Exercises to "Standard Model of Particle Physics II"

Winter 2023/24

Prof. Dr. Manfred Lindner and PD Dr. Werner Rodejohann

Sheet 08 - December 13, 2023

Tutor: Juan Pablo Garces e-mail: juan.garces@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:

Discussion of solutions:
December 20, 2023-09:15, Phil. 12, kHS December 20, 2023-11:15, Phil. 12, kHS

Problem 1: Neutrino oscillations in matter [14 Points]

The MSW effect describes oscillations of neutrinos in matter. Consider the case of two flavor oscillations in a realistic (non-constant) mass distribution.
The time evolution of the eigenfunctions of the Hamiltonian in matter is described by the following expression:

$$
i \frac{\mathrm{~d}}{\mathrm{dt}}\binom{\left|\nu_{\mathrm{A}}\right\rangle}{\left|\nu_{\mathrm{B}}\right\rangle}=\left(\begin{array}{cc}
E_{\mathrm{A}}(t) & -i \dot{\theta}(t) \\
i \dot{\theta}(t) & E_{\mathrm{B}}(t)
\end{array}\right)\binom{\left|\nu_{\mathrm{A}}\right\rangle}{\left|\nu_{\mathrm{B}}\right\rangle},
$$

where

$$
-E_{\mathrm{A}}(t)=E_{\mathrm{B}}(t)=\Delta m^{2} \sin \left(2 \theta_{0}\right) / 4 E \sin (2 \theta)
$$

with the (constant) vacuum mixing angle θ_{0} and electron number density $N_{e}(t)$ in matter. The eigenstates in matter are $|\nu\rangle=\left(\left|\nu_{\mathrm{A}}\right\rangle,\left|\nu_{\mathrm{B}}\right\rangle\right)^{\mathrm{T}}$ and at any given time they are connected to the flavor states via: $|\tilde{\nu}\rangle=\tilde{U}(t)|\nu\rangle$ with

$$
|\tilde{\nu}\rangle=\binom{\left|\tilde{\nu}_{e}\right\rangle}{\left|\tilde{\nu}_{\mu}\right\rangle}, \quad \tilde{U}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

and the effective (time-dependent) mixing angle

$$
\begin{equation*}
\tan (2 \theta)=\frac{\frac{\Delta m^{2}}{2 E} \sin \left(2 \theta_{0}\right)}{\frac{\Delta m^{2}}{2 E} \cos \left(2 \theta_{0}\right)-\sqrt{2} G_{\mathrm{F}} N_{e}(t)} . \tag{1}
\end{equation*}
$$

The effective Hamiltonian is not diagonal, since matter eigenstates and thus the mixing angle θ are not constant. If, however, $\dot{\theta}$ is small, i.e. the change in θ occurs slowly, we obtain the adiabatic approximation, where we can neglect $\dot{\theta}$. Suppose that at the time $t=t_{i}$ an electron neutrino is produced: $\left|\tilde{\nu}_{\alpha}\left(t_{i}\right)\right\rangle \equiv \delta_{\alpha e}\left|\tilde{\nu}_{\alpha}\right\rangle$.
a) What is the expression for $\left|\tilde{\nu}_{\alpha}\left(t_{f}\right)\right\rangle$ at some later time t_{f} in the adiabatic approximation?
b) Show that in the adiabatic approximation the result for the transition probability is given by

$$
\begin{equation*}
P\left(\nu_{e} \rightarrow \nu_{\mu}\right)=\frac{1}{2}-\frac{1}{2} \cos \left(2 \theta_{i}\right) \cos \left(2 \theta_{f}\right)-\frac{1}{2} \sin \left(2 \theta_{i}\right) \sin \left(2 \theta_{f}\right) \cos \Phi_{\mathrm{AB}}, \tag{2}
\end{equation*}
$$

with $\theta_{i} \equiv \theta\left(t=t_{i}\right), \theta_{f} \equiv \theta\left(t=t_{f}\right)$ and $\Phi_{\mathrm{IJ}} \equiv \int_{t_{i}}^{t_{f}}\left[E_{\mathrm{I}}(t)-E_{\mathrm{J}}(t)\right] \mathrm{dt}$, where $\mathrm{I}, \mathrm{J} \in\{\mathrm{A}, \mathrm{B}\}$.
c) Show that in the case of constant electron density, Eq. (2) reduces to the standard formula of two-flavor oscillations

$$
P\left(\nu_{e} \rightarrow \nu_{\mu}\right)(t)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\pi t}{L_{M}^{\text {osc }}}\right),
$$

d) Use Eq. (1] to find an expression for $\sin ^{2}(2 \theta)$. The formula for $\sin ^{2}(2 \theta)$ describes a Breit-Wigner distribution. We define the resonance width at half height, Δr, as the width at which the curve of the distribution is larger than one half $\left[\sin ^{2}(2 \theta)>1 / 2\right]$. Find an expression for Δr in terms of θ_{0}.
e) The adiabatic parameter is defined as $\gamma_{r} \equiv\left|E_{\mathrm{A}}\right| /|\dot{\theta}|$ which becomes large if the adiabatic approximation is good. To interpret this, first show that

$$
\dot{\theta}=\frac{1}{2} \frac{\sin ^{2}(2 \theta)}{\Delta m^{2} \sin \left(2 \theta_{0}\right)} 2 \sqrt{2} E G_{F} \dot{N}_{e}
$$

Now assume that the change in matter density is approximately linear, $\dot{N}_{e} \approx$ const, and that the density passes exactly through the resonance, i.e. $\Delta N_{e}=N_{e}\left(t_{f}\right)-N_{e}\left(t_{i}\right) \propto \Delta r$ to formulate γ_{r} in terms of $L_{M}^{\text {osc }}$ and $\Delta t=t_{f}-t_{i}$. Discuss the adiabatic condition $\gamma_{r}>3$.

Problem 2: Discrete symmetries [6 Points]

A CP transformation takes a left-handed neutrino and transforms it into a right-handed anti-neutrino. Consider the probability $P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)$ of a neutrino of flavor α to oscillate into a flavor β after time t of propagation.
a) How do the discrete symmetries CP, T, and CPT change the initial and final states of the process given above? That is, give

$$
\begin{aligned}
(\mathrm{CP})^{-1} P\left(\nu_{\alpha}\right. & \left.\rightarrow \nu_{\beta}, t\right)(\mathrm{CP}), \\
(\mathrm{T})^{-1} P\left(\nu_{\alpha}\right. & \left.\rightarrow \nu_{\beta}, t\right)(\mathrm{T}), \\
(\mathrm{CPT})^{-1} P\left(\nu_{\alpha}\right. & \left.\rightarrow \nu_{\beta}, t\right)(\mathrm{CPT})
\end{aligned}
$$

in terms of other transition probabilities.
b) The CPT theorem states that every QFT described by a Lorentz invariant, local Lagrangian is invariant under CPT transformations. How could the above result be used to test this theorem in Nature? (Hint: Consider the case $\alpha=\beta$, i.e. the survival probability of (anti-) neutrinos.)

