Exercises to "Standard Model of Particle Physics II"

Winter 2023/24
Prof. Dr. Manfred Lindner and PD Dr. Werner Rodejohann
Sheet 09 - December 20, 2023

Tutor: Juan Pablo Garces e-mail: juan.garces@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:

Discussion of solutions:
January 10, 2024-09:15, Phil. 12, kHS

Problem 1: Seesaw I [6 Points]

The Higgs mechanism generates Dirac masses for the active neutrinos when right-handed sterile neutrinos are introduced. The following term appears in the Lagrange density:

$$
\mathscr{L}_{\text {Dirac }}=-\bar{\nu}_{\mathrm{L}} M_{\mathrm{D}} N_{\mathrm{R}}+\text { h.c. },
$$

where $\nu_{\mathrm{L}}=\left(\nu_{\mathrm{L}}^{1}, \nu_{\mathrm{L}}^{2}, \nu_{\mathrm{L}}^{3}\right)^{\mathrm{T}}$ is the column vector of the active neutrinos and N_{R} the corresponding vector for the sterile neutrinos. The matrix M_{D} is - in general - a complex 3×3 matrix.
The right-handed sterile neutrinos can, furthermore, have a Majorana mass with the Lagrange density

$$
\mathscr{L}_{\text {Majorana }}=-\frac{1}{2} \overline{\left(N_{\mathrm{R}}\right)^{\mathrm{c}}} M_{\mathrm{R}} N_{\mathrm{R}}+\text { h.c. },
$$

where M_{R} is a symmetric 3×3 matrix, and $\psi^{\mathrm{c}}=\mathcal{\mathcal { C }} \bar{\psi}^{T}$ for a general Dirac spinor ψ and the charge conjugation matrix $\mathcal{C}=i \gamma^{2} \gamma^{0}$. Let m_{D} and m_{R} denote the mass scale of M_{D} and M_{R}, respectively. Suppose the entries of M_{R} are much larger than the ones of $M_{\mathrm{D}}\left(m_{\mathrm{R}} \gg m_{\mathrm{D}}\right)$.
a) Show that it is possible to rewrite the whole mass matrix in the flavor basis in the following way

$$
\mathscr{L}_{\text {mass }} \equiv \mathscr{L}_{\text {Dirac }}+\mathscr{L}_{\text {Majorana }}=-\frac{1}{2} \overline{\Psi^{\mathrm{c}}} M \Psi+\text { h.c. }
$$

with

$$
\Psi \equiv\binom{\left(\nu_{\mathrm{L}}\right)^{\mathrm{c}}}{N_{\mathrm{R}}} \quad \text { and } \quad M \equiv\left(\begin{array}{cc}
0 & M_{\mathrm{D}} \\
M_{\mathrm{D}}^{\mathrm{T}} & M_{\mathrm{R}}
\end{array}\right)
$$

For the solution prove and use the identity $\overline{\nu_{\mathrm{L}}} M_{\mathrm{D}} N_{\mathrm{R}}=\overline{\left(N_{\mathrm{R}}\right)^{\mathrm{c}}} M_{\mathrm{D}}^{\mathrm{T}}\left(\nu_{\mathrm{L}}\right)^{\mathrm{c}}$.
b) Using the (unitary) transformation $\Psi=U \chi$ with $U=\left(\begin{array}{cc}1 & \rho \\ -\rho^{\dagger} & 1\end{array}\right)$ (change of basis) it is possible to convert the 6×6 matrix M into a block diagonal form, i.e. that it takes on the following form

$$
U^{\mathrm{T}} M U \simeq\left(\begin{array}{cc}
M_{1} & 0 \tag{1}\\
0 & M_{2}
\end{array}\right)
$$

with symmetric 3×3 matrices M_{1}, M_{2}. The matrix ρ in the transformation matrix U is assumed to be proportional to the scale m_{R}^{-1} and terms of order m_{R}^{-2} (and smaller) can be neglected in the calculation. Determine ρ, and M_{1} and M_{2} from Eq. (1). (You may assume that M_{R} is invertible.)
c) Where does the name "seesaw" come from?

