Exercises to "Standard Model of Particle Physics II"

Winter 2022/23

Prof. Dr. Manfred Lindner and Dr. Werner Rodejohann Sheet 04 - November 9, 2022

Tutor: Sophie Klett e-mail: sophie.klett@mpi-hd.mpg.de Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:	Discussion of solutions:
November 16, 2022 - 11:15, Phil. 12, R105	November 16, 2022 - 11:15, Phil. 12, R105

Problem 1: Running couplings [10 Points]

a) Derive the running of the QED coupling $\alpha_{\text{QED}}(\mu)$ from its β -function

$$\beta(\alpha) = \frac{2\alpha^2}{3\pi}$$

where $\beta(\alpha) \equiv d\alpha/d\ln\mu$.

b) In QED the coupling $\alpha = e^2/4\pi$ is a running coupling. For low energies one obtains $\alpha(\mu = m_e) = 1/137$. The running of the QED coupling with only one lepton is given by

$$\alpha_{\text{QED}}(\mu) = \frac{\alpha(m_e)}{1 - \frac{2\alpha(m_e)}{3\pi} \ln(\frac{\mu}{m_e})} \; .$$

At which scale does $\alpha_{\text{QED}}(\mu)$ become infinite? (If further charged leptons and quarks are considered, the coupling increases even faster.)

c) In QCD, with $\alpha_s = g_3^2/4\pi$, the running coupling

$$\alpha_s(\mu) = \frac{\alpha_s(\mu_0)}{1 + \frac{(33 - 2f)\alpha_s(\mu_0)}{6\pi} \ln(\frac{\mu}{\mu_0})}$$

is obtained, where f denotes the respective number of quark flavours with mass $2m_q \leq \mu$ in the considered energy range.

The experimental boundary conditions are $\alpha_s(\mu_0 = m_Z = 91 \text{ GeV}) = 0.12$, $m_t = 175 \text{ GeV}$, $m_b = 4.8 \text{ GeV}$, $m_c = 1.4 \text{ GeV}$ and $m_u \simeq m_d \simeq m_s \simeq 0$.

- i) Determine the pole $\mu = \Lambda_{\text{QCD}}$ of $\alpha_s(\mu)$.
- ii) For which μ does the coupling $\alpha_s(\mu)$ become very small (asymptotic freedom), and where does perturbation theory break down?
- iii) Determine the value of $\alpha_s(\mu)$ in the different energy ranges $(2m_q \leq \mu \leq 2m_t \text{ etc.})$ at the thresholds.
- iv) $\alpha_s(\mu)$ should be continuous. However, from the threshold values calculated in the last part we saw that this is not yet true. To make $\alpha_s(\mu)$ continuous, promote μ_0 to a function $\mu_0(f)$ with $\mu_0(f = 5) = 91$ GeV. Find a relation between $\mu_0(f)$ and $\mu_0(f - 1)$ assuming that $\alpha_s(\mu_0(f)) = 0.12$ for all f. With this relation determine the values of $\mu_0(4)$ and $\mu_0(6)$.
- d) Draw $\alpha_s^{-1}(\mu)$ and $\alpha_{\text{QED}}^{-1}(\mu)$ as functions of $\ln(\mu)$. What could the intersection of the curves indicate?

Problem 2: Optical Theorem [10 Points]

In the context of partial wave expansion, the scattering amplitude at an angle θ for the process $a + b \rightarrow c + d$ is given by

$$f(\theta) = \frac{1}{2ki} \sum_{l} (2l+1)(\eta_l e^{2i\delta_l} - 1)P_l(\cos\theta),$$

where P_l are the Legendre-polynomials, θ is the scattering angle, k is the wavenumber in the incident direction and δ_l and η_l are both real functions. δ_l denotes the phase difference and η_l was introduced to describe inelastic scattering. We have $\eta_l = 1$ for elastic and $\eta_l < 1$ for inelastic scattering. The optical theorem states that the cross section in a forward scattering process is given by

$$\sigma_{\rm tot} = \frac{4\pi}{k} {\rm Im} \left[f(0) \right].$$

a) Show with the help of the optical theorem that

$$\sigma_{\rm tot} = \frac{2\pi}{k^2} \sum_{l} (2l+1)(1-\eta_l \cos(2\delta_l)).$$

b) The differential cross section for elastic scattering is given by

$$\frac{d\sigma_{\rm el}}{d\Omega} = |f(\theta)|^2$$

From this, derive the following expression for the elastic scattering cross section

$$\sigma_{\rm el} = \frac{\pi}{k^2} \sum_{l} (2l+1) |\eta_l e^{2i\delta_l} - 1|^2.$$

c) From a) and b) it follows that

$$\sigma_{\text{inel}} = \frac{\pi}{k^2} \sum_{l} (2l+1)(1-\eta_l^2)$$

Show with this equation that for the reaction $\nu_{\mu} + e^- \rightarrow \mu^- + \nu_e$ we obtain the relation

$$\sigma(\nu_{\mu} + e^{-} \to \mu^{-} + \nu_{e}) \le \frac{2\pi}{E_{\rm cm}^{2}},\tag{1}$$

where $E_{\rm cm}$ denotes the center-of-mass energy (k should be considered in the center-of-mass system). Note that this is an l = 0 scattering process and that a spin factor 1/(2s + 1) should be taken into account.

d) In Fermi theory the cross section is given by

$$\sigma = \frac{G_{\rm F}^2 s}{\pi},\tag{2}$$

where $G_{\rm F}$ is Fermi's constant and \sqrt{s} denotes the invariant mass.

Use Eqs. (1) and (2) to find the energy at which Fermi theory breaks down.