Tri-bimaximal lepton mixing: models, deviations and alternatives

WERNER RODEJOHANN (MPIK, HEIDELBERG) WHEPP XII, 10/01/12

Outline

- Current Status of PMNS
- Tri-bimaximal Mixing (TBM):
 - how to model
 - deviating from TBM: how to get $\theta_{13}\simeq 0.1$
- alternatives to TBM
- sterile neutrinos and flavor symmetries

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \text{atmospheric and} \qquad \text{SBL reactor} \qquad \text{solar and} \\ \text{LBL accelerator} \qquad \qquad \text{LBL reactor} \\\begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ (\sin^2 \theta_{23} = \frac{1}{2}) \qquad (\sin^2 \theta_{13} = 0) \qquad (\sin^2 \theta_{12} = \frac{1}{3}) \\ \Delta m_A^2 \qquad \Delta m_A^2 \qquad \Delta m_\odot^2 \end{pmatrix}$$

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{-i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{-i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{-i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{-i\delta} & c_{23} c_{13} \end{pmatrix} = \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \text{atmospheric and} \qquad \text{SBL reactor} \qquad \text{solar and} \\ \text{LBL accelerator} \qquad \qquad \text{LBL reactor} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ 0 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & \epsilon \\ 0 & 1 & 0 \\ -\epsilon & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{3}} & \sqrt{\frac{2}{3}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ (\sin^2 \theta_{23} = \frac{1}{2}) \qquad (\sin^2 \theta_{13} = \epsilon^2) \qquad (\sin^2 \theta_{12} = \frac{1}{3}) \\ \Delta m_A^2 \qquad \Delta m_A^2 \qquad \Delta m_\odot^2 \end{pmatrix}$$

Tri-bimaximal Mixing

$$U_{\rm TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

Harrison, Perkins, Scott (2002)

with mass matrix

$$(m_{\nu})_{\text{TBM}} = U_{\text{TBM}}^* \, m_{\nu}^{\text{diag}} \, U_{\text{TBM}}^{\dagger} = \begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\ \cdot & \cdot & \frac{1}{2}(A+B+D) \end{pmatrix}$$

$$A = \frac{1}{3} \left(2 m_1 + m_2 e^{-2i\alpha} \right), \quad B = \frac{1}{3} \left(m_2 e^{-2i\alpha} - m_1 \right), \quad D = m_3 e^{-2i\beta}$$
$$\Rightarrow \text{Flavor symmetries...}$$

Mass Matrix

Special case of μ - τ symmetry

$$(m_{\nu})_{\text{TBM}} = U_{\text{TBM}}^{*} m_{\nu}^{\text{diag}} U_{\text{TBM}}^{\dagger} = \begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\ \cdot & \cdot & \frac{1}{2}(A+B+D) \end{pmatrix}$$

$$A = \frac{1}{3} \left(2 m_1 + m_2 e^{-2i\alpha} \right) , \quad B = \frac{1}{3} \left(m_2 e^{-2i\alpha} - m_1 \right) , \quad D = m_3 e^{-2i\beta}$$

•
$$m_{e\mu} = m_{e\tau}$$
 and $m_{\mu\mu} = m_{\tau\tau}$

- $m_{ee} + m_{e\mu} + m_{e\tau} = m_{\mu e} + m_{\mu\mu} + m_{\mu\tau} = m_{\tau e} + m_{\tau\mu} + m_{\tau\tau}$
- masses independent on mixing (i.e., not $V_{us} = \sqrt{m_d/m_s}$)

Correlations between mass matrix elements \leftrightarrow flavor symmetries

How to choose the group

Group	d	Irr. Repr.'s	Presentation
$D_3 \sim S_3$	6	1, 1′, 2	$A^3 = B^2 = (AB)^2 = 1$
D_4	8	$1_1,\ldots 1_4,2$	$A^4 = B^2 = (AB)^2 = 1$
D_5	10	1, 1′, 2, 2′	$A^5 = B^2 = (AB)^2 = 1$
D_6	12	$1_1, \ldots 1_4$, 2, 2'	$A^6 = B^2 = (AB)^2 = 1$
D_7	14	1, 1', 2, 2', 2''	$A^7 = B^2 = (AB)^2 = 1$
A_4	12	1 , 1′, 1″, 3	$A^3 = B^2 = (AB)^3 = 1$
$A_5 \sim PSL_2(5)$	60	1, 3, 3 [′] , 4, 5	$A^3 = B^2 = (BA)^5 = 1$
T'	24	1, 1', 1", 2, 2', 2", 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$
S_4	24	1 , 1', 2 , 3 , 3'	$BM: A^4 = B^2 = (AB)^3 = 1$
			$TB: A^3 = B^4 = (BA^2)^2 = 1$
$\Delta(27) \sim Z_3 \ \rtimes \ Z_3$	27	$1_1, \ldots 1_9, 3, \overline{3}$	
$PSL_2(7)$	168	$1,3,\overline{3},6,7,8$	$A^{3} = B^{2} = (BA)^{7} = (B^{-1}A^{-1}BA)^{4} = 1$
$T_7 \sim Z_7 \ \rtimes \ Z_3$	21	$1,1',\overline{1'},3,\overline{3}$	$A^7 = B^3 = 1, \ AB = BA^4$

Altarelli, Feruglio, 1002.0211

How to choose the group: A_4

- minimality
 - smallest group with 3 irrep
 - has 3 one-dimensional irreps 1, 1', 1"
- geometry

angle between two faces: $\alpha = 2 \theta_{\text{TBM}}$, where $\sin^2 \theta_{\text{TBM}} = \frac{1}{3}$

A role model (Altarelli, Feruglio)

	l	e^{c}	μ^{c}	$ au^c$	$ u^c$	$h_{u,d}$	θ	$arphi_T$	$arphi_S$	ξ	$arphi_0^T$	$arphi_0^S$	ξ0
A_4	3	1	1"	1'	3	1	1	3	3	1	3	3	1
Z_3	ω	ω^2	ω^2	ω^2	ω^2	1	1	1	ω^2	ω^2	1	ω^2	ω^2
$U(1)_{\rm FN}$	0	4	2	0	0	0	-1	0	0	0	0	0	0

- Z_3 to separate charged leptons and neutrinos
- Froggatt-Nielsen to get charged lepton hierarchy
- φ_T and φ_S acquire vevs and break the symmetry ("vev alignment")
- φ_0^T , φ_0^S and ξ_0 live to make the vevs look the way they do ("driving fields")

