Exercises to "Standard Model of Particle Physics II"

Winter 2024/25

Prof. Dr. Manfred Lindner and PD Dr. Werner Rodejohann Sheet 05 - November 13, 2024

Tutor: Juan Pablo Garces e-mail: juan.garces@mpi-hd.mpg.de Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions by:	Discussion of solutions:
November 19, 2024 - 14:00	November 19, $2024 - 14:00$, INF 227, SR 1.404

Problem 1: Custodial Symmetry and the ρ -Parameter [10 Points]

The 1-loop correction to the ρ -parameter is given by

$$\Delta \rho = \frac{3G_F}{8\pi^2 2\sqrt{2}} \left(m_t^2 + m_b^2 - 2\frac{m_t^2 m_b^2}{m_t^2 - m_b^2} \log \frac{m_t^2}{m_b^2} - \frac{11}{9} m_Z^2 \sin^2 \theta_W \log \frac{m_h^2}{m_Z^2} \right),$$

where $m_t (m_b)$ is the top (bottom) quark mass, θ_W the Weinberg angle and $m_h (m_Z)$ the mass of the Higgs (Z) boson.

- a) Convince yourself that $\Delta \rho = 0$ for $m_t = m_b$ and if the hypercharge gauge coupling is zero.
- b) As discussed in the lecture, the Higgs potential is invariant under $SU(2)_L \times SU(2)_R$. Define

$$L = \begin{pmatrix} t \\ b \end{pmatrix}_L$$
, $R = \begin{pmatrix} t \\ b \end{pmatrix}_R$ and $\Phi = (\tilde{\phi}, \phi)$,

with ϕ the Higgs doublet, $\tilde{\phi} = i\sigma_2\phi^*$, and σ_2 the second Pauli matrix. Show that the Lagrangian containing the top and bottom Yukawa couplings g_t and g_b is invariant under the SU(2)_L×SU(2)_R symmetry only if $g_t = g_b$.

c) Show that the kinetic term for the Higgs boson is invariant under $SU(2)_L \times SU(2)_R$ symmetry, only if the hypercharge gauge coupling is zero. You should start by writing down the covariant derivative of Φ (taking into account the fact that ϕ and $\tilde{\phi}$ have hypercharges 1 and -1 respectively).

Problem 2: Scalar electrodynamics [10 Points]

Consider the Lagrange density of a scalar and a vector field given by:

$$\mathscr{L} = (D_{\mu}\phi)^{*}(D^{\mu}\phi) - \mu^{2}(\phi^{*}\phi) - \lambda(\phi^{*}\phi)^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$= (D_{\mu}\phi)^{*}(D^{\mu}\phi) - V(\phi^{*}\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}.$$

Local gauge symmetry couples the scalar field to the vector field via the covariant derivative

$$D_{\mu}\phi \equiv \partial_{\mu}\phi - ieA_{\mu}\phi.$$

- a) Sketch the potential $V(\phi^*\phi)$, with $\mu^2 < 0$, $\lambda > 0$, and find the value of the scalar field that minimizes V.
- b) Consider the case, where $\partial_0 \vec{A} = 0$ and $A_0 = 0$. For this case, derive the equations of motion for \vec{A} and find the current density \vec{J} , which acts as source for the gauge potential.
- c) Show that, after electroweak symmetry breaking, where the scalar potential is minimal and ϕ develops the vacuum expectation value (vev) v, the current density is given by $\vec{J} = -2e^2v^2\vec{A}$, and that hence we have $\Delta \vec{B} = 2e^2v^2\vec{B}$.
- d) The resistance R of a system is defined by $\vec{E} = R\vec{J}$. Show that, after electroweak symmetry breaking, the resistance vanishes (R = 0) and consequently the system is superconductive.