Exercises to "Standard Model of Particle Physics II"

Winter 2023/24
Prof. Dr. Manfred Lindner and PD Dr. Werner Rodejohann
Sheet 13 - January 31, 2024

Tutor: Juan Pablo Garces e-mail: juan.garces@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Problem 1: Gauge Unification [10 Points]

At the unification scale $M_{G U T}$ the Standard Model gauge couplings are unified to one single coupling g_{5} so that

$$
g_{5}=g_{3}=g_{2}=g_{1},
$$

where $g_{3}=g_{s}$ is the strong coupling, $g_{2}=g$ is the coupling of weak interactions and $g_{1}=\sqrt{\frac{5}{3}} g^{\prime}$ with g^{\prime} the hypercharge coupling.
a) Which value do you expect for the running weak mixing angle $\sin ^{2} \theta_{w}\left(M_{G U T}^{2}\right)$ at the unification scale?
b) To compare this result with experiments we need to run the couplings to low energies i.e. to $Q^{2}=M_{Z}^{2}$. The one-loop renormalization group equations for the gauge couplings (neglecting small Higgs contributions) are given by

$$
\begin{equation*}
\alpha_{i}^{-1}\left(Q^{2}\right)=\alpha_{i}^{-1}\left(M_{G U T}^{2}\right)+\frac{b_{i}}{4 \pi} \ln \left(\frac{M_{G U T}^{2}}{Q^{2}}\right), \tag{1}
\end{equation*}
$$

where $b_{1}=\frac{4 F}{3}, b_{2}=-\left(\frac{22}{3}-\frac{4 F}{3}\right), b_{3}=-\left(11-\frac{4 F}{3}\right)$ and F is the number of families in the Standard Model.
Using the fine structure constant from electromagnetism $\alpha \equiv e^{2} /(4 \pi)$, express Eq.(1) for α_{1} and α_{2} in terms of α and the weak mixing angle.
c) What is $M_{G U T}$ in terms of the measured quantities $\alpha\left(M_{Z}^{2}\right)=1 / 128$ and $\alpha_{s}\left(M_{Z}^{2}\right)=0.118$?
d) Show that the weak mixing angle at the scale M_{Z} is given by

$$
\sin ^{2} \theta_{w}\left(M_{Z}^{2}\right)=\frac{1}{6}+\frac{5}{9} \frac{\alpha\left(M_{Z}^{2}\right)}{\alpha_{s}\left(M_{Z}^{2}\right)},
$$

and calculate its explicit value. Does your result agree with the measured value?

Problem 2: $S U(5)$ adjoint Higgs field [10 Points]

We consider the symmetry breaking of $S U(5)$ gauge symmetry by a scalar field H in the adjoint representation 24. The scalar potential of the $S U(5)$ model, neglecting the Higgs in the 5 representation, is given by

$$
\begin{equation*}
V(H)=-m^{2} \operatorname{Tr}\left(H^{2}\right)+\lambda_{1}\left(\operatorname{Tr}\left(H^{2}\right)\right)^{2}+\lambda_{2} \operatorname{Tr}\left(H^{4}\right) \tag{2}
\end{equation*}
$$

For simplicity we impose a symmetry $H \rightarrow-H$ to remove the cubic term. From representation theory we know that H can be represented as a 5×5 hermitian traceless matrix.
a) Show that H can be transformed into a real diagonal matrix

$$
H_{d}=U H U^{\dagger}=\operatorname{Diag}\left(h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right)
$$

where $h_{1}+h_{2}+h_{3}+h_{4}+h_{5}=0$.
b) Write down the potential $V(H)$ with H in diagonal form and find the minimizing condition with respect to the $h_{i} \mathrm{~s}$.
Hint: Since the h_{i} s are not all independent you need to use a Lagrange multiplier.
c) How many different values can the h_{i} s take at most? From this result discuss the most general form of symmetry breakings that can be induced by a 24 Higgs field.
d) In terms of matrix multiplication, the covariant derivative of H is given by

$$
\begin{equation*}
D_{\mu} H=\partial_{\mu} H+i g_{5}\left[W_{\mu}, H\right] \tag{3}
\end{equation*}
$$

where W_{μ} is a 5×5 traceless hermitian matrix of all $S U(5)$ gauge bosons and g_{5} is the unified gauge coupling. The gauge boson masses come from the covariant derivatives

$$
\mathcal{L} \supset \operatorname{Tr}\left(D_{\mu}\langle H\rangle\left(D_{\mu}\langle H\rangle\right)^{\dagger}\right)
$$

Calculate the gauge boson masses with the vacuum expectation value of H given by

$$
\langle H\rangle=v\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & -3
\end{array}\right)
$$