A role model

 $w_l = y_e e^c (\varphi_T l) + y_\mu \mu^c (\varphi_T l)' + y_\tau \tau^c (\varphi_T l)''$ $+ y(\nu^c l) + x_A \xi(\nu^c \nu^c) + x_B (\varphi_S \nu^c \nu^c) + h.c. + \dots$

where $y_e e^c(arphi_T l)$ stands for $y_e e^c(arphi_T l) h_d heta^4 / \Lambda^5$

leads to TBM if $\langle \varphi_T \rangle = v_T(1, 1, 1)$ and $\langle \varphi_S \rangle = v_S(1, 0, 0)$:

$$m_{\nu}^{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} yv_{u}, \quad M = \begin{pmatrix} A+2B/3 & -B/3 & -B/3 \\ -B/3 & 2B/3 & A-B/3 \\ -B/3 & A-B/3 & 2B/3 \end{pmatrix}$$

with $A=2\,x_A\langle\xi
angle$, $B=2\,x_B\,v_S/v_u$

"'NLO" terms are higher order terms, suppressed by powers of Λ , which will generate corrections to TBM

The Zoo (of A_4 models)

Type	L_i	ℓ^c_i	$ u_i^c$	Δ	References
A1				-	$[1{-}14]$ $[15]^{\#}$
A2	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	-	$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[16-18]
A3				$\underline{1}, \underline{3}$	[19]
B1	3	1 1' 1"	3	-	[4, 20 - 27] [#] $[28 - 30]$ [*] $[31 - 45]$
B2	2	1,1,1	2	$\underline{1}, \underline{3}$	$[46]^{\#}$
C1				=	[2, 47, 48]
C2	3	3		1	$[49, 50] \ [51]^{\#}$
C3	<u>0</u>	5		$\underline{1}, \underline{3}$	[52]
C4				$\underline{1},\underline{1}',\underline{1}'',\underline{3}$	[53]
D1				=	$[54, 55]^{\#}$ $[56, 57]^{*}$ $[58]$
D2	3	3	3	1	[59] [60]*
D3	<u>5</u>	2	<u>2</u>	$\underline{1}'$	$[61]^*$
D4				$\underline{1}', \underline{3}$	$[62]^*$
Е	<u>3</u>	<u>3</u>	$\underline{1},\underline{1}',\underline{1}''$	7.	[63, 64]
F	$\underline{1}, \underline{1}', \underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$	[65]
G	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	$\underline{1},\underline{1}',\underline{1}''$	≂.	[66]
Н	<u>3</u>	<u>1, 1, 1</u>		-	[67]
Ι	<u>3</u>	<u>1, 1, 1</u>	$\underline{1}, \underline{1}, \underline{1}$	2	[68]*
J	<u>3</u>	1, 1, 1	<u>3</u>	-	[12, 39, 69, 70]
Κ	<u>3</u>	$\underline{1}, \underline{1}, \underline{1}$	<u>1, 1</u>	1	[71]*
L	<u>3</u>	<u>1, 1, 1</u>	1	-	[72]*
Μ	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1}, \underline{1}'', \underline{1}'$	$\underline{3}, \underline{1}$	-	[73, 74]
Ν	$\underline{1},\underline{1}',\underline{1}''$	$\underline{1},\underline{1}'',\underline{1}'$	$\underline{3}, \underline{1}', \underline{1}''$	=	[75]

Barry, W.R., PRD 81, 093002 (2010), updated regularly on http://www.mpi-hd.mpg.de/personalhomes/jamesb/Table_A4.pdf

How to distinguish?

- LFV
- low scale scalars: Higgs, LFV
- compatible with GUTs?
- leptogenesis possible?
- neutrino mass observables
 - sum-rules, such as $2m_2 + m_3 = m_1$
 - correlation with oscillation parameters

	Bari	GM-I	STV	ТВМ
$\sin heta_{13}$	$0.145_{-0.031}^{+0.022}$	$0.097\substack{+0.053\\-0.047}$	$0.130\substack{+0.025\\-0.041}$	0
$\sin^2 \theta_{23}$	$0.42^{+0.08}_{-0.03}$	$0.462^{+0.082}_{-0.050}$	$0.51\substack{+0.06 \\ -0.06}$	0.5
$\sin^2 \theta_{12}$	$0.306\substack{+0.018\\-0.015}$	$0.319\substack{+0.016\\-0.016}$	$0.316\substack{+0.016\\-0.016}$	0.333

2012 (DC + T2K + MINOS) at 3σ :

 $\sin\theta_{13} = 0.146^{+0.084}_{-0.119}$

all groups find deviations from one or more TBM values, typically

 $\delta\theta_{13} > \delta\theta_{12} \gtrsim \delta\theta_{23}$

Taking Bari results as example: $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.762 & -0.684 \\ 0 & -0.684 & 0.762 \end{pmatrix} \begin{pmatrix} 0.989 & 0 & 0.145 e^{-i\delta} \\ 0 & 1 & 0 \\ -0.145 e^{i\delta} & 0 & 0.989 \end{pmatrix} \begin{pmatrix} 0.833 & 0.553 & 0 \\ -0.553 & 0.883 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 0.824 & 0.547 & 0.145 e^{-i\delta} \\ -0.421 - 0.078 e^{i\delta} & 0.634 - 0.052 e^{i\delta} & 0.641 \\ 0.359 - 0.092 e^{i\delta} & -0.540 - 0.061 e^{i\delta} & 0.754 \end{pmatrix}$

> Abbas, Smirnov, PRD 82, 013008 (2010): deviations from m_{ν}^{TBM} possible: "TBM accidental?"

Recall the three TBM conditions

 $m_{e\mu} = m_{e\tau}$

 $m_{\mu\mu} = m_{\tau\tau}$

 $m_{ee} + m_{e\mu} + m_{e\tau} = m_{\mu e} + m_{\mu\mu} + m_{\mu\tau} = m_{\tau e} + m_{\tau\mu} + m_{\tau\tau}$

thus, define
$$\Delta_e = \frac{(m_{\nu})_{e\mu} - (m_{\nu})_{e\tau}}{(m_{\nu})_{e\mu}}$$
, $\Delta_{\mu} = \frac{(m_{\nu})_{\mu\mu} - (m_{\nu})_{\tau\tau}}{(m_{\nu})_{\tau\tau}}$, Δ_{Σ}

Non-zero θ_{13} Double - Chooz Sint (20,) = 0.085 ±0.029 ±0.042 $\Delta m^2 = 2.35 \times 10$

Possibilities

- study deviations from TBM
- construct alternative scenarios

How to perturb a mixing scenario/model

- VEV misalignment, NLO terms
- explicit naive breaking
- renormalization
- charged leptons

VEV misalignment, NLO terms

• "naive misalignment":

if $\langle \text{flavon} \rangle = (1, 1, 1)^T$, perturb it to $\langle \text{flavon} \rangle = (1, 1 + \epsilon_1, 1 + \epsilon_2)^T$

Honda, Tanimoto

Barry, W.R.

