
Schöning/Rodejohann                                          1                     Standard Model of Particle Physics SS 2013

Lecture: 

Standard Model of Particle Physics

Heidelberg SS 2012

Experimental Tests of QED 
Part 2



Schöning/Rodejohann                                          2                     Standard Model of Particle Physics SS 2013

Overview

PART I

 Cross Sections and QED tests

 Accelerator Facilities + Experimental Results and Tests

PART II

 Tests of QED in Particle Decays

 QED Radiative Effects (Bremsstrahlung, Higher Order Processes)
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Electromagnetic Decay of Pion

● Pion is the lightest hadron (meson)
● consists of u and d quarks (isospin triplet)
● No strong or weak decay possible

Can the electromagnetic decay of the pion be described by QED?

Complication: quarks are involve large QCD corrections!

Solution: introduce pion form factor
e+

e-

pion

Pion formfactor
(measured from pion lifetime)

∣π0 〉 =
1

√2
(∣u ū 〉−∣d d̄ 〉)
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Test Pion Branching Ratios

● dominant decay:   B(π0 → γγ) = 98.823 %
● radiative decay:    B(π0 → e+e- γ) = 1.174 %
● 2-prong decay:     B(π0 → e+e-) = 6.46 x 10-8

Can QED describe this surprisingly small branching ratio?

Vector Currents: 

e+

e-

pion

jelm
μ

= v̄ (x)γμu(x)

● Vector currents conserve helicity. 
● Resulting spin should be J(π0)=1
● But pion is a Pseudo-scalar  J(π0)=0

contradiction → helicity suppression

per photon/fermion vertex

Polarisation of helicity state is 
given by fermion velocity:

〈λ 〉 =±β for right/left chiralities

Resulting suppression factor:

1
16

(1−βq
2)(1−βe

2) =
1

16 γq
2
γq

2 =
mq

2me
2

mπ
4

~ 3 · 10-8no scalar couplings!
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QED Radiative Effects

● Bremsstrahlung
● Higher Order Processes

Experimentally very important:
● can be exploited for measurements (luminosity, radiative returns)
● but can also disturb measurements!
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QED First Order Corrections

initial state radiation (ISR) final state radiation (FSR)

p
1

p
2

p
1

p
2

p
1

p
2

k k

p' p'

Fermion propagator: 1
p ' 2−m2

=
1

(p1−k )2−m2

1

p ' 2−m2
=

1

( p2+k)2−m2

1

( p1−k)2−m2 =
1

p1
2
+k2

−2 p1k−m2 =
1

−2 p1k
≈

1
−2Ee Eγ(1−cosθ)

ISR:

Singularities:
● photon emission under zero degrees
● soft photon

θ→0

Eγ→0

FSR: similar

ISR + FSR: interference term shows no singularity (wide angle scattering)

(if mass small)
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QED First Order Corrections

 Singularities are not allowed in (renormalisable) gauge theories and have to cancel 

 Singularity from “soft” and collinear Bremsstrahlung cancel with virtual vertex
   corrections in QED

“real corrections” (Bremsstrahlung)

virtual correction:

∼ α
2

∼ α
2

∼ α ∼ α
3

interference of LO diagram
and vertex correction  ~ α2

compensates singularities
from Bremsstrahlung
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Electron-Proton Collider HERA

E
e
 = 26.7 GeV   E

p
= 920 GeV
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Proton Parton Densities



Schöning/Rodejohann                                          10                     Standard Model of Particle Physics SS 2013

electron E=27.5 GeV proton E=920 GeV

ep → e X     (neutral current)
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Kinematics Scattering Process

θ

The virtuality of the exchanged

photon is given by:

Q2 = −q2 = −( p− p ')2

q

p

p '

electron

proton

photon
Energy transfer (in Proton-rest frame):

 = EElektron−E Elektron '

Energy of photon-proton system (hadronic final state):

W = m p  

∝
1

sin4 / 2
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Lorentz Invariant Kinematics of 
Deep Inelastic Scattering Process

The virtuality of the exchanged

photon is given by:

Q2 = −q2 = −( p− p ')2

q

p

p '

electron

proton

photon

∝
1

sin4 / 2

P

x P

Relative energy loss (inelasticity):

y = ν
E Elektron

=
q P
p P

x =
q2

2q P
=
Q2

s y

relative fraction of parton momentum:

s = 2 p Pwith cms energy:

θ
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electron E=27.5 GeV proton E=920 GeV
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Determination of Luminosity?
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Reference Process

Need process with large cross section 
● Bethe Heitler Process:  e p → ep γ 
● Bremsstrahlung-Process with large cross section (~ 1 barn)! 

proton

electron electron

proton

Note,
 the proton stays intact (elastic)!
 the cross section can only be given for a minimum photon energy!

  (infrared singularity)
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Radiative Effects in Electon-
Proton Scattering

Bremsstrahlung proportional to

Bremsstrahlung effects are large for particles with low mass

Electron mass: m
e
 = 0.511 MeV

Proton mass:    m
p
 = 938 GeV

heavy radiation!