Problem 2: Seesaw II [14 Points]

We consider the lepton sector of the Standard Model and expand it by adding a Higgs triplet Δ. The particles considered have the following $\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$ transformation properties:

$$
L_{a} \sim(2,-1) ; \quad l_{a \mathrm{R}} \sim(1,-2) ; \quad \phi \sim(2,1) ; \quad \Delta \sim(3,2)
$$

where the fields denote respectively the left-handed lepton doublet, the right-handed lepton singlet, the SM Higgs doublet and the (non-SM) Higgs triplet in the convention that $Q=I_{3}+Y / 2$. The flavour index is denoted as a. For the triplet use the representation as a 2×2 matrix with the (electric) charge eigenstates

$$
\Delta=\left(\begin{array}{cc}
\Delta^{+} & \sqrt{2} \Delta^{++} \\
\sqrt{2} \Delta^{0} & -\Delta^{+}
\end{array}\right)
$$

The mass terms for the leptons arise from the Yukawa Lagrangian

$$
\mathscr{L}_{\mathrm{Y}}=\sum_{a, b}\left[-y_{a b} \overline{l_{a \mathrm{R}}} \phi^{\dagger} L_{b}+\frac{1}{2} \tilde{y}_{a b} \overline{L_{a}^{\mathrm{c}}} i \tau_{2} \Delta L_{b}\right]+\text { h.c. }
$$

a) Convince yourself that \mathscr{L}_{Y} is a singlet under $\mathrm{SU}(2)_{\mathrm{L}} \otimes \mathrm{U}(1)_{\mathrm{Y}}$.
b) The introduction of the triplet changes the Higgs potential to

$$
\begin{aligned}
V(\phi, \Delta)= & a \phi^{\dagger} \phi+\frac{b}{2} \operatorname{Tr}\left[\Delta^{\dagger} \Delta\right]+c\left(\phi^{\dagger} \phi\right)^{2}+\frac{d}{4}\left(\operatorname{Tr}\left[\Delta^{\dagger} \Delta\right]\right)^{2}+\frac{e-h}{2} \phi^{\dagger} \phi \operatorname{Tr}\left[\Delta^{\dagger} \Delta\right] \\
& +\frac{f}{4} \operatorname{Tr}\left[\Delta^{\dagger} \Delta^{\dagger}\right] \operatorname{Tr}[\Delta \Delta]+h \phi^{\dagger} \Delta^{\dagger} \Delta \phi+\left(t \phi^{\dagger} \Delta\left(\mathrm{i} \tau_{2} \phi^{*}\right)+\text { h.c. }\right)
\end{aligned}
$$

Use the condition that only neutral components of the Higgs fields can develop non-zero vacuum expectation values (vev's) $\left\langle\phi^{0}\right\rangle=v$ and $\left\langle\Delta^{0}\right\rangle=v_{\Delta} / \sqrt{2}$ and find $V(\langle\phi\rangle,\langle\Delta\rangle)$.
c) Define $t=|t| e^{i \omega}, v_{\Delta}=\left|v_{\Delta}\right| e^{i \gamma}$ and write the conditions of minimization of the potential with respect to $v,\left|v_{\Delta}\right|$, and γ. Hint: Start with γ.
d) Show that, under the assumptions $a, b \sim v^{2}$, and c, d, $f \sim 1$, together with $|t|,\left|v_{\Delta}\right| \ll v$, the conditions for the minimum are approximately equivalent to

$$
v^{2} \approx-\frac{a}{2 c} \quad \text { and } \quad\left|v_{\Delta}\right|=\frac{2|t| v^{2}}{b+(e-h) v^{2}}
$$

e) What do the approximations and findings of 2 d) imply for the masses in the lepton sector?
f) Now assume that $\sqrt{b}=m_{\Delta}$ is very large compared to the electroweak scale v and $\left|v_{\Delta}\right|$, and that $t^{2} \sim b$, while keeping $c, d, e, f, h \sim 1$. Find the relations between the vev's under these conditions. What does it mean for the lepton masses?
g) Discuss the difference between this scenario (the so-called type-II seesaw) and the type-I seesaw from problem 1.