- of order $\langle \text{flavon} \rangle / \Lambda$ or $\langle \text{flavon} \rangle / M_R$, typically $\mathcal{O}(0.1)$ or $\mathcal{O}(\lambda_C)$ or $\mathcal{O}(0.01)$
- typically of the same order for $heta_{23}$ and $|U_{e3}|$
- solar neutrino mixing angle receives slightly larger corrections

VEV misalignment, NLO terms

- NLO terms, VEV misalignment due to terms allowed by the symmetry ⇒ model-dependent!
 - Altarelli, Feruglio, Merlo, JHEP 0905:

- Altarelli, Feruglio, Hagedorn, JHEP 0803: corrections $\mathcal{O}(\lambda^2)$ to all mixing angles
- Lin, NPB 824:

 $\delta |U_{e3}| = \mathcal{O}(\lambda)$ and $\delta \sin^2 \theta_{12} \simeq \delta \sin^2 \theta_{23} = \mathcal{O}(\lambda^2)$

- Hagedorn, Ziegler, 1007.1888: $\delta |U_{e3}|^2 = \mathcal{O}(\lambda^2) \text{ and } \delta \sin^2 \theta_{12} = \mathcal{O}(\lambda)$
- Ishimori *et al.*, 1004.5004: $\delta |U_{e3}|^2 = \mathcal{O}(\lambda^2) \text{ and } \delta \sin^2 \theta_{12} = \mathcal{O}(\lambda) \text{ and } \delta \sin^2 \theta_{23} = \mathcal{O}(\lambda^2)$
- etc.:

etc.

Sign and size of RG correction

model	mass ordering	$ heta_{12}$	$ heta_{23}$
SM	$\Delta m_{31}^2 > 0$	\searrow	\searrow
5101	$\Delta m_{31}^2 < 0$	\nearrow	~
MSSM	$\Delta m_{31}^2 > 0$	7	7
	$\Delta m_{31}^2 < 0$	~	\searrow

angle	NH	IH	QD
$\delta \theta_{12}$	1	$\Delta m_{ m A}^2/\Delta m_\odot^2$	$m_0^2/\Delta m_\odot^2$
$\delta heta_{13}$	1	1	$m_0^2/\Delta m_{ m A}^2$
$\delta \theta_{23}$	1	1	$m_0^2/\Delta m_{ m A}^2$

Note: potentially huge effect for θ_{12} unless (Majorana) phase suppression

Large $|U_{e3}|$ and RG aim: get $|U_{e3}| = 0.1$ from TBM

- constraint: keep $\sin^2 heta_{12}$ close to TBM value
- what is $\sin^2 \theta_{23}$?

Goswami, Petcov, Ray, W.R., PRD 80 (2009) 053013

• we took "Bari hint": $0.077 \le |U_{e3}| \le 0.161$

Renormalization and $|U_{e3}| \simeq 0.1$

• SM: doesn't work

Renormalization and $|U_{e3}| \simeq 0.1$

• MSSM: quasi-degenerate neutrinos and $4 \lesssim (m_0/\text{eV}) \tan \beta \lesssim 7$

$$\begin{split} & \mbox{Effect on } \theta_{12} \\ & \theta_{12} \rightarrow \theta_{12}^0 + \epsilon_{\rm RG} \, k_{12} \\ & \mbox{with } \epsilon_{\rm RG} = C/(16\pi^2) \, m_{\tau}^2/v^2 \log \lambda/\Lambda \mbox{ and } C = -3/2 \mbox{ or } C = (1 + \tan^2 \beta) \\ & \mbox{ for solar mixing angle:} \\ & k_{12} = \frac{\sqrt{2}}{3} \, \frac{\left|m_1 + m_2 \, e^{i\alpha_2}\right|^2}{\Delta m_{\odot}^2} \propto \begin{cases} 1 & \mbox{ NH} \\ \frac{\Delta m_{\Lambda}^2}{\Delta m_{\odot}^2} (1 + e^{i\alpha_2}) & \mbox{ IH} \\ \frac{m_0^2}{\Delta m_{\odot}^2} (1 + e^{i\alpha_2}) & \mbox{ QD} \\ & \mbox{ strong effect for IH and QD} \\ & \mbox{ suppress with } \alpha_2 = \pi \\ & |m_{ee}| \simeq m_0 \, \sqrt{1 - \sin^2 2\theta_{12} \sin^2 \alpha_2/2} \stackrel{\alpha_2 \equiv \pi}{\longrightarrow} m_0 \cos 2\theta_{12} \\ & \mbox{ large cancellations in } 0\nu\beta\beta! \end{split}$$

Renormalization and $|U_{e3}| \simeq 0.1$

•
$$|m_{ee}| \simeq c_{13}^2 m_0 |c_{12}^2 + s_{12}^2 e^{i\alpha_2}$$

- $\tan \beta = 5$: $|m_{ee}|$ takes values between 0.26 and 0.50 eV; general upper and lower limits: 0.2 eV and 1.4 eV
- $\tan \beta = 20$: $|m_{ee}|$ takes values between 0.07 and 0.11 eV; general upper and lower limits: 0.05 eV and 0.34 eV

- $|\theta_{23} \pi/4| = \mathcal{O}(|U_{e3}|)$
- can NOT be maximal

Alternatives to TBM

• μ - τ symmetry (Z_2, D_4, \ldots) :

$$m_{\nu} = \begin{pmatrix} a & b & b \\ \cdot & d & e \\ \cdot & \cdot & d \end{pmatrix} \Rightarrow U_{e3} = 0, \ \theta_{23} = \pi/4$$

solar neutrino mixing unconstrained ($\theta_{12} = \mathcal{O}(1)$)

countless papers

Alternatives to TBM

• Golden Ratio φ_1 (A_5)

$$\cot \theta_{12} = \varphi \implies \sin^2 \theta_{12} = \frac{1}{1 + \varphi^2} = \frac{2}{5 + \sqrt{5}} \simeq 0.276$$

(Datta, Ling, Ramond; Kajiyama, Raidal, Strumia; Everett, Stuart)

• Golden Ratio φ_2 (D_5)

$$\cos\theta_{12} = \frac{\varphi}{2} \quad \Rightarrow \sin^2\theta_{12} = \frac{1}{4}\left(3 - \varphi\right) = \frac{5 - \sqrt{5}}{8} \quad \simeq 0.345$$

(W.R.; Adulpravitchai, Blum, W.R.)

Golden Ratio Prediction
$$\varphi_1$$

 $\cot \theta_{12} = \varphi$ or: $\tan 2\theta_{12} = 2$
can be generated by $m_{\nu} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow Z_2 : S = \frac{1}{\sqrt{5}} \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$

Model based on A_5 (isomorphic to rotational icosahedral symmetry group)?