Radiation is large if
1. photon is soft
2. photon is emitted collinear

Photons can be emitted from
1. incoming electron (initial state radiation, ISR)

2. outgoing electron (final state radiation, FSR)

1

( p−k )2−m2
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Radiative Poles
Neglecting the small electron mass, the poles become:

Ai

p⋅k

A f

p '⋅k

FSRISR

Note ISR reduces the available center of mass energy s1/2
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Initial State Radiation?

calculated jet direction
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calculated jet direction

Energy E conserved and momentum p conserved  E-p
z
 conserved

E-p
z
 (proton)=0 E-p

z
 (electron) = 2 x 26.7 GeV
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Kinematic Reconstruction of ISR

radiative ISR tail
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Photondetector at H1

photon detector
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Initial State Radiation?
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Inner Drift Chamber operational?

Final State Radiation?

electron photon ?
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Inner Drift Chamber operational?

Final State Radiation?

electron photon ?
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Question: Final State Radiation?

collinear photon can not be resolved!
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Radiative Poles
Neglecting the small electron mass, the poles become:

Ai

p⋅k

A f

p'⋅k

● There is a third pole (Compton events / Wide Angle Bremsstrahlung):
Ac

( p−p'−k)2
=

1

q2

FSRISR

Final state electron and photon have large opening angles and
are p

T
 balanced

(energy is transferred from the proton to the electron line)

Note ISR reduces the available center of mass energy s1/2
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electron electron

proton

pole

e*
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Bethe Heitler Process

proton

electron electron

proton

diagram:

Cross section is largest if electron and photon are scattered (emitted)
at small angle (Compton and ISR/FSR poles combined)  

Electron and photon go down the beampipe and are not registered in
the central detector

poles
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Luminosity Measurement at HERA
dedicated electron and photon detectors

photon detector

electron detector
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H1 Luminosity Detectors

Method: measure coincidence signal
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Coincidence Technique

Photon Energy

Electron Energy
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Data Monte Carlo Comparison

Photon Detector Energy
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Principle of Luminosity Measurement

Integration of the instantaneous luminosity:

Relation between Photon counts, Bethe-Heitler cross section
and integrated Luminosity
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Breakdown of Systematic Errors

Pileup Correction →
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Effect of Pileup

N
γ
 is average number of 

photons per collision
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QED Compton Analysis

proton

electron electron

proton

2nd method:

pole
Ac

( p−p '−k )2
=

1

q2
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QED Compton EventQED Compton Event
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QED Compton Events

Back-to-Back Topology:



Schöning/Rodejohann                                          39                     Standard Model of Particle Physics SS 2013

Radiative Corrections to Compton 
Events!

Bremsstrahlung!
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Uncertainties to Compton Analysis

total systematic error [in percent]:  0.222 + 1.412 + 1.172 + 1.052 = 2.122  
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Bremsstrahlung in Charged 
Currents

W W W

e e e

ν νν ν

Neutrinos are note seen in detector and create missing p
T
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Radiative Charged Current Events 
and W-W-γ Coupling

The W-boson is electrically charged and can also radiate photons!
It is possible to test anomalous couplings
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Charged Current Event with 
Bremsstrahlung
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J. Kripfganz, H.-J. Möhring, 
H. Spiesberger

Higher order leading logarithmic 
QED corrections to deep inelastic 
ep scattering at very high energies
have significant impact on the 
kinematic reconstruction

Radiative Corrections in CC events

rad. correction

These logarithmic QED corrections
come from multiple photon emissions

 systematic error of precision 
measurements
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Higher Order Processes at HERA
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Alpha4 Processes at HERA

e+ p → e+ X μ+ μ-
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Alpha4 Processes at HERA

e+ p → X e+  e+ e-
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Exploitation of ISR
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Exploitation of ISR

 ISR reduces the center of mass energy
  of the actual hard interaction
 This can be used to extend the kinematic

  phase space to lower energies

Q2
= −q2 = −( p− p ' )2

allows to access smaller values of Q2 
which could not be reached otherwise!
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Exploitation of ISR

 ISR reduces the center of mass energy
  of the actual hard interaction
 This can be used to extend the kinematic

  phase space to lower energies

Q2 = −q2 = −( p− p ')2

allows to access smaller values of Q2 
which could not be reached otherwise!
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Radiative Returns

Z-boson are resonantly produced in e+ e- collisions 
at resonance (m

Z
 ~91 GeV)

For s1/2 > m
Z
 the radiative return allows a return to the resonance:

e+ e- → Z γ 

This effect can be large, e.g. at LEP
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DELPHI Radiative Return Event at 
LEP

Z-boson

photon
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Measurement of Radiative Return 

no radiative return

incl. radiative return

radiative returns
are extemely important!
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Radiative Return at KLEO (Daphne)
e+ e- collider at s1/2 = 1 GeV

e+ e- → π+ π- γ

rho resonance
+

omega resonance
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Radiative Returns at Barbar

e+ e- → p p γ-

e+ e- collider at s1/2 = 10 GeV
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