. „Diesen Zustand erreichen wir durch gezielte Laser-Anregung von Molekülionen im Schwingungsgrundzustand, in denen zwei Rotationsquanten angeregt sind (0,2)“, sagt Michael Drewsen. Diese Rotation geschieht durch Stöße mit dem Restgas oder durch die schwache restliche Infrarotstrahlung in der Falle. Im Vergleich der Abnahme der Besetzung des Zustands (0,2) für verschiedene Einwirkdauern des Lasers ergibt sich die gesuchte Lebensdauer von (1,1) zu 0,16 Sekunden – in sehr guter Übereinstimmung mit dem theoretischen Wert. Zudem lässt sich verfolgen, wie schnell sich nach Entvölkerung von (0,2) durch lange Einwirkung des Lasers dieser Zustand durch die ‚Heizrate‘ aus der Umgebung (Stöße, Infrarotstrahlung) wieder besetzt. Dies geschieht erst nach etwa 20 Sekunden, was deutlich langsamer als die gesuchte Lebensdauer ist. Dies ist zugleich die Voraussetzung, diese messen zu können und demonstriert die Leistungsfähigkeit der Falle.

„Das Magnesiumhydrid-Ion ist gleichsam ein genauer Nano-Sensor, der uns verrät, wie kalt es in der Falle unter den Bedingungen des Experiments wirklich ist“, erläutert Oscar Versolato, Postdoc am MPIK. Bei den Messungen in Aarhus ergab sich eine Temperatur von 35 K. Begrenzende Faktoren waren restlicher Wasserstoff aus der Präparation des MgH+ sowie Infrarotlicht aus den notwendigen Öffnungen für die Laserstrahlen. Die CryPTEx-Falle ist mit der vorgestellten neuen Messmethode ein Prototyp für zukünftige fundamentale Tests an kalten Ionen. Für die Astrophysik ermöglichen die Labormessungen im Vergleich mit Beobachtungen aus dem Weltall eine Identifizierung der Moleküle und ihrer Häufigkeit. Im Blick auf Anwendungen könnten sich hochgeladene Ionen als neuer Zeitstandard eignen. Hierzu besteht eine Kooperation mit der Physikalisch-Technischen Bundesanstalt. Am MPIK ist derzeit eine neue Anlage mit einer CryPTEx-Falle zur Speicherung hochgeladener Ionen im Aufbau (Abb. 2).

__________________________________________________________

Originalveröffentlichung:
Decay rate measurement of the first vibrationally excited state of MgH+ in a cryogenic Paul trap
Oscar Versolato et al.
Physical Review Letters 111, 053002 (2013),  doi: 10.1103/PhysRevLett.111.053002

 Artikel auf arXiv

EBIT-Gruppe von José Crespo am MPIK

 Ionenfallengruppe an der Universität Aarhus

 Beschreibung der CryPTEx-Falle (englisch)

 The Cryogenic Collaboration

__________________________________________________________

Kontakt:

Dr. Oscar Versolato
MPI für Kernphysik, Heidelberg
Tel.: 06221/516-331
E-Mail:  oscar.versolato (AT) mpi-hd.mpg.de

Dr. José Crespo López-Urrutia
MPI für Kernphysik, Heidelberg
Tel.: 06221/516-521
E-Mail:  jose.crespo (AT) mpi-hd.mpg.d

Professor Michael Drewsen
The Ion Trap Group
QUANTOP - Danish National Research Foundation's Center for Quantum Optics
Department of Physics and Astronomy, Aarhus University
Tel.: +45 8715 5679
E-Mail:  drewsen (AT) phys.au.dk

Presse- und Öffentlichkeitsarbeit des MPIK

Max-Planck-Gesellschaft

16.09.18

Tag der offenen Tür am 16.09.2018

von 10 bis 17 Uhr


03.01.18

Neuer Geschäftsführender Direktor des MPIK

Zum Jahreswechsel hat Prof. Dr. Thomas Pfeifer turnusmäßig...


04.12.17

Trauer um Elmar Jessberger

Das MPI für Kernphysik trauert um Prof. Dr. Elmar K....


21.11.17

Blasen im Pulsarwind schlagen Funken

Neuer Mechanismus für flackerndes Gammalicht aus dem...