Cartesian coordinates of its 12 vertices: $(0, \pm 1, \pm \varphi)$ $(\pm 1, \pm \varphi, 0)$ $(\pm \varphi, 0, \pm 1)$

$\begin{array}{l} \mbox{Golden Ratio Prediction } \varphi_1 \\ A_5 \mbox{ has irreps 1, 3, 3', 4, 5} \\ \mbox{e.g., generators for triplet representation 3} \end{array}$ $S_3 = \frac{1}{2} \begin{pmatrix} -1 & \varphi & 1/\varphi \\ \varphi & 1/\varphi & 1 \\ 1/\varphi & 1 & -\varphi \end{pmatrix} \mbox{ and } T_3 = \frac{1}{2} \begin{pmatrix} 1 & \varphi & 1/\varphi \\ -\varphi & 1/\varphi & 1 \\ 1/\varphi & -1 & \varphi \end{pmatrix}$

Everett, Stuart, PRD 79, 085005 (2009)

4th generation model Chen, Kephart, Yuan, 1011.3199

symmetry group of decagon: D_{10}

A Model based on D_{10}

Adulpravitchai, Blum, W.R., New J. Phys. **11**, 063026 (2009)

Field	$l_{1,2}$	l_3	$e^c_{1,2}$	e_3^c	$h_{u,d}$	σ^e	$\chi^e_{1,2}$	$\xi^e_{1,2}$	$ ho^e_{1,2}$	σ^{ν}	$arphi_{1,2}^{ u}$	$\chi^{ u}_{1,2}$	$\xi_{1,2}^{ u}$
D ₁₀	<u>2</u> 4	<u>1</u> 1	<u>2</u> 2	<u>1</u> 1	<u>1</u> 1	<u>1</u> 1	<u>2</u> 2	<u>2</u> 3	<u>2</u> 4	<u>1</u> 1	<u>2</u> 1	<u>2</u> 2	<u>2</u> 3
Z_5	ω	ω	ω^2	ω^2	1	ω^2	ω^2	ω^2	ω^2	ω^3	ω^3	ω^3	ω^3

Dihedral Groups

Blum, Hagedorn, Lindner, Hohenegger, PRD 77, 076004 (2008):

 D_n has several $\mathbf{2}_{\mathbf{j}}$, generated by

$$A = \begin{pmatrix} e^{2\pi i \frac{j}{n}} & 0\\ 0 & e^{-2\pi i \frac{j}{n}} \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

and Z_2 is generated by

$$B A^{k} = \begin{pmatrix} 0 & e^{-2\pi i \frac{j}{n} k} \\ e^{2\pi i \frac{j}{n} k} & 0 \end{pmatrix}$$

Thus, break D_n such that m_{ν} invariant under $B A^{k_{\nu}}$ and m_{ℓ} under $B A^{k_{\ell}}$:

$$|U_{e1}|^2 = \left|\cos\pi\frac{j}{n}\left(k_{\nu} - k_{\ell}\right)\right|^2$$

Again, D_5 or D_{10} to obtain $\pi/5$

• hexagonal mixing (D_6)

$$\theta_{12} = \pi/6 \Rightarrow \sin^2 \theta_{12} = \frac{1}{4}$$

(Albright, Dueck, W.R.; Kim, Seo)

Kim, Seo, 1005.4684: D_{12} model introduces 13 Higgs doublets(...), but achieved (QLC) $\theta_{12} = \pi/6$, $\theta_C = \pi/12 = 15^0 \simeq \theta_C + 1.8^0$ and called it dodecal

Systematic Search for Mixing Patterns

$$P_1: U = R_{12}(\vartheta_1)R_{23}(\vartheta_2,\varphi)R_{12}^{-1}(\vartheta_3)$$

$$P_2: \ U = R_{23}(\vartheta_1)R_{12}(\vartheta_2,\varphi)R_{23}^{-1}(\vartheta_3)$$

$$P_3: \quad U = R_{23}(\vartheta_1)R_{13}(\vartheta_2,\varphi)R_{12}(\vartheta_3)$$

$$P_4: U = R_{12}(\vartheta_1)R_{13}(\vartheta_2,\varphi)R_{23}^{-1}(\vartheta_3)$$

$$P_5: U = R_{13}(\vartheta_1)R_{12}(\vartheta_2,\varphi)R_{13}^{-1}(\vartheta_3)$$

$$P_6: \quad U = R_{12}(\vartheta_1)R_{23}(\vartheta_2,\varphi)R_{13}(\vartheta_3)$$

$$P_7: U = R_{23}(\vartheta_1)R_{12}(\vartheta_2,\varphi)R_{13}^{-1}(\vartheta_3)$$

$$P_8: U = R_{13}(\vartheta_1)R_{12}(\vartheta_2,\varphi)R_{23}(\vartheta_3)$$

$$P_9: \ U = R_{13}(\vartheta_1)R_{23}(\vartheta_2,\varphi)R_{12}^{-1}(\vartheta_3)$$

and choose π/n for the ϑ_i with n=1,2,3,4,5,6,8,10,12 $\Rightarrow 9^4 = 6561 \text{ possibilities}$

Systematic Search for Mixing Patterns

$\vartheta = \frac{\pi}{n}$	π	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{5}$	$\frac{\pi}{6}$	$\frac{\pi}{8}$	$\frac{\pi}{10}$	$\frac{\pi}{12}$
$\sin^2 artheta$	0	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{5-\sqrt{5}}{8}$	$\frac{1}{4}$	$\frac{2-\sqrt{2}}{4}$	$\frac{3-\sqrt{5}}{8}$	$\frac{2-\sqrt{3}}{4}$
$\cos^2 \vartheta$	1	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3+\sqrt{5}}{8}$	$\frac{3}{4}$	$\frac{2+\sqrt{2}}{4}$	$\frac{5+\sqrt{5}}{8}$	$\frac{2+\sqrt{3}}{4}$

W.R., Zhang, Zhou, NPB 855

Alternatives to TBM

Bi-maximal

$$U_{\rm BM} = \begin{pmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \sqrt{\frac{1}{2}} \\ \frac{1}{2} & -\frac{1}{2} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

 S_4 : Altarelli, Feruglio, Merlo, JHEP **0905**, 020 (2009) (needs large NLO corrections)

CKM(-like) charged lepton corrections may also resurrect it:

- $\operatorname{QLC}_0: \theta_{12} = \frac{\pi}{4} \theta_C \Rightarrow \sin^2 \theta_{12} \simeq 0.280$
- $\operatorname{QLC}_1: U = V^{\dagger} U_{BM} \Rightarrow \sin^2 \theta_{12} \simeq \frac{1}{2} \lambda/\sqrt{2} \cos \phi \simeq 0.331 \dots 0.670$
- $\operatorname{QLC}_2: U = U_{BM} V^{\dagger} \Rightarrow \sin^2 \theta_{12} \simeq \frac{1}{2} \lambda \cos \phi' \simeq 0.276 \dots 0.762$

"Quark-Lepton Complementarity"

Alternatives to TBM

Tri-maximal Mixing(s)

• $\mathsf{TM}_2(S_{3,4}, \Delta(27))$

$$\begin{pmatrix} |U_{e2}|^2 \\ |U_{\mu2}|^2 \\ |U_{\tau2}|^2 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}$$

