Exercises for Neutrino Physics: Theory and Experiment

Teresa Marrodán Undagoitia
Submission Date: Tuesday 20. Apr. 2021 before 11:00
Werner Rodejohann

Tutors:

Janine Hempfling:
Oliver Scholer:
janine.hempfling@mpi-hd.mpg.de
scholer@mpi-hd.mpg.de

Sheet 1: Theory

You have to solve at least 50% of the exercises to pass the lecture. Please send your solutions until the submission date to one of the tutors via email. You can take a picture or a scan of your solutions but make sure that it is readable.

1. Discrete symmetries [5 Points]

A CP transformation takes a left-handed neutrino and transforms it into a right-handed anti-neutrino. Consider the probability $P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)$ of a neutrino flavor α to oscillate into a flavor β after time t of propagation.
(a) How do the discrete symmetries CP, T, and CPT change the initial and final states of the process given above? That is, give

$$
\begin{array}{r}
(\mathrm{CP})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{CP}), \\
(\mathrm{T})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{T}), \tag{1}\\
(\mathrm{CPT})^{-1} P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)(\mathrm{CPT})
\end{array}
$$

in terms of other transition probabilities.
(b) The CPT theorem states that every QFT described by a Lorentz invariant, local Lagrangian is invariant under CPT transformations. How could the above result be used to test this theorem in Nature? (Hint: Consider the case $\alpha=\beta$, i.e. the survival probability of (anti-) neutrinos.)

2. Neutrino Oscillations and CP violation [15 Points]

Neutrinos are produced and detected in weak interactions, but the neutrino mass matrix is diagonal in a different basis. The unitary matrix U rotates the flavor basis into the mass eigenbasis. Consider a neutrino of flavor α produced at timet $=0$,

$$
\begin{equation*}
\left|\nu_{\alpha}(t=0)\right\rangle=\left|\nu_{\alpha}\right\rangle=U_{\alpha k}^{*}\left|\nu_{k}\right\rangle \tag{2}
\end{equation*}
$$

as a superposition of mass eigenstates $\left|\nu_{k}\right\rangle$
(a) Using approximations i. and ii. below, and the fact that the time evolution of $\left|\nu_{k}\right\rangle$ is governed by the Schrödinger equation to derive the general expression for neutrino oscillations in vacuum,

$$
\begin{equation*}
P_{\alpha \beta}=P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)=\delta_{\alpha \beta}-4 \sum_{k>j} \operatorname{Re}\left(\mathcal{I}_{\alpha \beta}^{k j}\right) \sin ^{2}\left(\frac{\Delta_{k j}}{2}\right)+2 \sum_{k>j} \operatorname{Im}\left(\mathcal{I}_{\alpha \beta}^{k j}\right) \sin \left(\Delta_{k j}\right), \tag{3}
\end{equation*}
$$

where $\left(\mathcal{I}_{\alpha \beta}^{k j}\right)=U_{\alpha k}^{*} U_{\beta k} U_{\beta j}^{*} U_{\alpha j}$ and $\Delta_{k j}=\frac{m_{k}^{2}-m_{j}^{2}}{2 E} L$. To arrive at this expression, you have to make the following assumptions:
i. Neutrino are highly relativistic, such that the distance travelled is $L \simeq t(c=1)$ and $E_{k}=\sqrt{p_{k}^{2}+m_{k}^{2}} \simeq p_{k}\left(1+\frac{m_{k}^{2}}{2 p_{k}^{2}}\right)$
ii. The central momentum of the neutrino beam is given by $p_{k} \simeq p \approx E$ for all k
(b) Derive the expression for the CP asymmetry $\mathcal{A}_{\alpha \beta}=P\left(\nu_{\alpha} \rightarrow \nu_{\beta}, t\right)-P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}, t\right)$. (Hint: How does the state (2) change under a CP transformation? Use this fact and Eq. (3)
(c) Consider now the special case of two neutrino flavors, say e and μ, hence

$$
U=\left(\begin{array}{cc}
\cos \theta & \exp (-i \delta) \sin \theta \tag{4}\\
-\exp (-i \delta) \sin \theta & \cos \theta
\end{array}\right)
$$

Calculate the CP asymmetry for $e-\mu$ oscillations. What are the conditions for CP violation to occur?
(d) Consider now the special case of three neutrino flavors whose mixing in general can be parametrised as

$$
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} \exp (-i \delta) \tag{5}\\
-s_{12} c_{23}-c_{12} s_{23} s_{13} \exp (i \delta) & c_{12} c_{23}-s_{12} s_{23} s_{13} \exp (i \delta) & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} \exp (i \delta) & -c_{12} s_{23}-s_{12} c_{23} s_{13} \exp (i \delta) & c_{23} c_{13}
\end{array}\right)
$$

where $c_{a b}=\cos \left(\theta_{a b}\right), s_{a b}=\sin \left(\theta_{a b}\right), 0 \leq \theta_{a b} \leq \pi / 2$, and $0 \leq \delta \leq 2 \pi$. Calculate the CP asymmetry $\mathcal{A}_{e \mu}$ explicitly and show that it can only be non-vanishing if all of the following conditions are satisfied: 1 . None of the mixing angles is 0 or $\pi / 2$. 2. None of the mass-square differences (i.e. $\Delta_{a b}$) are zero. 3. The phase δ is neither 0 nor π.

