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They also obey the following trace identities: ¥ o= s —¢ 0
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Te(d do-- don) = ar-aTrlds- - dan) —ar-asTr(dy do - don) Under the Lorentz group, the Dirac representation is reducible. Each Dirac
representation can be split up into two smaller representations. We can take
+ ocetarap Tr(d - dant) (A the chiral projection, which gives us the Weyl representation for left-handed and

right-handed spinors:
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