(Lam; Grimus, Lavoura)

• TM₁, TM₃, TM¹, TM², TM³, e.g.,

$$\mathsf{M}^{1}: \qquad \begin{pmatrix} |U_{e1}|^{2}, \ |U_{e2}|^{2}, \ |U_{e3}|^{2} \end{pmatrix} = \begin{pmatrix} \frac{2}{3}, \ \frac{1}{3}, \ 0 \end{pmatrix}$$
$$\mathsf{T}\mathsf{M}_{1}: \qquad \begin{pmatrix} |U_{e1}|^{2} \\ |U_{\mu 1}|^{2} \\ |U_{\tau 1}|^{2} \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/6 \\ 1/6 \end{pmatrix}$$

(Lam; Albright, W.R.; Friedberg, Lee; He, Zee)

Minimal Modification of TBM

want non-zero θ_{13} and $\sin^2 \theta_{12} \leq \frac{1}{3}$:

$$\mathsf{TM}_{1}: \begin{pmatrix} |U_{e1}|^{2} \\ |U_{\mu 1}|^{2} \\ |U_{\tau 1}|^{2} \end{pmatrix} = \begin{pmatrix} 2/3 \\ 1/6 \\ 1/6 \end{pmatrix}$$

gives observables

$$\sin^2 \theta_{12} = \frac{1}{3} \frac{1-3|U_{e3}|^2}{1-|U_{e3}|^2} \simeq \frac{1}{3} \left(1-2|U_{e3}|^2\right) \le \frac{1}{3}$$
$$\cos \delta \tan 2\theta_{23} = -\frac{1-5|U_{e3}|^2}{2\sqrt{2}|U_{e3}|\sqrt{1-3}|U_{e3}|^2} \simeq \frac{-1}{2\sqrt{2}|U_{e3}|} + \frac{7}{4\sqrt{2}}|U_{e3}|$$

Albright, W.R., EPJC62

Alternatives to TBM

• tetra-maximal (Xing; Zhang, Zhou)

 $U = \operatorname{diag}(1, 1, i) \,\tilde{R}_{23}(\pi/4; \pi/2) \,\tilde{R}_{13}(\pi/4; 0) \,\tilde{R}_{12}(\pi/4; 0) \,\tilde{R}_{13}(\pi/4; \pi)$

• symmetric mixing $U = U^T$ (Joshipura, Smirnov; Hochmuth, W.R.)

 $|U_{e3}| = \frac{\sin \theta_{12} \sin \theta_{23}}{\sqrt{1 - \sin^2 \delta \cos^2 \theta_{12} \cos^2 \theta_{23}} + \cos \delta \cos \theta_{12} \cos \theta_{23}}$

Alternatives to TBM

• various other proposals after T2K and DC: Xing, 1106.3244; Qui, Ma, 1106.3284; He, Zee, 1106.4359; Zheng, Ma, 1106.4040; Zhou, 1106.4808; Araki, 1106.5211; Haba, Takahashi, 1106.5926; Morisi, Patel, Peinado, 1107.0696, Chao, Zheng, 1107.0738; Zhang, Zhou, 1107.1097; Chu, Dhen, Hambye, 1107.1589; Toorop, Feruglio, Hagedorn, 1107.3486; Antusch, Maurer, 1107.3728; Rodejohann, Zhang, Zhou, 1107.3970; Ahn, Cheng, Oh, 1107.4549; Marzocca, Petcov, Romanino, Spinrath, 1108.0614; Ge, Dicus, Repko, 1108.0964; Riazuddin, 1108.1469; Ludl, Morisi, Peinado, 1109.3393; Verma, 1109.4228; Meloni, 1110.5210; Kitabayashi, Yasue, 1110.5162; He, Majee, 1111.2293; Rashed, 1111.3072; Buchmuller, Domcke, Schmitz, 1111.3872; King, Luhn, 1112.1959; Eby, Frampton, 1112.2675; Gupta, Joshipura, Patel, 1112.6113,...

Once you start playing with numbers...

- "transcendental mixing":
 - $-\sin\theta_{13} = \theta_{13} \Rightarrow \theta_{13} = 0$
 - is the fixed point of sin(x)
 - $\cos \theta_{23} = \theta_{23} = 0.739085133... \Rightarrow \sin^2 \theta_{23} = 0.454$ is the fixed point of $\cos(x)$ "Dottie's number" $d = \lim_{n \to \infty} \cos_n(x)$ is irrational like π , e, $\sqrt{2}$
- Euler-Mascheroni constant:

$$- \theta_{12} = \gamma = 0.577215664 \dots \Rightarrow \sin^2 \theta_{12} = 0.298$$

- $|U_{e2}| = \gamma \Rightarrow \sin^2 \theta_{12} = 0.298 \dots 0.314$
- Euler's number:

$$-\tan 2\theta_{12} = e = 2.718281828... \Rightarrow \sin^2 \theta_{12} = 0.327$$

• etc :-))

Scenario	\sin^2	$ heta_{12}$	\sin^2	θ_{23}	\sin^2	$ heta_{13}$	T2K/DC
ТВМ	0.3	333	0.5	00	0.0	00	-
$\mu- au$	-	_	0.5	00	0.0	00	-
TM_1	0.296	0.333	*	*	-	-	\checkmark
TM ₂	0.333	0.352	*	*	-	-	\checkmark
TM ₃	-	-	0.5	00	0.0	00	-
TM^1	0.3	333	-	-	0.0	00	-
TM ²	*	*	0.500	0.528	-		\checkmark
TM ³	*	*	0.472	0.500	-		\checkmark
T^4M	0.2	255	0.5	00	0.021		\checkmark
$U=U^{T}$	0.000	0.389	0.000	0.504	0.0343	0.053	\checkmark
BM	0.5	500	0.5	00	0.000		-
НМ	0.2	250	0.5	00	0.0	00	-
$arphi_1$	0.2	276	0.5	00	0.0	00	-
$arphi_2$	0.3	345	0.500		0.000		—
QLC ₀	0.2	280	0.459		-	-	-
QLC_1	0.331	0.670	0.442	0.534	0.023	0.029	\checkmark
QLC ₂	0.276	0.726	0.462	0.540	0.0005	0.0016	—

Albright, Dueck, W.R., 1004.2798

Symmetry and Flavor Symmetry

Each Majorana mass matrix is invariant under $Z_2 \times Z_2$ (Grimus, Lavoura; Lam)

$$m_{\nu} = \begin{pmatrix} a & b & b \\ \cdot & d & e \\ \cdot & \cdot & d \end{pmatrix} \text{ invariant under } R_{\mu\tau} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

look for S such that

 $[S, R_{\mu\tau}] = 0$, SS = 1

Solvable for general θ_{12} and for special scenarios, e.g.

