Exercises to "Standard Model of Particle Physics II"

Winter 2023/24
Prof. Dr. Manfred Lindner and PD Dr. Werner Rodejohann
Sheet 12 - January 24, 2024

Tutor: Juan Pablo Garces e-mail: juan.garces@mpi-hd.mpg.de
Lecture webpage: https://www.mpi-hd.mpg.de/manitop/StandardModel2/index.html

Hand-in of solutions:

Discussion of solutions:
January 31, 2024-09:15, Phil. 12, kHS
January 31, 2024-11:15, Phil. 12, kHS

Problem 1: The Boltzmann equation [10 Points]

Consider a stable particle χ and its antiparticle $\bar{\chi}$ that participate in the annihilation process

$$
\begin{equation*}
\chi \bar{\chi} \leftrightarrow \psi \bar{\psi}, \tag{1}
\end{equation*}
$$

where ψ denotes all possible final WIMP states. Assuming a co-moving volume whose expansion is governed by the standard Friedmann equations, the number density n of ψ in that volume is governed by the Boltzmann equations

$$
\begin{gather*}
\frac{\mathrm{d} n}{\mathrm{~d} t}=-3 H n-\left\langle\sigma_{\mathrm{ann}} v\right\rangle\left(n^{2}-n_{\mathrm{eq}}^{2}\right) \tag{2}\\
\frac{\mathrm{d} s}{\mathrm{~d} t}=-3 H s \tag{3}
\end{gather*}
$$

where t is time, s is the entropy density, H is the Hubble parameter, $n_{\text {eq }}$ is the "WIMP equilibrium number", and $\left\langle\sigma_{\mathrm{ann}} v\right\rangle$ is the thermally-averaged total annihilation cross-section.
a) It is convenient to combine the two Boltzmann equations above into one differential equation by defining the new variables $Y=n / s$ and $x=m / T$ where m is the mass of ψ and T is the temperature. Use these definitions to derive the following relation.

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} x}=\frac{1}{3 H} \frac{\mathrm{~d} s}{\mathrm{~d} x}\left\langle\sigma_{\mathrm{ann}} v\right\rangle\left(Y^{2}-Y_{\text {eq }}^{2}\right) \tag{4}
\end{equation*}
$$

b) The Hubble parameter is related to the energy density ρ according to

$$
\begin{equation*}
H^{2}=\frac{8 \pi}{3 M_{\mathrm{pl}}^{2}} \rho, \tag{5}
\end{equation*}
$$

while the energy density and entropy density may be expressed in terms of their respective effective degrees of freedom, $g_{\text {eff }}(T)$ and $h_{\text {eff }}(T)$, as

$$
\begin{equation*}
\rho(T)=\frac{\pi^{2}}{30} T^{4} g_{\mathrm{eff}}(T), \quad \quad s(T)=\frac{2 \pi^{2}}{45} T^{3} h_{\mathrm{eff}}(T) \tag{6}
\end{equation*}
$$

Use these relations to find an expression for $\mathrm{d} s / \mathrm{d} x$, then plug this into the previous result to derive

$$
\begin{equation*}
\frac{\mathrm{d} Y}{\mathrm{~d} x}=-\left(\frac{45}{\pi M_{\mathrm{pl}}^{2}}\right)^{-1 / 2} \frac{g_{*}^{1 / 2} m}{x^{2}}\left\langle\sigma_{\mathrm{ann}} v\right\rangle\left(Y^{2}-Y_{\mathrm{eq}}^{2}\right), \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{*}^{1 / 2}=\frac{h_{\mathrm{eff}}}{g_{\mathrm{eff}}^{1 / 2}}\left(1+\frac{T}{3 h_{\mathrm{eff}}} \frac{\mathrm{~d} h_{\mathrm{eff}}}{\mathrm{~d} T}\right) . \tag{8}
\end{equation*}
$$

c) One may solve (7) numerically which yields the famous plot on the following page. Give a brief explanation of what is happening in this figure.

Problem 2: Z^{\prime} physics [10 Points]

If one adds an additional $\mathrm{U}(1)^{\prime}$ symmetry to the SM gauge group, the general effective Lagrange density after breaking the $\mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \times \mathrm{U}(1)^{\prime}$ symmetry to $\mathrm{SU}(3)_{\mathrm{C}} \times \mathrm{U}(1)_{\text {em }}$ can be written as

$$
\mathscr{L}=\mathscr{L}_{\mathrm{SM}}+\mathscr{L}_{Z^{\prime}}+\mathscr{L}_{\text {mix }} .
$$

The relevant part of the Standard Model Lagrangian is given by

$$
\mathscr{L}_{\mathrm{SM}}=-\frac{1}{4} \hat{B}_{\mu \nu} \hat{B}^{\mu \nu}-\frac{1}{4} \hat{W}_{\mu \nu}^{a} \hat{W}^{\mu \nu, a}+\frac{1}{2} \hat{M}_{Z}^{2} \hat{Z}_{\mu} \hat{Z}^{\mu}-\frac{e}{c_{W}} j_{B}^{\mu} \hat{B}_{\mu}-\frac{e}{s_{W}} j_{W}^{\mu, a} \hat{W}_{\mu}^{a}
$$

where the hats denote that the fields are not mass eigenstates. The Z^{\prime} part reads

$$
\mathscr{L}_{Z^{\prime}}=-\frac{1}{4} \hat{Z}^{\prime}{ }_{\mu \nu} \hat{Z}^{\mu \nu}+\frac{1}{2} \hat{M}_{Z^{\prime}}^{2} \hat{Z}^{\prime}{ }_{\mu} \hat{Z}^{\mu}-g^{\prime} j_{\mu}^{\prime} \hat{Z}_{\mu}^{\prime},
$$

where g^{\prime} denotes the $\mathrm{U}(1)^{\prime}$ gauge coupling. Finally, the kinetic- and mass-mixing terms can be parameterized as

$$
\mathscr{L}_{\text {mix }}=-\frac{\sin \chi}{2} \hat{Z}_{\mu \nu}^{\prime} \hat{B}^{\mu \nu}+\delta \hat{M}^{2} \hat{Z}_{\mu}^{\prime} \hat{Z}^{\mu} .
$$

a) Determine the mass eigenstates Z_{1}^{μ} and Z_{2}^{μ} and determine the couplings of $Z_{1,2}$ to the currents j_{B}, j_{W} and j^{\prime}. You may set the kinetic mixing angle χ to zero for simplicity.
Hint: Reexpress \hat{B}_{μ} and \hat{W}_{μ}^{3} in terms of A_{μ} and Z_{μ}.
b) Since the mass of the physical Z boson changes compared to the SM , the ρ parameter is no longer equal to one (at tree-level). Use the current value $\rho=1.0008_{-0.0007}^{+0.0017}$ to constrain the $Z-Z^{\prime}$ mixing. You may assume that $\hat{M}_{Z^{\prime}} \gg \hat{M}_{Z} \gg \delta \hat{M}$.
c) A well-motivated extension of the SM is a gauged B-L symmetry (baryon minus lepton number). Write down the corresponding current for each of the SM fermions using the general formula,

$$
j_{\mu}^{\prime}=\sum_{\psi} \bar{\psi} \gamma_{\mu} \mathcal{Q}_{B L} \psi
$$

where $\mathcal{Q}_{B L}$ denotes the B-L charge operator.

