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Problem 1: The WIMP miracle [8 Points]

Dark Matter (DM) is often assumed to be a thermal relic which was in thermal equilibrium with
the Standard Model particles only in the early phases of the Universe. Weakly interacting massive
particles (WIMPs) are thermal relic DM candidates with masses mDM ∼ 100 GeV and couplings typical
for electroweak physics. The fact that the observed relic density

ΩDM
0.2 ≈ 10−8 GeV−2

σ
(1)

can be explained by the existence of a WIMP is known as the WIMP miracle.

a) DM is generally believed to be cold, meaning that the temperature at which it thermally decou-
pled from the Standard Model is much lower than its mass. In this case, its number density is
given by

nDM ∼ (mDMT )3/2e−mDM/T , for mDM ≫ T . (2)

When the DM interaction rate Γ becomes comparable to the Hubble expansion rate H, the
WIMP freezes out. In terms of the number density one can write Γ = nDM · v · σ, where v is
the average velocity and σ is the interaction cross-section. In a radiation-dominated universe,
the Friedmann equations give H ∼ T 2/Mpl where Mpl = 1019 GeV is the Planck scale. Use the
freeze-out condition Γ = H to show that this implies mDM · σ · Mpl > 1.

b) Use the previous result to derive a lower bound on the DM mass using the cross section σ =
10−8 GeV−2, as suggested by the relic density.

c) Unitarity constraints provide an upper bound on the annihilation cross section. For an average
velocity of v = 0.3, one finds

σ ≲
4π

m2
DMv2 . (3)

Use this constraint to derive an upper bound on the DM mass.
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Problem 2: Left-right symmetric electroweak model [12 Points]

The left-right symmetric model can be introduced by assuming right-handed fermion doublets in
analogy to the left-handed ones. The quark and lepton spectra consist of

Qi
L,R =

(
U i

L,R
Di

L,R

)
Li

L,R =
(

νi
L,R

ei
L,R

)
, (4)

with the following SU(2)L, SU(2)R, and U(1)B−L transformation properties.

QL : (2L, 1R, 1/3) QR : (1L, 2R, 1/3) (5)
LL : (2L, 1R, − 1) LR : (1L, 2R, − 1) (6)

The Higgs sector contains a bi-doublet ϕ and two triplets ∆L and ∆R with the following transformation
properties.

ϕ : (2L, 2R, 0) ∆L : (3L, 1R, 2) ∆R : (1L, 3R, 2) (7)

These scalars may be expressed in terms of the 2 × 2 matrices

ϕ =
(

ϕ0
1 ϕ+

2
ϕ−

1 ϕ0
2

)
∆L, R =

(
∆+/

√
2 ∆++

∆0 −∆+/
√

2

)
. (8)

a) Why does this model not work with only the bi-doublet?

b) Construct the Lagrange density for the fermion-Higgs interactions LYukawa (including all possible
gauge singlets).

c) Use the assumption that the vacuum is electrically neutral after spontaneous symmetry breaking
to derive the fermion mass terms in the broken phase.

d) Optional: Let us now modify the symmetry-breaking part of the model but leave the quark and
lepton sector unchanged. In the Higgs sector we still have the bi-doublet ϕ, but instead of the
triplets we introduce two scalar doublets AL,R and a fermionic (Grassmann-valued) singlet χ
with the following transformation properties under SU(2)L, SU(2)R, and U(1)B-L.

AL : (2L, 1R, 1) AR : (1L, 2R, 1); χ : (1L, 1R, 0) (9)

Left-right symmetry then implies the invariance of the Lagrange density under the following
transformations (where Ψ denotes any fermion field).

ΨL ↔ ΨR AL ↔ AR ϕ ↔ ϕ† (10)

Construct the Lagrange density LYukawa for the fermion masses in this model (you should again
construct singlets under the whole gauge group).
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