 $\begin{array}{ll} d+e=a & \mbox{bimaximal} \\ d+e=a+b & \mbox{tri-bimaximal} \\ d+e=a+\sqrt{2}\,b & \mbox{golden ratio}_1 \\ d+e=a+2\sqrt{2}\,b\,\cot 2\theta_{12} & \mbox{general} \end{array}$

Symmetry and Flavor Symmetry

 $S = \begin{pmatrix} \cos 2\theta_{12} & -\sqrt{2} \cos \theta_{12} \sin \theta_{12} & \sqrt{2} \cos \theta_{12} \sin \theta_{12} \\ \cdot & \sin^2 \theta_{12} & \cos^2 \theta_{12} \\ \cdot & \cdot & \sin^2 \theta_{12} \end{pmatrix}$

charged leptons are diagonal

$$T^{\dagger} \, m_{\ell}^{\dagger} \, m_{\ell} \, T = m_{\ell}^{\dagger} \, m_{\ell}$$

With T = diag(-1, i, -i) it follows for $\theta_{12} = \pi/4$ (bimaximal)

$$S^2 = T^4 = (ST)^3 = \mathbb{1} \Longrightarrow S_4$$

Interpretation: flavor symmetry G_f generated by S, T broken such that m_{ν} invariant under S and charged leptons under T ($R_{\mu\tau}$ is accidental)

What's special about TBM?

TBM mass matrix

$$\left(\begin{array}{cccc}
A & B & B \\
\cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\
\cdot & \cdot & \frac{1}{2}(A+B+D)
\end{array}\right)$$

is invariant under

$$R_{\mu\tau} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \ S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

Note: S and $T = \text{diag}(1, \omega^2, \omega)$ generate A_4 via $S^2 = T^3 = (ST)^3 = \mathbb{1}$ in many A_4 models: $R_{\mu\tau}$ accidental, charged leptons preserve Z_3 invariance via T, neutrinos preserve Z_2 invariance via S

Scenario	S		T	relations	group
bimaximal	$ \sqrt{\frac{1}{2}} \begin{pmatrix} 0 & -1 \\ \cdot & \sqrt{\frac{1}{2}} \\ \cdot & \cdot \end{pmatrix} $	$\begin{pmatrix} 1\\ \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{2}} \end{pmatrix}$	$\operatorname{diag}(-1,i,-i)$	$T^4 = (ST)^3 = 1$	S_4
tri-bimaximal	$\frac{\frac{1}{3}}{\begin{pmatrix} -1 & 2\\ \cdot & -1\\ \cdot & \cdot \end{pmatrix}}$	$ \begin{array}{c} -2 \\ -2 \\ -1 \end{array} \right) $	$diag(e^{-2i\pi/3}, e^{2i\pi/3}, 1)$	$T^3 = (ST)^3 = 1$	A_4
golden ratio (A)	$\frac{-1}{\sqrt{5}} \left(\begin{array}{cc} 1 & -\sqrt{2} \\ \cdot & 1/\varphi \\ \cdot & \cdot \end{array} \right)$	$\left(\begin{array}{c} \sqrt{2} \\ \varphi \\ 1/\varphi \end{array}\right)$	diag $(1, e^{-4i\pi/5}, e^{4i\pi/5})$	$T^5 = (ST)^3 = 1$	A_5

example:
$$G_f = \Delta(96)$$

generated by $S^2 = (ST)^3 = T^8 = (ST^{-1}ST)^3 = 1$ with
 $S = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{2} & \sqrt{2} \\ \cdot & -1 & 1 \\ \cdot & \cdot & -1 \end{pmatrix}$ and $T = \begin{pmatrix} e^{6i\pi/4} & 0 & 0 \\ \cdot & e^{7i\pi/4} & 0 \\ \cdot & \cdot & e^{3i\pi/4} \end{pmatrix}$

assumption (1): charged leptons invariant under $G_e = Z_3$; neutrinos under $G_{\nu} = Z_2 \times Z_2$

assumption (2): $G_e = ST$ and $G_\nu = \{S, ST^4ST^4\}$

$$|U| = \sqrt{\frac{1}{3}} \begin{pmatrix} \frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\ \frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\ 1 & 1 & 1 \end{pmatrix}$$

Toorop, Feruglio, Hagedorn, PLB 703

Hidden Z_2

recall: μ - τ symmetric mass matrix is invariant under

$$R_{\mu\tau} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } S = \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12}/\sqrt{2} & \sin 2\theta_{12}/\sqrt{2} \\ \cdot & \cos^2 \theta_{12} & -\sin^2 \theta_{12} \\ \cdot & \cdot & \cos^2 \theta_{12} \end{pmatrix}$$

S is called "hidden Z_2 " (Ge, He, Yin; He, Yin; Dicus, Ge, Repko) invariance under S means $[m_{\nu}, S(\theta_{12})] = 0$:

Generalization

$$S = \begin{pmatrix} -\cos 2\theta_s & \sin 2\theta_s / \sqrt{2} & \sin 2\theta_s / \sqrt{2} \\ \cdot & \cos^2 \theta_s & -\sin^2 \theta_s \\ \cdot & \cdot & \cos^2 \theta_s \end{pmatrix}$$

is also a reflection, i.e. $S \in O(2) \setminus SO(2)$

in basis in which $(\nu_e, \nu_\mu, \nu_\tau)$ becomes $(\nu_e, (\nu_\mu + \nu_\tau)/\sqrt{2}, (\nu_\mu - \nu_\tau)/\sqrt{2})$:

$$G_{O} \equiv U_{23}^{T}(-\pi/4) \, S \, U_{23}(-\pi/4) = \begin{pmatrix} -\cos 2\theta_{s} & \sin 2\theta_{s} & 0 \\ \sin 2\theta_{s} & \cos 2\theta_{s} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

most general reflection!

To get O(2), we need to find rotation

To get O(2), we need to find rotation

$$R(\theta_s) = G(\theta_s/2)G(0) = \begin{pmatrix} c_s & s_s/\sqrt{2} & s_s/\sqrt{2} \\ -s_s/\sqrt{2} & \cos^2(\theta_s/2) & -\sin^2(\theta_s/2) \\ -s_s/\sqrt{2} & -\sin^2(\theta_s/2) & \cos^2(\theta_s/2) \end{pmatrix}$$

S and R span the group O(2)

The most general O(2) invariant mass matrix comes from $[m_{\nu}, S(\theta_s)] = 0 \ \forall \theta_s$:

$$m_{\nu} = \begin{pmatrix} m_1 & 0 & 0 \\ \cdot & (m_1 + m_3)/2 & (m_1 - m_3)/2 \\ \cdot & \cdot & (m_1 + m_3)/2 \end{pmatrix}$$

automatically $\mu\text{-}\tau$ symmetric and $\Delta m^2_{12}=0$

"Hidden O(2)" (Heeck, W.R., 1112.3628)

Hidden
$$O(2)$$

 $m_{\nu} = \begin{pmatrix} m_1 & 0 & 0 \\ \cdot & (m_1 + m_3)/2 & (m_1 - m_3)/2 \\ \cdot & \cdot & (m_1 + m_3)/2 \end{pmatrix}$

flavor democratic perturbation

$$u\left(\begin{array}{rrrr}1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1\end{array}\right)$$

gives TBM!

