Exercises to "Standard Model of Particle Physics II"

Winter 2023/24

Prof. Dr. Manfred Lindner and PD Dr. Werner Rodejohann Sheet 04 - November 15, 2023

Tutor: Juan Pablo Garces e-mail: juan.garces@mpi-hd.mpg.de Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:	Discussion of solutions:
November 22, 2023 - 09:15, Phil. 12, kHS	November 22, 2023 - 11:15, Phil. 12, R105

Problem 1: Electroweak symmetry breaking by a Higgs triplet [10 Points]

a) Verify that

$$t_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}, \qquad t_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0\\ i & 0 & -i\\ 0 & i & 0 \end{pmatrix}, \qquad t_3 = \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix}$$

form a triplet representation of the SU(2) algebra $[t_a, t_b] = i\epsilon_{abc}t_c$.

b) Consider the complex triplet Higgs field $\Phi(x) = (\phi_1(x), \phi_2(x), \phi_3(x))^{\mathrm{T}}$ coupled covariantly to an SU(2)_L gauge group with

$$D_{\mu}\Phi = \partial_{\mu}\Phi - igt_a W^a_{\mu}(x)\Phi,$$

where W^a_{μ} denote the gauge bosons of the SU(2)_L group. We introduce a potential $V(\Phi)$ such that the gauge symmetry breaks spontaneously. The precise form of the potential is not interesting for the moment. As a result, the Higgs field acquires a vacuum expectation value (VEV), which can be written $\Phi_0 = (0, 0, v)^{\text{T}}$. Derive the gauge boson mass eigenstates of the broken SU(2)_L symmetry.

c) In the next step we extend the gauge group of the theory to $SU(2)_L \times U(1)_Y$ so that the covariant derivative now reads

$$D_{\mu}\Phi = \partial_{\mu}\Phi - igt_a W^a_{\mu}(x)\Phi - ig' \mathbb{1}B_{\mu}(x)\Phi,$$

where B_{μ} denotes the gauge boson of the U(1)_Y group. Using the same VEV as in part b), derive the gauge boson mass eigenstates and the electroweak mixing angle. What are the consequences for the $\rho = m_W^2/(m_Z^2 \cos^2 \theta_W)$ parameter compared to the SM?

d) How does the particle content of part b) and c) differ from the Standard Model? How can these theories be distinguished in an experiment?

Problem 2: The Rho-parameter [10 Points]

We encountered the Rho-parameter defined by

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2(\theta_W)}$$

whose value predicted by the SM is 1. Now we generalize our findings while keeping the above definition.

- a) From representation theory we know that in a *n*-dimensional representation (i.e. *n*-plet, or spin-(n-1)/2 representation), an eigenbasis to the generators t^3 of SU(2) can be found, such that t_3 acts like $t^3 = \text{diag}(j, j-1, \ldots, -j)$, where j = (n-1)/2. Show that if we expand a Higgs *n*-plet Φ with a hypercharge of *y* in this basis its components will be eigenstates of $Q = t^3 + \hat{Y}$, where $\hat{Y}\Phi = y\mathbf{1}_{n\times n}\Phi = y\Phi$. What is the condition on *y* to ensure that there is a neutral component?
- b) In this basis the raising and lowering operators defined from $t^{\pm} = (t^1 \pm it^2)$ can be described by their action on the orthonormal basis vectors e_m (labelled by their t^3 eigenvalues m):

$$t^+e_m = \sqrt{j(j+1) - m(m+1)}e_{m+1}, \qquad t^-e_m = \sqrt{j(j+1) - m(m-1)}e_{m-1}.$$

Assume that the hypercharge is such that ϕ_m is neutral and that only this neutral component of Φ acquires a vev, $\vec{v} = ve_m$. Recall that the covariant derivative reads

$$D_{\mu}\Phi = (\partial_{\mu} - igt^{i}W^{i}_{\mu} - ig'\hat{Y}B_{\mu})\Phi$$

and, show that

$$m_W^2 = \frac{g^2}{2} \vec{v}^{\dagger} (t^+ t^- + t^- t^+) \vec{v} \,.$$

c) Show that this leads to

$$m_W^2 = g^2 v^2 (j(j+1) - m^2).$$

d) With the standard mixing angle $\tan \theta_W = g'/g$, derive the mass of Z and use it to show that

$$\rho = \frac{v^2(j(j+1) - y^2)}{2v^2y^2}$$

e) Check that the Higgs doublet with hypercharge 1/2 satisfies the condition that $\rho = 1$. What would be the next combination of weak isospin and (rational) hypercharge that can satisfy this bound?