Sterile Neutrinos??

- LSND/MiniBooNE
- cosmology
- BBN
- *r*-process nucleosynthesis in Supernovae
- reactor anomaly (Mention *et al.*, PRD 83)

	$\Delta m^2_{41} [\mathrm{eV}^2]$	$ U_{e4} $	$ U_{\mu4} $	$\Delta m_{51}^2 [\mathrm{eV}^2]$	$ U_{e5} $	$ U_{\mu 5} $					
3+2/2+3	0.47	0.128	0.165	0.87	0.138	0.148					
1+3+1	0.47	0.129	0.154	0.87	0.142	0.163					
or $\Delta m^2_{41} = 1.78 \text{ eV}^2$ and $ U_{e4} ^2 = 0.151$											
	Kopp, Maltoni, Schwetz, 1103.4570										

How to incorporate ν_{st} in Flavor Symmetry Models

- add sterile neutrino to an effective theory (Barry, W.R., Zhang)
- seesaw mechanism: how to make $\nu_{\rm st}$ light?
 - extra dimensions (Kusenko, Takahashi, Yanagida)
 - massless at leading order, massive after breaking (Lindner, Merle, Niro)
 - seesaw variants (Zhang)
 - Frogatt-Nielsen (Barry, W.R., Zhang)

Note: sterile neutrino can have eV mass or keV mass (Warm Dark Matter)

Seesaw Model based on A_4

Field	L	e^{c}	μ^{c}	$ au^c$	$h_{u,d}$	arphi	φ'	$arphi^{\prime\prime}$	ξ	ξ'	ξ''	Θ	ν_1^c	$ u_2^c$	ν_3^c
$SU(2)_L$	2	1	1	1	2	1	1	1	1	1	1	1	1	1	1
A_4	<u>3</u>	<u>1</u>	<u>1</u> ′′	<u>1</u> ′	<u>1</u>	<u>3</u>	<u>3</u>	<u>3</u>	<u>1</u>	<u>1</u> ′	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u> ′	<u>1</u>
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω^2	ω^2	ω	1	1	ω^2	ω	1
$U(1)_{ m FN}$	-	3	1	0	-	-	-	-	-	-	-	-1	F_1	F_2	F_3

various possibilities for the FN-charges:

	Mass spectrum		$ U_{\alpha 4} $ $ U_{\alpha 5} $	m	lee	Phenomenology	
1, 1, 1, 2, 1,3	Mass spectrum	$ 0_{\alpha 4} $	$ 0_{\alpha5} $	NO	ю		
9,10,10	$M_{2,3}=\mathcal{O}(\mathrm{eV})$	$\mathcal{O}(0.1)$	$\mathcal{O}(0.1)$	0	0	3+2 mixing	
9,10,0	$M_2 = \mathcal{O}(\mathrm{eV}) \qquad \qquad \mathcal{O}(0)$		$O(10^{-11})$	0	$2\sqrt{\Delta m_{ m A}^2}$		
	$M_3=\mathcal{O}(10^{11}{\rm GeV})$	· · ·			3	3 ± 1 mixing	
9, 0, 10	$M_2 = \mathcal{O}(10^{11}{\rm GeV})$	$O(10^{-11})$	$\mathcal{O}(0.1)$	$\sqrt{\Delta m_{igodot}^2}$	$\sqrt{\Delta m_{ m A}^2}$		
	$M_3 = \mathcal{O}(\mathrm{eV})$		× /	3	3		
9, 5, 5	$M_{2,3}=\mathcal{O}(10{\rm GeV})$	$O(10^{-6})$	$O(10^{-6})$	$rac{\sqrt{\Delta m_{\bigodot}^2}}{3}$	$\sqrt{\Delta m_{ m A}^2}$	Leptogenesis	
	F_1, F_2, F_3 9, 10, 10 9, 10, 0 9, 0, 10 9, 5, 5	F_1, F_2, F_3 Mass spectrum9, 10, 10 $M_{2,3} = \mathcal{O}(eV)$ 9, 10, 0 $M_2 = \mathcal{O}(eV)$ 9, 10, 0 $M_3 = \mathcal{O}(10^{11} \text{ GeV})$ 9, 0, 10 $M_2 = \mathcal{O}(10^{11} \text{ GeV})$ 9, 5, 5 $M_{2,3} = \mathcal{O}(10 \text{ GeV})$	F_1, F_2, F_3 Mass spectrum $ U_{\alpha 4} $ 9, 10, 10 $M_{2,3} = \mathcal{O}(eV)$ $\mathcal{O}(0.1)$ 9, 10, 0 $M_2 = \mathcal{O}(eV)$ $\mathcal{O}(0.1)$ $M_3 = \mathcal{O}(10^{11} \text{ GeV})$ $\mathcal{O}(0.1)$ 9, 0, 10 $M_2 = \mathcal{O}(10^{11} \text{ GeV})$ $\mathcal{O}(10^{-11})$ $M_3 = \mathcal{O}(eV)$ $\mathcal{O}(10^{-11})$ 9, 5, 5 $M_{2,3} = \mathcal{O}(10 \text{ GeV})$ $\mathcal{O}(10^{-6})$	F_1, F_2, F_3 Mass spectrum $ U_{\alpha 4} $ $ U_{\alpha 5} $ 9, 10, 10 $M_{2,3} = \mathcal{O}(eV)$ $\mathcal{O}(0.1)$ $\mathcal{O}(0.1)$ 9, 10, 0 $M_2 = \mathcal{O}(eV)$ $M_3 = \mathcal{O}(10^{11} \text{ GeV})$ $\mathcal{O}(0.1)$ $\mathcal{O}(10^{-11})$ 9, 0, 10 $M_2 = \mathcal{O}(10^{11} \text{ GeV})$ $M_3 = \mathcal{O}(eV)$ $\mathcal{O}(10^{-11})$ $\mathcal{O}(0.1)$ 9, 5, 5 $M_{2,3} = \mathcal{O}(10 \text{ GeV})$ $\mathcal{O}(10^{-6})$ $\mathcal{O}(10^{-6})$	F_1, F_2, F_3 Mass spectrum $ U_{\alpha 4} $ $ U_{\alpha 5} $ m 9, 10, 10 $M_{2,3} = \mathcal{O}(eV)$ $\mathcal{O}(0.1)$ $\mathcal{O}(10^{-11})$ $\mathcal{O}(0.1)$	$ \begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	

Barry, W.R., Zhang, 1110.6382

Technicalities of low scale seesaw

$$M_{\nu}^{6\times 6} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}$$

diagonalized by 6×6 matrix

$$U_{\nu} \simeq \begin{pmatrix} 1 - \frac{1}{2}BB^{\dagger} & B \\ -B^{\dagger} & 1 - \frac{1}{2}B^{\dagger}B \end{pmatrix} \begin{pmatrix} V_{\nu} & 0 \\ 0 & V_R \end{pmatrix}$$

where $B = M_D M_R^{-1}$ governs "NLO seesaw corrections"

- if $M_R \simeq \text{eV}$: $M_D \simeq 0.1 \text{ eV}$ and $B \simeq 0.1$
- if all $M_i \lesssim 100$ MeV: no neutrino-less double beta decay
- keV sterile neutrino with mixing 10^{-4} generates negligible active neutrino mass

Sterile Neutrinos and $0\nu\beta\beta$

• recall $|m_{ee}|_{
m NH}^{
m act}$ can vanish and $|m_{ee}|_{
m IH}^{
m act}\sim 0.02$ eV cannot vanish

•
$$|m_{ee}| = |\underbrace{|U_{e1}|^2 m_1 + |U_{e2}|^2 m_2 e^{2i\alpha} + |U_{e3}^2| m_3 e^{2i\beta}}_{m_{ee}^{act}} + \underbrace{|U_{e4}|^2 m_4 e^{2i\Phi_1}}_{m_{ee}^{st}}$$

•
$$\Delta m_{\mathrm{st}}^2 \simeq 1 \text{ eV}^2$$
 and $|U_{e4}| \simeq 0.15$

• sterile contribution to $0\nu\beta\beta$:

$$|m_{ee}|^{\rm st} \simeq \sqrt{\Delta m_{\rm st}^2} |U_{e4}|^2 \simeq 0.02 \text{ eV} \begin{cases} \gg |m_{ee}|_{\rm NH}^{\rm act} \\ \simeq |m_{ee}|_{\rm IH}^{\rm act} \end{cases}$$

• \Rightarrow $|m_{ee}|_{\rm NH}$ cannot vanish and $|m_{ee}|_{\rm IH}$ can vanish!

Sterile Neutrinos and $0\nu\beta\beta$

contribution to double beta:

$$\langle m_{ee} \rangle = \left| \sum_{i=1}^{3} U_{ei}^2 m_i + \sum_{\text{light}} U_{e,3+i}^2 M_i \right|$$

in our model:

$$M_D = V_{\nu} \operatorname{diag}\left(\sqrt{-m_1 M_1}, \sqrt{-m_2 M_2}, \sqrt{-m_3 M_3}\right)$$

active-sterile mixing is $U_{\alpha,3+i} = (V_{\nu})_{\alpha i} \sqrt{-m_i/M_i}$ and therefore

$$U_{e,3+i}^2 M_i = \left[-(V_{\nu}^2)_{ei} \frac{m_i}{M_i} \right] M_i = -U_{ei}^2 m_i \,, \quad (i = \text{light})$$

sterile RH neutrino contributions cancels exactly active neutrino contribution!

Light sterile neutrinos?

Consider the "role model" Altarelli, Feruglio, NPB 720, 64 (2005) (effective model)

Field	L	e^{c}	μ^c	$ au^c$	$h_{u,d}$	arphi	arphi'	ξ	$ u_s$
$SU(2)_L$	2	1	1	1	2	1	1	1	1
A_4	<u>3</u>	<u>1</u>	<u>1</u> "	<u>1</u> ′	<u>1</u>	<u>3</u>	<u>3</u>	<u>1</u>	<u>1</u>
Z_3	ω	ω^2	ω^2	ω^2	1	1	ω	ω	1
$U(1)_{ m FN}$	-	4	2	0	-	-	-	-	6

- Z_3 to separate charged leptons and neutrinos
- $U(1)_{\rm FN}$ for charged lepton mass hierarchy
- ν_s added by us, no extra symmetries or fields

Barry, W.R., Zhang, 1105.3911

allowed terms

$$\mathcal{L}_{\mathbf{Y}_s} = \frac{x_e}{\Lambda^2} \xi(\varphi' L h_u) \nu_s + m_s \nu_s^c \nu_s + \text{h.c.}$$

lies at eV scale due to FN

mass matrix

$$M_{\nu}^{4 \times 4} = \begin{pmatrix} a + \frac{2d}{3} & -\frac{d}{3} & -\frac{d}{3} & e \\ \cdot & \frac{2d}{3} & a - \frac{d}{3} & e \\ \cdot & \cdot & \frac{2d}{3} & e \\ \cdot & \cdot & \cdot & m_s \end{pmatrix}$$

with the usual VEV alignment $\langle \xi \rangle = u$, $\langle \varphi \rangle = (v,0,0)$ and $\langle \varphi' \rangle = (v',v',v')$
$U \simeq \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 0 & \frac{e}{m_s} \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & 0 & 0 & \frac{e}{m_s} \\ 0 & -\frac{\sqrt{3e^2}}{2m_s^2} & 0 & 0\\ 0 & -\frac{\sqrt{3e^2}}{2m_s^2} & 0 & 0\\ 0 & -\frac{\sqrt{3e^2}}{2m_s^2} & 0 & 0\\ 0 & 0 & 0 & -\frac{3e^2}{2m_s^2} \end{pmatrix}$

giving the eigenvalues

 $m_1 = a + d$, $m_2 = a - \frac{3e^2}{m_s}$, $m_3 = -a + d$, $m_4 = m_s + \frac{3e^2}{m_s}$

and sum-rules

$$\sin^2 \theta_{14} \simeq \sin^2 \theta_{24} \simeq \sin^2 \theta_{34} \simeq \left(\frac{e}{m_s}\right)^2 \simeq \frac{1}{2}(1 - 3\sin^2 \theta_{12}) \simeq 2\sin^2 \theta_{23} - 1$$

Still $U_{e3} = 0 \dots$

Can also add second ν_s , giving

$$M_{\nu}^{5\times5} = \begin{pmatrix} a + \frac{2d}{3} & -\frac{d}{3} & -\frac{d}{3} & e & f \\ \cdot & \frac{2d}{3} & a - \frac{d}{3} & e & f \\ \cdot & \cdot & \frac{2d}{3} & e & f \\ \cdot & \cdot & \cdot & m_{s_1} & 0 \\ \cdot & \cdot & \cdot & \cdot & m_{s_2} \end{pmatrix}$$

Trivial change of FN charge and scales gives keV sterile neutrinos

Summary

- still huge activity in model building, speculations after T2K/DC
- death of TBM flavor symmetry models?
- if $\theta_{13} = 10^{\circ}$: why initially zero and then corrections?
- return of Gatto-Sartori-Tonin relations?

e.g. $|U_{e3}| = \mathcal{O}(\Delta m_{\odot}^2 / \Delta m_{\mathrm{A}}^2)$

- incorporate sterile neutrinos?
- items not covered:
 - quarks
 - GUTs
 - cosmology
 - origin of discrete symmetries
 - . . .